/* SPDX-License-Identifier: BSD-3-Clause */ /* Copyright(c) 2019-2020 Broadcom All rights reserved. */ #include #include #include #include #include #include #include #include "bnxt.h" #include "bnxt_cpr.h" #include "bnxt_ring.h" #include "bnxt_txq.h" #include "bnxt_txr.h" #include "bnxt_rxtx_vec_common.h" /* * RX Ring handling */ #define GET_OL_FLAGS(rss_flags, ol_idx, errors, pi, ol_flags) \ { \ uint32_t tmp, of; \ \ of = vgetq_lane_u32((rss_flags), (pi)) | \ rxr->ol_flags_table[vgetq_lane_u32((ol_idx), (pi))]; \ \ tmp = vgetq_lane_u32((errors), (pi)); \ if (tmp) \ of |= rxr->ol_flags_err_table[tmp]; \ (ol_flags) = of; \ } #define GET_DESC_FIELDS(rxcmp, rxcmp1, shuf_msk, ptype_idx, pkt_idx, ret) \ { \ uint32_t ptype; \ uint16_t vlan_tci; \ uint32x4_t r; \ \ /* Set mbuf pkt_len, data_len, and rss_hash fields. */ \ r = vreinterpretq_u32_u8(vqtbl1q_u8(vreinterpretq_u8_u32(rxcmp), \ (shuf_msk))); \ \ /* Set packet type. */ \ ptype = bnxt_ptype_table[vgetq_lane_u32((ptype_idx), (pkt_idx))]; \ r = vsetq_lane_u32(ptype, r, 0); \ \ /* Set vlan_tci. */ \ vlan_tci = vgetq_lane_u32((rxcmp1), 1); \ r = vreinterpretq_u32_u16(vsetq_lane_u16(vlan_tci, \ vreinterpretq_u16_u32(r), 5)); \ (ret) = r; \ } static void descs_to_mbufs(uint32x4_t mm_rxcmp[4], uint32x4_t mm_rxcmp1[4], uint64x2_t mb_init, struct rte_mbuf **mbuf, struct bnxt_rx_ring_info *rxr) { const uint8x16_t shuf_msk = { 0xFF, 0xFF, 0xFF, 0xFF, /* pkt_type (zeroes) */ 2, 3, 0xFF, 0xFF, /* pkt_len */ 2, 3, /* data_len */ 0xFF, 0xFF, /* vlan_tci (zeroes) */ 12, 13, 14, 15 /* rss hash */ }; const uint32x4_t flags_type_mask = vdupq_n_u32(RX_PKT_CMPL_FLAGS_ITYPE_MASK); const uint32x4_t flags2_mask1 = vdupq_n_u32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN | RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC); const uint32x4_t flags2_mask2 = vdupq_n_u32(RX_PKT_CMPL_FLAGS2_IP_TYPE); const uint32x4_t rss_mask = vdupq_n_u32(RX_PKT_CMPL_FLAGS_RSS_VALID); const uint32x4_t flags2_index_mask = vdupq_n_u32(0x1F); const uint32x4_t flags2_error_mask = vdupq_n_u32(0x0F); uint32x4_t flags_type, flags2, index, errors, rss_flags; uint32x4_t tmp, ptype_idx, is_tunnel; uint64x2_t t0, t1; uint32_t ol_flags; /* Compute packet type table indexes for four packets */ t0 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp[0], mm_rxcmp[1])); t1 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp[2], mm_rxcmp[3])); flags_type = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0), vget_low_u64(t1))); ptype_idx = vshrq_n_u32(vandq_u32(flags_type, flags_type_mask), 9); t0 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp1[0], mm_rxcmp1[1])); t1 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp1[2], mm_rxcmp1[3])); flags2 = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0), vget_low_u64(t1))); ptype_idx = vorrq_u32(ptype_idx, vshrq_n_u32(vandq_u32(flags2, flags2_mask1), 2)); ptype_idx = vorrq_u32(ptype_idx, vshrq_n_u32(vandq_u32(flags2, flags2_mask2), 7)); /* Extract RSS valid flags for four packets. */ rss_flags = vshrq_n_u32(vandq_u32(flags_type, rss_mask), 9); flags2 = vandq_u32(flags2, flags2_index_mask); /* Extract errors_v2 fields for four packets. */ t0 = vreinterpretq_u64_u32(vzip2q_u32(mm_rxcmp1[0], mm_rxcmp1[1])); t1 = vreinterpretq_u64_u32(vzip2q_u32(mm_rxcmp1[2], mm_rxcmp1[3])); errors = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0), vget_low_u64(t1))); /* Compute ol_flags and checksum error indexes for four packets. */ is_tunnel = vandq_u32(flags2, vdupq_n_u32(4)); is_tunnel = vshlq_n_u32(is_tunnel, 3); errors = vandq_u32(vshrq_n_u32(errors, 4), flags2_error_mask); errors = vandq_u32(errors, flags2); index = vbicq_u32(flags2, errors); errors = vorrq_u32(errors, vshrq_n_u32(is_tunnel, 1)); index = vorrq_u32(index, is_tunnel); /* Update mbuf rearm_data for four packets. */ GET_OL_FLAGS(rss_flags, index, errors, 0, ol_flags); vst1q_u32((uint32_t *)&mbuf[0]->rearm_data, vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2)); GET_OL_FLAGS(rss_flags, index, errors, 1, ol_flags); vst1q_u32((uint32_t *)&mbuf[1]->rearm_data, vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2)); GET_OL_FLAGS(rss_flags, index, errors, 2, ol_flags); vst1q_u32((uint32_t *)&mbuf[2]->rearm_data, vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2)); GET_OL_FLAGS(rss_flags, index, errors, 3, ol_flags); vst1q_u32((uint32_t *)&mbuf[3]->rearm_data, vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2)); /* Update mbuf rx_descriptor_fields1 for four packets. */ GET_DESC_FIELDS(mm_rxcmp[0], mm_rxcmp1[0], shuf_msk, ptype_idx, 0, tmp); vst1q_u32((uint32_t *)&mbuf[0]->rx_descriptor_fields1, tmp); GET_DESC_FIELDS(mm_rxcmp[1], mm_rxcmp1[1], shuf_msk, ptype_idx, 1, tmp); vst1q_u32((uint32_t *)&mbuf[1]->rx_descriptor_fields1, tmp); GET_DESC_FIELDS(mm_rxcmp[2], mm_rxcmp1[2], shuf_msk, ptype_idx, 2, tmp); vst1q_u32((uint32_t *)&mbuf[2]->rx_descriptor_fields1, tmp); GET_DESC_FIELDS(mm_rxcmp[3], mm_rxcmp1[3], shuf_msk, ptype_idx, 3, tmp); vst1q_u32((uint32_t *)&mbuf[3]->rx_descriptor_fields1, tmp); } static uint16_t recv_burst_vec_neon(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct bnxt_rx_queue *rxq = rx_queue; struct bnxt_cp_ring_info *cpr = rxq->cp_ring; struct bnxt_rx_ring_info *rxr = rxq->rx_ring; uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size; uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size; struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring; uint64_t valid, desc_valid_mask = ~0UL; const uint32x4_t info3_v_mask = vdupq_n_u32(CMPL_BASE_V); uint32_t raw_cons = cpr->cp_raw_cons; uint32_t cons, mbcons; int nb_rx_pkts = 0; const uint64x2_t mb_init = {rxq->mbuf_initializer, 0}; const uint32x4_t valid_target = vdupq_n_u32(!!(raw_cons & cp_ring_size)); int i; /* If Rx Q was stopped return */ if (unlikely(!rxq->rx_started)) return 0; if (rxq->rxrearm_nb >= rxq->rx_free_thresh) bnxt_rxq_rearm(rxq, rxr); cons = raw_cons & (cp_ring_size - 1); mbcons = (raw_cons / 2) & (rx_ring_size - 1); /* Prefetch first four descriptor pairs. */ rte_prefetch0(&cp_desc_ring[cons]); rte_prefetch0(&cp_desc_ring[cons + 4]); /* Ensure that we do not go past the ends of the rings. */ nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons, (cp_ring_size - cons) / 2)); /* * If we are at the end of the ring, ensure that descriptors after the * last valid entry are not treated as valid. Otherwise, force the * maximum number of packets to receive to be a multiple of the per- * loop count. */ if (nb_pkts < RTE_BNXT_DESCS_PER_LOOP) desc_valid_mask >>= 16 * (RTE_BNXT_DESCS_PER_LOOP - nb_pkts); else nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_BNXT_DESCS_PER_LOOP); /* Handle RX burst request */ for (i = 0; i < nb_pkts; i += RTE_BNXT_DESCS_PER_LOOP, cons += RTE_BNXT_DESCS_PER_LOOP * 2, mbcons += RTE_BNXT_DESCS_PER_LOOP) { uint32x4_t rxcmp1[RTE_BNXT_DESCS_PER_LOOP]; uint32x4_t rxcmp[RTE_BNXT_DESCS_PER_LOOP]; uint32x4_t info3_v; uint64x2_t t0, t1; uint32_t num_valid; /* Copy four mbuf pointers to output array. */ t0 = vld1q_u64((void *)&rxr->rx_buf_ring[mbcons]); #ifdef RTE_ARCH_ARM64 t1 = vld1q_u64((void *)&rxr->rx_buf_ring[mbcons + 2]); #endif vst1q_u64((void *)&rx_pkts[i], t0); #ifdef RTE_ARCH_ARM64 vst1q_u64((void *)&rx_pkts[i + 2], t1); #endif /* Prefetch four descriptor pairs for next iteration. */ if (i + RTE_BNXT_DESCS_PER_LOOP < nb_pkts) { rte_prefetch0(&cp_desc_ring[cons + 8]); rte_prefetch0(&cp_desc_ring[cons + 12]); } /* * Load the four current descriptors into NEON registers. * IO barriers are used to ensure consistent state. */ rxcmp1[3] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 7]); rte_io_rmb(); /* Reload lower 64b of descriptors to make it ordered after info3_v. */ rxcmp1[3] = vreinterpretq_u32_u64(vld1q_lane_u64 ((void *)&cpr->cp_desc_ring[cons + 7], vreinterpretq_u64_u32(rxcmp1[3]), 0)); rxcmp[3] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 6]); rxcmp1[2] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 5]); rte_io_rmb(); rxcmp1[2] = vreinterpretq_u32_u64(vld1q_lane_u64 ((void *)&cpr->cp_desc_ring[cons + 5], vreinterpretq_u64_u32(rxcmp1[2]), 0)); rxcmp[2] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 4]); t1 = vreinterpretq_u64_u32(vzip2q_u32(rxcmp1[2], rxcmp1[3])); rxcmp1[1] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 3]); rte_io_rmb(); rxcmp1[1] = vreinterpretq_u32_u64(vld1q_lane_u64 ((void *)&cpr->cp_desc_ring[cons + 3], vreinterpretq_u64_u32(rxcmp1[1]), 0)); rxcmp[1] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 2]); rxcmp1[0] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 1]); rte_io_rmb(); rxcmp1[0] = vreinterpretq_u32_u64(vld1q_lane_u64 ((void *)&cpr->cp_desc_ring[cons + 1], vreinterpretq_u64_u32(rxcmp1[0]), 0)); rxcmp[0] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 0]); t0 = vreinterpretq_u64_u32(vzip2q_u32(rxcmp1[0], rxcmp1[1])); /* Isolate descriptor status flags. */ info3_v = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0), vget_low_u64(t1))); info3_v = vandq_u32(info3_v, info3_v_mask); info3_v = veorq_u32(info3_v, valid_target); /* * Pack the 128-bit array of valid descriptor flags into 64 * bits and count the number of set bits in order to determine * the number of valid descriptors. */ valid = vget_lane_u64(vreinterpret_u64_u16(vqmovn_u32(info3_v)), 0); /* * At this point, 'valid' is a 64-bit value containing four * 16-bit fields, each of which is either 0x0001 or 0x0000. * Compute number of valid descriptors from the index of * the highest non-zero field. */ num_valid = (sizeof(uint64_t) / sizeof(uint16_t)) - (__builtin_clzl(valid & desc_valid_mask) / 16); switch (num_valid) { case 4: rxr->rx_buf_ring[mbcons + 3] = NULL; /* FALLTHROUGH */ case 3: rxr->rx_buf_ring[mbcons + 2] = NULL; /* FALLTHROUGH */ case 2: rxr->rx_buf_ring[mbcons + 1] = NULL; /* FALLTHROUGH */ case 1: rxr->rx_buf_ring[mbcons + 0] = NULL; break; case 0: goto out; } descs_to_mbufs(rxcmp, rxcmp1, mb_init, &rx_pkts[nb_rx_pkts], rxr); nb_rx_pkts += num_valid; if (num_valid < RTE_BNXT_DESCS_PER_LOOP) break; } out: if (nb_rx_pkts) { rxr->rx_prod = RING_ADV(rxr->rx_ring_struct, rxr->rx_prod, nb_rx_pkts); rxq->rxrearm_nb += nb_rx_pkts; cpr->cp_raw_cons += 2 * nb_rx_pkts; cpr->valid = !!(cpr->cp_raw_cons & cpr->cp_ring_struct->ring_size); bnxt_db_cq(cpr); } return nb_rx_pkts; } uint16_t bnxt_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { uint16_t cnt = 0; while (nb_pkts > RTE_BNXT_MAX_RX_BURST) { uint16_t burst; burst = recv_burst_vec_neon(rx_queue, rx_pkts + cnt, RTE_BNXT_MAX_RX_BURST); cnt += burst; nb_pkts -= burst; if (burst < RTE_BNXT_MAX_RX_BURST) return cnt; } return cnt + recv_burst_vec_neon(rx_queue, rx_pkts + cnt, nb_pkts); } static void bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq) { struct bnxt_cp_ring_info *cpr = txq->cp_ring; uint32_t raw_cons = cpr->cp_raw_cons; uint32_t cons; uint32_t nb_tx_pkts = 0; struct tx_cmpl *txcmp; struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring; struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct; uint32_t ring_mask = cp_ring_struct->ring_mask; do { cons = RING_CMPL(ring_mask, raw_cons); txcmp = (struct tx_cmpl *)&cp_desc_ring[cons]; if (!bnxt_cpr_cmp_valid(txcmp, raw_cons, ring_mask + 1)) break; if (likely(CMP_TYPE(txcmp) == TX_CMPL_TYPE_TX_L2)) nb_tx_pkts += txcmp->opaque; else RTE_LOG_DP(ERR, PMD, "Unhandled CMP type %02x\n", CMP_TYPE(txcmp)); raw_cons = NEXT_RAW_CMP(raw_cons); } while (nb_tx_pkts < ring_mask); cpr->valid = !!(raw_cons & cp_ring_struct->ring_size); if (nb_tx_pkts) { if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) bnxt_tx_cmp_vec_fast(txq, nb_tx_pkts); else bnxt_tx_cmp_vec(txq, nb_tx_pkts); cpr->cp_raw_cons = raw_cons; bnxt_db_cq(cpr); } } static uint16_t bnxt_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct bnxt_tx_queue *txq = tx_queue; struct bnxt_tx_ring_info *txr = txq->tx_ring; uint16_t prod = txr->tx_prod; struct rte_mbuf *tx_mbuf; struct tx_bd_long *txbd = NULL; struct bnxt_sw_tx_bd *tx_buf; uint16_t to_send; nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq)); if (unlikely(nb_pkts == 0)) return 0; /* Handle TX burst request */ to_send = nb_pkts; while (to_send) { tx_mbuf = *tx_pkts++; rte_prefetch0(tx_mbuf); tx_buf = &txr->tx_buf_ring[prod]; tx_buf->mbuf = tx_mbuf; tx_buf->nr_bds = 1; txbd = &txr->tx_desc_ring[prod]; txbd->address = tx_mbuf->buf_iova + tx_mbuf->data_off; txbd->len = tx_mbuf->data_len; txbd->flags_type = bnxt_xmit_flags_len(tx_mbuf->data_len, TX_BD_FLAGS_NOCMPL); prod = RING_NEXT(txr->tx_ring_struct, prod); to_send--; } /* Request a completion for last packet in burst */ if (txbd) { txbd->opaque = nb_pkts; txbd->flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL; } rte_compiler_barrier(); bnxt_db_write(&txr->tx_db, prod); txr->tx_prod = prod; return nb_pkts; } uint16_t bnxt_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { int nb_sent = 0; struct bnxt_tx_queue *txq = tx_queue; /* Tx queue was stopped; wait for it to be restarted */ if (unlikely(!txq->tx_started)) { PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n"); return 0; } /* Handle TX completions */ if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh) bnxt_handle_tx_cp_vec(txq); while (nb_pkts) { uint16_t ret, num; num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST); ret = bnxt_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_sent], num); nb_sent += ret; nb_pkts -= ret; if (ret < num) break; } return nb_sent; } int __rte_cold bnxt_rxq_vec_setup(struct bnxt_rx_queue *rxq) { return bnxt_rxq_vec_setup_common(rxq); }