/* SPDX-License-Identifier: BSD-3-Clause */ /* Copyright(c) 2019-2020 Broadcom All rights reserved. */ #include #include #include #include #include #include #include #include "bnxt.h" #include "bnxt_cpr.h" #include "bnxt_ring.h" #include "bnxt_txq.h" #include "bnxt_txr.h" #include "bnxt_rxtx_vec_common.h" /* * RX Ring handling */ #define GET_OL_FLAGS(rss_flags, ol_index, errors, pi, ol_flags) \ { \ uint32_t tmp, of; \ \ of = _mm_extract_epi32((rss_flags), (pi)) | \ rxr->ol_flags_table[_mm_extract_epi32((ol_index), (pi))]; \ \ tmp = _mm_extract_epi32((errors), (pi)); \ if (tmp) \ of |= rxr->ol_flags_err_table[tmp]; \ (ol_flags) = of; \ } #define GET_DESC_FIELDS(rxcmp, rxcmp1, shuf_msk, ptype_idx, pi, ret) \ { \ uint32_t ptype; \ __m128i r; \ \ /* Set mbuf pkt_len, data_len, and rss_hash fields. */ \ r = _mm_shuffle_epi8((rxcmp), (shuf_msk)); \ \ /* Set packet type. */ \ ptype = bnxt_ptype_table[_mm_extract_epi32((ptype_idx), (pi))]; \ r = _mm_blend_epi16(r, _mm_set_epi32(0, 0, 0, ptype), 0x3); \ \ /* Set vlan_tci. */ \ r = _mm_blend_epi16(r, _mm_slli_si128((rxcmp1), 6), 0x20); \ (ret) = r; \ } static inline void descs_to_mbufs(__m128i mm_rxcmp[4], __m128i mm_rxcmp1[4], __m128i mbuf_init, struct rte_mbuf **mbuf, struct bnxt_rx_ring_info *rxr) { const __m128i shuf_msk = _mm_set_epi8(15, 14, 13, 12, /* rss */ 0xFF, 0xFF, /* vlan_tci (zeroes) */ 3, 2, /* data_len */ 0xFF, 0xFF, 3, 2, /* pkt_len */ 0xFF, 0xFF, 0xFF, 0xFF); /* pkt_type (zeroes) */ const __m128i flags_type_mask = _mm_set1_epi32(RX_PKT_CMPL_FLAGS_ITYPE_MASK); const __m128i flags2_mask1 = _mm_set1_epi32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN | RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC); const __m128i flags2_mask2 = _mm_set1_epi32(RX_PKT_CMPL_FLAGS2_IP_TYPE); const __m128i rss_mask = _mm_set1_epi32(RX_PKT_CMPL_FLAGS_RSS_VALID); __m128i t0, t1, flags_type, flags2, index, errors, rss_flags; __m128i ptype_idx, is_tunnel; uint32_t ol_flags; /* Compute packet type table indexes for four packets */ t0 = _mm_unpacklo_epi32(mm_rxcmp[0], mm_rxcmp[1]); t1 = _mm_unpacklo_epi32(mm_rxcmp[2], mm_rxcmp[3]); flags_type = _mm_unpacklo_epi64(t0, t1); ptype_idx = _mm_srli_epi32(_mm_and_si128(flags_type, flags_type_mask), 9); t0 = _mm_unpacklo_epi32(mm_rxcmp1[0], mm_rxcmp1[1]); t1 = _mm_unpacklo_epi32(mm_rxcmp1[2], mm_rxcmp1[3]); flags2 = _mm_unpacklo_epi64(t0, t1); ptype_idx = _mm_or_si128(ptype_idx, _mm_srli_epi32(_mm_and_si128(flags2, flags2_mask1), 2)); ptype_idx = _mm_or_si128(ptype_idx, _mm_srli_epi32(_mm_and_si128(flags2, flags2_mask2), 7)); /* Extract RSS valid flags for four packets. */ rss_flags = _mm_srli_epi32(_mm_and_si128(flags_type, rss_mask), 9); /* Extract errors_v2 fields for four packets. */ t0 = _mm_unpackhi_epi32(mm_rxcmp1[0], mm_rxcmp1[1]); t1 = _mm_unpackhi_epi32(mm_rxcmp1[2], mm_rxcmp1[3]); /* Compute ol_flags and checksum error indexes for four packets. */ is_tunnel = _mm_and_si128(flags2, _mm_set1_epi32(4)); is_tunnel = _mm_slli_epi32(is_tunnel, 3); flags2 = _mm_and_si128(flags2, _mm_set1_epi32(0x1F)); errors = _mm_srli_epi32(_mm_unpacklo_epi64(t0, t1), 4); errors = _mm_and_si128(errors, _mm_set1_epi32(0xF)); errors = _mm_and_si128(errors, flags2); index = _mm_andnot_si128(errors, flags2); errors = _mm_or_si128(errors, _mm_srli_epi32(is_tunnel, 1)); index = _mm_or_si128(index, is_tunnel); /* Update mbuf rearm_data for four packets. */ GET_OL_FLAGS(rss_flags, index, errors, 0, ol_flags); _mm_store_si128((void *)&mbuf[0]->rearm_data, _mm_or_si128(mbuf_init, _mm_set_epi64x(ol_flags, 0))); GET_OL_FLAGS(rss_flags, index, errors, 1, ol_flags); _mm_store_si128((void *)&mbuf[1]->rearm_data, _mm_or_si128(mbuf_init, _mm_set_epi64x(ol_flags, 0))); GET_OL_FLAGS(rss_flags, index, errors, 2, ol_flags); _mm_store_si128((void *)&mbuf[2]->rearm_data, _mm_or_si128(mbuf_init, _mm_set_epi64x(ol_flags, 0))); GET_OL_FLAGS(rss_flags, index, errors, 3, ol_flags); _mm_store_si128((void *)&mbuf[3]->rearm_data, _mm_or_si128(mbuf_init, _mm_set_epi64x(ol_flags, 0))); /* Update mbuf rx_descriptor_fields1 for four packes. */ GET_DESC_FIELDS(mm_rxcmp[0], mm_rxcmp1[0], shuf_msk, ptype_idx, 0, t0); _mm_store_si128((void *)&mbuf[0]->rx_descriptor_fields1, t0); GET_DESC_FIELDS(mm_rxcmp[1], mm_rxcmp1[1], shuf_msk, ptype_idx, 1, t0); _mm_store_si128((void *)&mbuf[1]->rx_descriptor_fields1, t0); GET_DESC_FIELDS(mm_rxcmp[2], mm_rxcmp1[2], shuf_msk, ptype_idx, 2, t0); _mm_store_si128((void *)&mbuf[2]->rx_descriptor_fields1, t0); GET_DESC_FIELDS(mm_rxcmp[3], mm_rxcmp1[3], shuf_msk, ptype_idx, 3, t0); _mm_store_si128((void *)&mbuf[3]->rx_descriptor_fields1, t0); } static uint16_t recv_burst_vec_sse(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct bnxt_rx_queue *rxq = rx_queue; const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer); struct bnxt_cp_ring_info *cpr = rxq->cp_ring; struct bnxt_rx_ring_info *rxr = rxq->rx_ring; uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size; uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size; struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring; uint64_t valid, desc_valid_mask = ~0ULL; const __m128i info3_v_mask = _mm_set1_epi32(CMPL_BASE_V); uint32_t raw_cons = cpr->cp_raw_cons; uint32_t cons, mbcons; int nb_rx_pkts = 0; const __m128i valid_target = _mm_set1_epi32(!!(raw_cons & cp_ring_size)); int i; /* If Rx Q was stopped return */ if (unlikely(!rxq->rx_started)) return 0; if (rxq->rxrearm_nb >= rxq->rx_free_thresh) bnxt_rxq_rearm(rxq, rxr); cons = raw_cons & (cp_ring_size - 1); mbcons = (raw_cons / 2) & (rx_ring_size - 1); /* Prefetch first four descriptor pairs. */ rte_prefetch0(&cp_desc_ring[cons]); rte_prefetch0(&cp_desc_ring[cons + 4]); /* Ensure that we do not go past the ends of the rings. */ nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons, (cp_ring_size - cons) / 2)); /* * If we are at the end of the ring, ensure that descriptors after the * last valid entry are not treated as valid. Otherwise, force the * maximum number of packets to receive to be a multiple of the per- * loop count. */ if (nb_pkts < RTE_BNXT_DESCS_PER_LOOP) desc_valid_mask >>= 16 * (RTE_BNXT_DESCS_PER_LOOP - nb_pkts); else nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_BNXT_DESCS_PER_LOOP); /* Handle RX burst request */ for (i = 0; i < nb_pkts; i += RTE_BNXT_DESCS_PER_LOOP, cons += RTE_BNXT_DESCS_PER_LOOP * 2, mbcons += RTE_BNXT_DESCS_PER_LOOP) { __m128i rxcmp1[RTE_BNXT_DESCS_PER_LOOP]; __m128i rxcmp[RTE_BNXT_DESCS_PER_LOOP]; __m128i tmp0, tmp1, info3_v; uint32_t num_valid; /* Copy four mbuf pointers to output array. */ tmp0 = _mm_loadu_si128((void *)&rxr->rx_buf_ring[mbcons]); #ifdef RTE_ARCH_X86_64 tmp1 = _mm_loadu_si128((void *)&rxr->rx_buf_ring[mbcons + 2]); #endif _mm_storeu_si128((void *)&rx_pkts[i], tmp0); #ifdef RTE_ARCH_X86_64 _mm_storeu_si128((void *)&rx_pkts[i + 2], tmp1); #endif /* Prefetch four descriptor pairs for next iteration. */ if (i + RTE_BNXT_DESCS_PER_LOOP < nb_pkts) { rte_prefetch0(&cp_desc_ring[cons + 8]); rte_prefetch0(&cp_desc_ring[cons + 12]); } /* * Load the four current descriptors into SSE registers in * reverse order to ensure consistent state. */ rxcmp1[3] = _mm_load_si128((void *)&cp_desc_ring[cons + 7]); rte_compiler_barrier(); rxcmp[3] = _mm_load_si128((void *)&cp_desc_ring[cons + 6]); rxcmp1[2] = _mm_load_si128((void *)&cp_desc_ring[cons + 5]); rte_compiler_barrier(); rxcmp[2] = _mm_load_si128((void *)&cp_desc_ring[cons + 4]); tmp1 = _mm_unpackhi_epi32(rxcmp1[2], rxcmp1[3]); rxcmp1[1] = _mm_load_si128((void *)&cp_desc_ring[cons + 3]); rte_compiler_barrier(); rxcmp[1] = _mm_load_si128((void *)&cp_desc_ring[cons + 2]); rxcmp1[0] = _mm_load_si128((void *)&cp_desc_ring[cons + 1]); rte_compiler_barrier(); rxcmp[0] = _mm_load_si128((void *)&cp_desc_ring[cons + 0]); tmp0 = _mm_unpackhi_epi32(rxcmp1[0], rxcmp1[1]); /* Isolate descriptor valid flags. */ info3_v = _mm_and_si128(_mm_unpacklo_epi64(tmp0, tmp1), info3_v_mask); info3_v = _mm_xor_si128(info3_v, valid_target); /* * Pack the 128-bit array of valid descriptor flags into 64 * bits and count the number of set bits in order to determine * the number of valid descriptors. */ valid = _mm_cvtsi128_si64(_mm_packs_epi32(info3_v, info3_v)); num_valid = __builtin_popcountll(valid & desc_valid_mask); switch (num_valid) { case 4: rxr->rx_buf_ring[mbcons + 3] = NULL; /* FALLTHROUGH */ case 3: rxr->rx_buf_ring[mbcons + 2] = NULL; /* FALLTHROUGH */ case 2: rxr->rx_buf_ring[mbcons + 1] = NULL; /* FALLTHROUGH */ case 1: rxr->rx_buf_ring[mbcons + 0] = NULL; break; case 0: goto out; } descs_to_mbufs(rxcmp, rxcmp1, mbuf_init, &rx_pkts[nb_rx_pkts], rxr); nb_rx_pkts += num_valid; if (num_valid < RTE_BNXT_DESCS_PER_LOOP) break; } out: if (nb_rx_pkts) { rxr->rx_prod = RING_ADV(rxr->rx_ring_struct, rxr->rx_prod, nb_rx_pkts); rxq->rxrearm_nb += nb_rx_pkts; cpr->cp_raw_cons += 2 * nb_rx_pkts; cpr->valid = !!(cpr->cp_raw_cons & cpr->cp_ring_struct->ring_size); bnxt_db_cq(cpr); } return nb_rx_pkts; } uint16_t bnxt_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { uint16_t cnt = 0; while (nb_pkts > RTE_BNXT_MAX_RX_BURST) { uint16_t burst; burst = recv_burst_vec_sse(rx_queue, rx_pkts + cnt, RTE_BNXT_MAX_RX_BURST); cnt += burst; nb_pkts -= burst; if (burst < RTE_BNXT_MAX_RX_BURST) return cnt; } return cnt + recv_burst_vec_sse(rx_queue, rx_pkts + cnt, nb_pkts); } static void bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq) { struct bnxt_cp_ring_info *cpr = txq->cp_ring; uint32_t raw_cons = cpr->cp_raw_cons; uint32_t cons; uint32_t nb_tx_pkts = 0; struct tx_cmpl *txcmp; struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring; struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct; uint32_t ring_mask = cp_ring_struct->ring_mask; do { cons = RING_CMPL(ring_mask, raw_cons); txcmp = (struct tx_cmpl *)&cp_desc_ring[cons]; if (!bnxt_cpr_cmp_valid(txcmp, raw_cons, ring_mask + 1)) break; if (likely(CMP_TYPE(txcmp) == TX_CMPL_TYPE_TX_L2)) nb_tx_pkts += txcmp->opaque; else RTE_LOG_DP(ERR, PMD, "Unhandled CMP type %02x\n", CMP_TYPE(txcmp)); raw_cons = NEXT_RAW_CMP(raw_cons); } while (nb_tx_pkts < ring_mask); cpr->valid = !!(raw_cons & cp_ring_struct->ring_size); if (nb_tx_pkts) { if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) bnxt_tx_cmp_vec_fast(txq, nb_tx_pkts); else bnxt_tx_cmp_vec(txq, nb_tx_pkts); cpr->cp_raw_cons = raw_cons; bnxt_db_cq(cpr); } } static inline void bnxt_xmit_one(struct rte_mbuf *mbuf, struct tx_bd_long *txbd, struct bnxt_sw_tx_bd *tx_buf) { __m128i desc; tx_buf->mbuf = mbuf; tx_buf->nr_bds = 1; desc = _mm_set_epi64x(mbuf->buf_iova + mbuf->data_off, bnxt_xmit_flags_len(mbuf->data_len, TX_BD_FLAGS_NOCMPL)); desc = _mm_blend_epi16(desc, _mm_set_epi16(0, 0, 0, 0, 0, 0, mbuf->data_len, 0), 0x02); _mm_store_si128((void *)txbd, desc); } static uint16_t bnxt_xmit_fixed_burst_vec(struct bnxt_tx_queue *txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct bnxt_tx_ring_info *txr = txq->tx_ring; uint16_t tx_prod = txr->tx_prod; struct tx_bd_long *txbd; struct bnxt_sw_tx_bd *tx_buf; uint16_t to_send; txbd = &txr->tx_desc_ring[tx_prod]; tx_buf = &txr->tx_buf_ring[tx_prod]; /* Prefetch next transmit buffer descriptors. */ rte_prefetch0(txbd); rte_prefetch0(txbd + 3); nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq)); if (unlikely(nb_pkts == 0)) return 0; /* Handle TX burst request */ to_send = nb_pkts; while (to_send >= RTE_BNXT_DESCS_PER_LOOP) { /* Prefetch next transmit buffer descriptors. */ rte_prefetch0(txbd + 4); rte_prefetch0(txbd + 7); bnxt_xmit_one(tx_pkts[0], txbd++, tx_buf++); bnxt_xmit_one(tx_pkts[1], txbd++, tx_buf++); bnxt_xmit_one(tx_pkts[2], txbd++, tx_buf++); bnxt_xmit_one(tx_pkts[3], txbd++, tx_buf++); to_send -= RTE_BNXT_DESCS_PER_LOOP; tx_pkts += RTE_BNXT_DESCS_PER_LOOP; } while (to_send) { bnxt_xmit_one(tx_pkts[0], txbd++, tx_buf++); to_send--; tx_pkts++; } /* Request a completion for the final packet of burst. */ rte_compiler_barrier(); txbd[-1].opaque = nb_pkts; txbd[-1].flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL; tx_prod = RING_ADV(txr->tx_ring_struct, tx_prod, nb_pkts); bnxt_db_write(&txr->tx_db, tx_prod); txr->tx_prod = tx_prod; return nb_pkts; } uint16_t bnxt_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { int nb_sent = 0; struct bnxt_tx_queue *txq = tx_queue; struct bnxt_tx_ring_info *txr = txq->tx_ring; uint16_t ring_size = txr->tx_ring_struct->ring_size; /* Tx queue was stopped; wait for it to be restarted */ if (unlikely(!txq->tx_started)) { PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n"); return 0; } /* Handle TX completions */ if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh) bnxt_handle_tx_cp_vec(txq); while (nb_pkts) { uint16_t ret, num; /* * Ensure that no more than RTE_BNXT_MAX_TX_BURST packets * are transmitted before the next completion. */ num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST); /* * Ensure that a ring wrap does not occur within a call to * bnxt_xmit_fixed_burst_vec(). */ num = RTE_MIN(num, ring_size - (txr->tx_prod & (ring_size - 1))); ret = bnxt_xmit_fixed_burst_vec(txq, &tx_pkts[nb_sent], num); nb_sent += ret; nb_pkts -= ret; if (ret < num) break; } return nb_sent; } int __rte_cold bnxt_rxq_vec_setup(struct bnxt_rx_queue *rxq) { return bnxt_rxq_vec_setup_common(rxq); }