/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2015-2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include "aesni_mb_pmd_private.h" #define AES_CCM_DIGEST_MIN_LEN 4 #define AES_CCM_DIGEST_MAX_LEN 16 #define HMAC_MAX_BLOCK_SIZE 128 static uint8_t cryptodev_driver_id; /* * Needed to support CPU-CRYPTO API (rte_cryptodev_sym_cpu_crypto_process), * as we still use JOB based API even for synchronous processing. */ static RTE_DEFINE_PER_LCORE(MB_MGR *, sync_mb_mgr); typedef void (*hash_one_block_t)(const void *data, void *digest); typedef void (*aes_keyexp_t)(const void *key, void *enc_exp_keys, void *dec_exp_keys); /** * Calculate the authentication pre-computes * * @param one_block_hash Function pointer to calculate digest on ipad/opad * @param ipad Inner pad output byte array * @param opad Outer pad output byte array * @param hkey Authentication key * @param hkey_len Authentication key length * @param blocksize Block size of selected hash algo */ static void calculate_auth_precomputes(hash_one_block_t one_block_hash, uint8_t *ipad, uint8_t *opad, const uint8_t *hkey, uint16_t hkey_len, uint16_t blocksize) { unsigned i, length; uint8_t ipad_buf[blocksize] __rte_aligned(16); uint8_t opad_buf[blocksize] __rte_aligned(16); /* Setup inner and outer pads */ memset(ipad_buf, HMAC_IPAD_VALUE, blocksize); memset(opad_buf, HMAC_OPAD_VALUE, blocksize); /* XOR hash key with inner and outer pads */ length = hkey_len > blocksize ? blocksize : hkey_len; for (i = 0; i < length; i++) { ipad_buf[i] ^= hkey[i]; opad_buf[i] ^= hkey[i]; } /* Compute partial hashes */ (*one_block_hash)(ipad_buf, ipad); (*one_block_hash)(opad_buf, opad); /* Clean up stack */ memset(ipad_buf, 0, blocksize); memset(opad_buf, 0, blocksize); } /** Get xform chain order */ static enum aesni_mb_operation aesni_mb_get_chain_order(const struct rte_crypto_sym_xform *xform) { if (xform == NULL) return AESNI_MB_OP_NOT_SUPPORTED; if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) { if (xform->next == NULL) return AESNI_MB_OP_CIPHER_ONLY; if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) return AESNI_MB_OP_CIPHER_HASH; } if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) { if (xform->next == NULL) return AESNI_MB_OP_HASH_ONLY; if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) return AESNI_MB_OP_HASH_CIPHER; } #if IMB_VERSION_NUM > IMB_VERSION(0, 52, 0) if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) { if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) { /* * CCM requires to hash first and cipher later * when encrypting */ if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM) return AESNI_MB_OP_AEAD_HASH_CIPHER; else return AESNI_MB_OP_AEAD_CIPHER_HASH; } else { if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM) return AESNI_MB_OP_AEAD_CIPHER_HASH; else return AESNI_MB_OP_AEAD_HASH_CIPHER; } } #else if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) { if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM || xform->aead.algo == RTE_CRYPTO_AEAD_AES_GCM) { if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) return AESNI_MB_OP_AEAD_CIPHER_HASH; else return AESNI_MB_OP_AEAD_HASH_CIPHER; } } #endif return AESNI_MB_OP_NOT_SUPPORTED; } static inline int is_aead_algo(JOB_HASH_ALG hash_alg, JOB_CIPHER_MODE cipher_mode) { #if IMB_VERSION(0, 54, 3) <= IMB_VERSION_NUM return (hash_alg == IMB_AUTH_CHACHA20_POLY1305 || hash_alg == AES_CCM || (hash_alg == AES_GMAC && cipher_mode == GCM)); #else return ((hash_alg == AES_GMAC && cipher_mode == GCM) || hash_alg == AES_CCM); #endif } /** Set session authentication parameters */ static int aesni_mb_set_session_auth_parameters(const MB_MGR *mb_mgr, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { hash_one_block_t hash_oneblock_fn = NULL; unsigned int key_larger_block_size = 0; uint8_t hashed_key[HMAC_MAX_BLOCK_SIZE] = { 0 }; uint32_t auth_precompute = 1; if (xform == NULL) { sess->auth.algo = NULL_HASH; return 0; } if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) { AESNI_MB_LOG(ERR, "Crypto xform struct not of type auth"); return -1; } /* Set IV parameters */ sess->auth_iv.offset = xform->auth.iv.offset; sess->auth_iv.length = xform->auth.iv.length; /* Set the request digest size */ sess->auth.req_digest_len = xform->auth.digest_length; /* Select auth generate/verify */ sess->auth.operation = xform->auth.op; /* Set Authentication Parameters */ if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_XCBC_MAC) { sess->auth.algo = AES_XCBC; uint16_t xcbc_mac_digest_len = get_truncated_digest_byte_length(AES_XCBC); if (sess->auth.req_digest_len != xcbc_mac_digest_len) { AESNI_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } sess->auth.gen_digest_len = sess->auth.req_digest_len; IMB_AES_XCBC_KEYEXP(mb_mgr, xform->auth.key.data, sess->auth.xcbc.k1_expanded, sess->auth.xcbc.k2, sess->auth.xcbc.k3); return 0; } if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_CMAC) { uint32_t dust[4*15]; sess->auth.algo = AES_CMAC; uint16_t cmac_digest_len = get_digest_byte_length(AES_CMAC); if (sess->auth.req_digest_len > cmac_digest_len) { AESNI_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } /* * Multi-buffer lib supports digest sizes from 4 to 16 bytes * in version 0.50 and sizes of 12 and 16 bytes, * in version 0.49. * If size requested is different, generate the full digest * (16 bytes) in a temporary location and then memcpy * the requested number of bytes. */ if (sess->auth.req_digest_len < 4) sess->auth.gen_digest_len = cmac_digest_len; else sess->auth.gen_digest_len = sess->auth.req_digest_len; IMB_AES_KEYEXP_128(mb_mgr, xform->auth.key.data, sess->auth.cmac.expkey, dust); IMB_AES_CMAC_SUBKEY_GEN_128(mb_mgr, sess->auth.cmac.expkey, sess->auth.cmac.skey1, sess->auth.cmac.skey2); return 0; } if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) { if (xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) { sess->cipher.direction = ENCRYPT; sess->chain_order = CIPHER_HASH; } else sess->cipher.direction = DECRYPT; sess->auth.algo = AES_GMAC; if (sess->auth.req_digest_len > get_digest_byte_length(AES_GMAC)) { AESNI_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } sess->auth.gen_digest_len = sess->auth.req_digest_len; sess->iv.length = xform->auth.iv.length; sess->iv.offset = xform->auth.iv.offset; switch (xform->auth.key.length) { case AES_128_BYTES: IMB_AES128_GCM_PRE(mb_mgr, xform->auth.key.data, &sess->cipher.gcm_key); sess->cipher.key_length_in_bytes = AES_128_BYTES; break; case AES_192_BYTES: IMB_AES192_GCM_PRE(mb_mgr, xform->auth.key.data, &sess->cipher.gcm_key); sess->cipher.key_length_in_bytes = AES_192_BYTES; break; case AES_256_BYTES: IMB_AES256_GCM_PRE(mb_mgr, xform->auth.key.data, &sess->cipher.gcm_key); sess->cipher.key_length_in_bytes = AES_256_BYTES; break; default: RTE_LOG(ERR, PMD, "failed to parse test type\n"); return -EINVAL; } return 0; } #if IMB_VERSION(0, 53, 3) <= IMB_VERSION_NUM if (xform->auth.algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { sess->auth.algo = IMB_AUTH_ZUC_EIA3_BITLEN; uint16_t zuc_eia3_digest_len = get_truncated_digest_byte_length(IMB_AUTH_ZUC_EIA3_BITLEN); if (sess->auth.req_digest_len != zuc_eia3_digest_len) { AESNI_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } sess->auth.gen_digest_len = sess->auth.req_digest_len; memcpy(sess->auth.zuc_auth_key, xform->auth.key.data, 16); return 0; } else if (xform->auth.algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2) { sess->auth.algo = IMB_AUTH_SNOW3G_UIA2_BITLEN; uint16_t snow3g_uia2_digest_len = get_truncated_digest_byte_length(IMB_AUTH_SNOW3G_UIA2_BITLEN); if (sess->auth.req_digest_len != snow3g_uia2_digest_len) { AESNI_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } sess->auth.gen_digest_len = sess->auth.req_digest_len; IMB_SNOW3G_INIT_KEY_SCHED(mb_mgr, xform->auth.key.data, &sess->auth.pKeySched_snow3g_auth); return 0; } else if (xform->auth.algo == RTE_CRYPTO_AUTH_KASUMI_F9) { sess->auth.algo = IMB_AUTH_KASUMI_UIA1; uint16_t kasumi_f9_digest_len = get_truncated_digest_byte_length(IMB_AUTH_KASUMI_UIA1); if (sess->auth.req_digest_len != kasumi_f9_digest_len) { AESNI_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } sess->auth.gen_digest_len = sess->auth.req_digest_len; IMB_KASUMI_INIT_F9_KEY_SCHED(mb_mgr, xform->auth.key.data, &sess->auth.pKeySched_kasumi_auth); return 0; } #endif switch (xform->auth.algo) { case RTE_CRYPTO_AUTH_MD5_HMAC: sess->auth.algo = MD5; hash_oneblock_fn = mb_mgr->md5_one_block; break; case RTE_CRYPTO_AUTH_SHA1_HMAC: sess->auth.algo = SHA1; hash_oneblock_fn = mb_mgr->sha1_one_block; if (xform->auth.key.length > get_auth_algo_blocksize(SHA1)) { IMB_SHA1(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA1: sess->auth.algo = PLAIN_SHA1; auth_precompute = 0; break; case RTE_CRYPTO_AUTH_SHA224_HMAC: sess->auth.algo = SHA_224; hash_oneblock_fn = mb_mgr->sha224_one_block; if (xform->auth.key.length > get_auth_algo_blocksize(SHA_224)) { IMB_SHA224(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA224: sess->auth.algo = PLAIN_SHA_224; auth_precompute = 0; break; case RTE_CRYPTO_AUTH_SHA256_HMAC: sess->auth.algo = SHA_256; hash_oneblock_fn = mb_mgr->sha256_one_block; if (xform->auth.key.length > get_auth_algo_blocksize(SHA_256)) { IMB_SHA256(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA256: sess->auth.algo = PLAIN_SHA_256; auth_precompute = 0; break; case RTE_CRYPTO_AUTH_SHA384_HMAC: sess->auth.algo = SHA_384; hash_oneblock_fn = mb_mgr->sha384_one_block; if (xform->auth.key.length > get_auth_algo_blocksize(SHA_384)) { IMB_SHA384(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA384: sess->auth.algo = PLAIN_SHA_384; auth_precompute = 0; break; case RTE_CRYPTO_AUTH_SHA512_HMAC: sess->auth.algo = SHA_512; hash_oneblock_fn = mb_mgr->sha512_one_block; if (xform->auth.key.length > get_auth_algo_blocksize(SHA_512)) { IMB_SHA512(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA512: sess->auth.algo = PLAIN_SHA_512; auth_precompute = 0; break; default: AESNI_MB_LOG(ERR, "Unsupported authentication algorithm selection"); return -ENOTSUP; } uint16_t trunc_digest_size = get_truncated_digest_byte_length(sess->auth.algo); uint16_t full_digest_size = get_digest_byte_length(sess->auth.algo); if (sess->auth.req_digest_len > full_digest_size || sess->auth.req_digest_len == 0) { AESNI_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } if (sess->auth.req_digest_len != trunc_digest_size && sess->auth.req_digest_len != full_digest_size) sess->auth.gen_digest_len = full_digest_size; else sess->auth.gen_digest_len = sess->auth.req_digest_len; /* Plain SHA does not require precompute key */ if (auth_precompute == 0) return 0; /* Calculate Authentication precomputes */ if (key_larger_block_size) { calculate_auth_precomputes(hash_oneblock_fn, sess->auth.pads.inner, sess->auth.pads.outer, hashed_key, xform->auth.key.length, get_auth_algo_blocksize(sess->auth.algo)); } else { calculate_auth_precomputes(hash_oneblock_fn, sess->auth.pads.inner, sess->auth.pads.outer, xform->auth.key.data, xform->auth.key.length, get_auth_algo_blocksize(sess->auth.algo)); } return 0; } /** Set session cipher parameters */ static int aesni_mb_set_session_cipher_parameters(const MB_MGR *mb_mgr, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { uint8_t is_aes = 0; uint8_t is_3DES = 0; uint8_t is_docsis = 0; #if IMB_VERSION(0, 53, 3) <= IMB_VERSION_NUM uint8_t is_zuc = 0; uint8_t is_snow3g = 0; uint8_t is_kasumi = 0; #endif if (xform == NULL) { sess->cipher.mode = NULL_CIPHER; return 0; } if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) { AESNI_MB_LOG(ERR, "Crypto xform struct not of type cipher"); return -EINVAL; } /* Select cipher direction */ switch (xform->cipher.op) { case RTE_CRYPTO_CIPHER_OP_ENCRYPT: sess->cipher.direction = ENCRYPT; break; case RTE_CRYPTO_CIPHER_OP_DECRYPT: sess->cipher.direction = DECRYPT; break; default: AESNI_MB_LOG(ERR, "Invalid cipher operation parameter"); return -EINVAL; } /* Select cipher mode */ switch (xform->cipher.algo) { case RTE_CRYPTO_CIPHER_AES_CBC: sess->cipher.mode = CBC; is_aes = 1; break; case RTE_CRYPTO_CIPHER_AES_CTR: sess->cipher.mode = CNTR; is_aes = 1; break; case RTE_CRYPTO_CIPHER_AES_DOCSISBPI: sess->cipher.mode = DOCSIS_SEC_BPI; is_docsis = 1; break; case RTE_CRYPTO_CIPHER_DES_CBC: sess->cipher.mode = DES; break; case RTE_CRYPTO_CIPHER_DES_DOCSISBPI: sess->cipher.mode = DOCSIS_DES; break; case RTE_CRYPTO_CIPHER_3DES_CBC: sess->cipher.mode = DES3; is_3DES = 1; break; #if IMB_VERSION(0, 53, 0) <= IMB_VERSION_NUM case RTE_CRYPTO_CIPHER_AES_ECB: sess->cipher.mode = ECB; is_aes = 1; break; #endif #if IMB_VERSION(0, 53, 3) <= IMB_VERSION_NUM case RTE_CRYPTO_CIPHER_ZUC_EEA3: sess->cipher.mode = IMB_CIPHER_ZUC_EEA3; is_zuc = 1; break; case RTE_CRYPTO_CIPHER_SNOW3G_UEA2: sess->cipher.mode = IMB_CIPHER_SNOW3G_UEA2_BITLEN; is_snow3g = 1; break; case RTE_CRYPTO_CIPHER_KASUMI_F8: sess->cipher.mode = IMB_CIPHER_KASUMI_UEA1_BITLEN; is_kasumi = 1; break; #endif default: AESNI_MB_LOG(ERR, "Unsupported cipher mode parameter"); return -ENOTSUP; } /* Set IV parameters */ sess->iv.offset = xform->cipher.iv.offset; sess->iv.length = xform->cipher.iv.length; /* Check key length and choose key expansion function for AES */ if (is_aes) { switch (xform->cipher.key.length) { case AES_128_BYTES: sess->cipher.key_length_in_bytes = AES_128_BYTES; IMB_AES_KEYEXP_128(mb_mgr, xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; case AES_192_BYTES: sess->cipher.key_length_in_bytes = AES_192_BYTES; IMB_AES_KEYEXP_192(mb_mgr, xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; case AES_256_BYTES: sess->cipher.key_length_in_bytes = AES_256_BYTES; IMB_AES_KEYEXP_256(mb_mgr, xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; default: AESNI_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } } else if (is_docsis) { switch (xform->cipher.key.length) { case AES_128_BYTES: sess->cipher.key_length_in_bytes = AES_128_BYTES; IMB_AES_KEYEXP_128(mb_mgr, xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; #if IMB_VERSION(0, 53, 3) <= IMB_VERSION_NUM case AES_256_BYTES: sess->cipher.key_length_in_bytes = AES_256_BYTES; IMB_AES_KEYEXP_256(mb_mgr, xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; #endif default: AESNI_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } } else if (is_3DES) { uint64_t *keys[3] = {sess->cipher.exp_3des_keys.key[0], sess->cipher.exp_3des_keys.key[1], sess->cipher.exp_3des_keys.key[2]}; switch (xform->cipher.key.length) { case 24: IMB_DES_KEYSCHED(mb_mgr, keys[0], xform->cipher.key.data); IMB_DES_KEYSCHED(mb_mgr, keys[1], xform->cipher.key.data + 8); IMB_DES_KEYSCHED(mb_mgr, keys[2], xform->cipher.key.data + 16); /* Initialize keys - 24 bytes: [K1-K2-K3] */ sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0]; sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1]; sess->cipher.exp_3des_keys.ks_ptr[2] = keys[2]; break; case 16: IMB_DES_KEYSCHED(mb_mgr, keys[0], xform->cipher.key.data); IMB_DES_KEYSCHED(mb_mgr, keys[1], xform->cipher.key.data + 8); /* Initialize keys - 16 bytes: [K1=K1,K2=K2,K3=K1] */ sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0]; sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1]; sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0]; break; case 8: IMB_DES_KEYSCHED(mb_mgr, keys[0], xform->cipher.key.data); /* Initialize keys - 8 bytes: [K1 = K2 = K3] */ sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0]; sess->cipher.exp_3des_keys.ks_ptr[1] = keys[0]; sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0]; break; default: AESNI_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = 24; #if IMB_VERSION(0, 53, 3) <= IMB_VERSION_NUM } else if (is_zuc) { if (xform->cipher.key.length != 16) { AESNI_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = 16; memcpy(sess->cipher.zuc_cipher_key, xform->cipher.key.data, 16); } else if (is_snow3g) { if (xform->cipher.key.length != 16) { AESNI_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = 16; IMB_SNOW3G_INIT_KEY_SCHED(mb_mgr, xform->cipher.key.data, &sess->cipher.pKeySched_snow3g_cipher); } else if (is_kasumi) { if (xform->cipher.key.length != 16) { AESNI_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = 16; IMB_KASUMI_INIT_F8_KEY_SCHED(mb_mgr, xform->cipher.key.data, &sess->cipher.pKeySched_kasumi_cipher); #endif } else { if (xform->cipher.key.length != 8) { AESNI_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = 8; IMB_DES_KEYSCHED(mb_mgr, (uint64_t *)sess->cipher.expanded_aes_keys.encode, xform->cipher.key.data); IMB_DES_KEYSCHED(mb_mgr, (uint64_t *)sess->cipher.expanded_aes_keys.decode, xform->cipher.key.data); } return 0; } static int aesni_mb_set_session_aead_parameters(const MB_MGR *mb_mgr, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { switch (xform->aead.op) { case RTE_CRYPTO_AEAD_OP_ENCRYPT: sess->cipher.direction = ENCRYPT; sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE; break; case RTE_CRYPTO_AEAD_OP_DECRYPT: sess->cipher.direction = DECRYPT; sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY; break; default: AESNI_MB_LOG(ERR, "Invalid aead operation parameter"); return -EINVAL; } /* Set IV parameters */ sess->iv.offset = xform->aead.iv.offset; sess->iv.length = xform->aead.iv.length; /* Set digest sizes */ sess->auth.req_digest_len = xform->aead.digest_length; sess->auth.gen_digest_len = sess->auth.req_digest_len; switch (xform->aead.algo) { case RTE_CRYPTO_AEAD_AES_CCM: sess->cipher.mode = CCM; sess->auth.algo = AES_CCM; /* Check key length and choose key expansion function for AES */ switch (xform->aead.key.length) { case AES_128_BYTES: sess->cipher.key_length_in_bytes = AES_128_BYTES; IMB_AES_KEYEXP_128(mb_mgr, xform->aead.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; case AES_256_BYTES: sess->cipher.key_length_in_bytes = AES_256_BYTES; IMB_AES_KEYEXP_256(mb_mgr, xform->aead.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; default: AESNI_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } /* CCM digests must be between 4 and 16 and an even number */ if (sess->auth.req_digest_len < AES_CCM_DIGEST_MIN_LEN || sess->auth.req_digest_len > AES_CCM_DIGEST_MAX_LEN || (sess->auth.req_digest_len & 1) == 1) { AESNI_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } break; case RTE_CRYPTO_AEAD_AES_GCM: sess->cipher.mode = GCM; sess->auth.algo = AES_GMAC; switch (xform->aead.key.length) { case AES_128_BYTES: sess->cipher.key_length_in_bytes = AES_128_BYTES; IMB_AES128_GCM_PRE(mb_mgr, xform->aead.key.data, &sess->cipher.gcm_key); break; case AES_192_BYTES: sess->cipher.key_length_in_bytes = AES_192_BYTES; IMB_AES192_GCM_PRE(mb_mgr, xform->aead.key.data, &sess->cipher.gcm_key); break; case AES_256_BYTES: sess->cipher.key_length_in_bytes = AES_256_BYTES; IMB_AES256_GCM_PRE(mb_mgr, xform->aead.key.data, &sess->cipher.gcm_key); break; default: AESNI_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } /* GCM digest size must be between 1 and 16 */ if (sess->auth.req_digest_len == 0 || sess->auth.req_digest_len > 16) { AESNI_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } break; #if IMB_VERSION(0, 54, 3) <= IMB_VERSION_NUM case RTE_CRYPTO_AEAD_CHACHA20_POLY1305: sess->cipher.mode = IMB_CIPHER_CHACHA20_POLY1305; sess->auth.algo = IMB_AUTH_CHACHA20_POLY1305; if (xform->aead.key.length != 32) { AESNI_MB_LOG(ERR, "Invalid key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = 32; memcpy(sess->cipher.expanded_aes_keys.encode, xform->aead.key.data, 32); if (sess->auth.req_digest_len != 16) { AESNI_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } break; #endif default: AESNI_MB_LOG(ERR, "Unsupported aead mode parameter"); return -ENOTSUP; } return 0; } /** Parse crypto xform chain and set private session parameters */ int aesni_mb_set_session_parameters(const MB_MGR *mb_mgr, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { const struct rte_crypto_sym_xform *auth_xform = NULL; const struct rte_crypto_sym_xform *cipher_xform = NULL; const struct rte_crypto_sym_xform *aead_xform = NULL; int ret; /* Select Crypto operation - hash then cipher / cipher then hash */ switch (aesni_mb_get_chain_order(xform)) { case AESNI_MB_OP_HASH_CIPHER: sess->chain_order = HASH_CIPHER; auth_xform = xform; cipher_xform = xform->next; break; case AESNI_MB_OP_CIPHER_HASH: sess->chain_order = CIPHER_HASH; auth_xform = xform->next; cipher_xform = xform; break; case AESNI_MB_OP_HASH_ONLY: sess->chain_order = HASH_CIPHER; auth_xform = xform; cipher_xform = NULL; break; case AESNI_MB_OP_CIPHER_ONLY: /* * Multi buffer library operates only at two modes, * CIPHER_HASH and HASH_CIPHER. When doing ciphering only, * chain order depends on cipher operation: encryption is always * the first operation and decryption the last one. */ if (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) sess->chain_order = CIPHER_HASH; else sess->chain_order = HASH_CIPHER; auth_xform = NULL; cipher_xform = xform; break; case AESNI_MB_OP_AEAD_CIPHER_HASH: sess->chain_order = CIPHER_HASH; sess->aead.aad_len = xform->aead.aad_length; aead_xform = xform; break; case AESNI_MB_OP_AEAD_HASH_CIPHER: sess->chain_order = HASH_CIPHER; sess->aead.aad_len = xform->aead.aad_length; aead_xform = xform; break; case AESNI_MB_OP_NOT_SUPPORTED: default: AESNI_MB_LOG(ERR, "Unsupported operation chain order parameter"); return -ENOTSUP; } /* Default IV length = 0 */ sess->iv.length = 0; sess->auth_iv.length = 0; ret = aesni_mb_set_session_auth_parameters(mb_mgr, sess, auth_xform); if (ret != 0) { AESNI_MB_LOG(ERR, "Invalid/unsupported authentication parameters"); return ret; } ret = aesni_mb_set_session_cipher_parameters(mb_mgr, sess, cipher_xform); if (ret != 0) { AESNI_MB_LOG(ERR, "Invalid/unsupported cipher parameters"); return ret; } if (aead_xform) { ret = aesni_mb_set_session_aead_parameters(mb_mgr, sess, aead_xform); if (ret != 0) { AESNI_MB_LOG(ERR, "Invalid/unsupported aead parameters"); return ret; } } return 0; } #ifdef AESNI_MB_DOCSIS_SEC_ENABLED /** Check DOCSIS security session configuration is valid */ static int check_docsis_sec_session(struct rte_security_session_conf *conf) { struct rte_crypto_sym_xform *crypto_sym = conf->crypto_xform; struct rte_security_docsis_xform *docsis = &conf->docsis; /* Downlink: CRC generate -> Cipher encrypt */ if (docsis->direction == RTE_SECURITY_DOCSIS_DOWNLINK) { if (crypto_sym != NULL && crypto_sym->type == RTE_CRYPTO_SYM_XFORM_CIPHER && crypto_sym->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT && crypto_sym->cipher.algo == RTE_CRYPTO_CIPHER_AES_DOCSISBPI && (crypto_sym->cipher.key.length == IMB_KEY_AES_128_BYTES || crypto_sym->cipher.key.length == IMB_KEY_AES_256_BYTES) && crypto_sym->cipher.iv.length == AES_BLOCK_SIZE && crypto_sym->next == NULL) { return 0; } /* Uplink: Cipher decrypt -> CRC verify */ } else if (docsis->direction == RTE_SECURITY_DOCSIS_UPLINK) { if (crypto_sym != NULL && crypto_sym->type == RTE_CRYPTO_SYM_XFORM_CIPHER && crypto_sym->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT && crypto_sym->cipher.algo == RTE_CRYPTO_CIPHER_AES_DOCSISBPI && (crypto_sym->cipher.key.length == IMB_KEY_AES_128_BYTES || crypto_sym->cipher.key.length == IMB_KEY_AES_256_BYTES) && crypto_sym->cipher.iv.length == AES_BLOCK_SIZE && crypto_sym->next == NULL) { return 0; } } return -EINVAL; } /** Set DOCSIS security session auth (CRC) parameters */ static int aesni_mb_set_docsis_sec_session_auth_parameters(struct aesni_mb_session *sess, struct rte_security_docsis_xform *xform) { if (xform == NULL) { AESNI_MB_LOG(ERR, "Invalid DOCSIS xform"); return -EINVAL; } /* Select CRC generate/verify */ if (xform->direction == RTE_SECURITY_DOCSIS_UPLINK) { sess->auth.algo = IMB_AUTH_DOCSIS_CRC32; sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY; } else if (xform->direction == RTE_SECURITY_DOCSIS_DOWNLINK) { sess->auth.algo = IMB_AUTH_DOCSIS_CRC32; sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE; } else { AESNI_MB_LOG(ERR, "Unsupported DOCSIS direction"); return -ENOTSUP; } sess->auth.req_digest_len = RTE_ETHER_CRC_LEN; sess->auth.gen_digest_len = RTE_ETHER_CRC_LEN; return 0; } /** * Parse DOCSIS security session configuration and set private session * parameters */ int aesni_mb_set_docsis_sec_session_parameters( __rte_unused struct rte_cryptodev *dev, struct rte_security_session_conf *conf, void *sess) { struct rte_security_docsis_xform *docsis_xform; struct rte_crypto_sym_xform *cipher_xform; struct aesni_mb_session *aesni_sess = sess; struct aesni_mb_private *internals = dev->data->dev_private; int ret; ret = check_docsis_sec_session(conf); if (ret) { AESNI_MB_LOG(ERR, "Unsupported DOCSIS security configuration"); return ret; } switch (conf->docsis.direction) { case RTE_SECURITY_DOCSIS_UPLINK: aesni_sess->chain_order = IMB_ORDER_CIPHER_HASH; docsis_xform = &conf->docsis; cipher_xform = conf->crypto_xform; break; case RTE_SECURITY_DOCSIS_DOWNLINK: aesni_sess->chain_order = IMB_ORDER_HASH_CIPHER; cipher_xform = conf->crypto_xform; docsis_xform = &conf->docsis; break; default: return -EINVAL; } /* Default IV length = 0 */ aesni_sess->iv.length = 0; ret = aesni_mb_set_docsis_sec_session_auth_parameters(aesni_sess, docsis_xform); if (ret != 0) { AESNI_MB_LOG(ERR, "Invalid/unsupported DOCSIS parameters"); return -EINVAL; } ret = aesni_mb_set_session_cipher_parameters(internals->mb_mgr, aesni_sess, cipher_xform); if (ret != 0) { AESNI_MB_LOG(ERR, "Invalid/unsupported cipher parameters"); return -EINVAL; } return 0; } #endif /** * burst enqueue, place crypto operations on ingress queue for processing. * * @param __qp Queue Pair to process * @param ops Crypto operations for processing * @param nb_ops Number of crypto operations for processing * * @return * - Number of crypto operations enqueued */ static uint16_t aesni_mb_pmd_enqueue_burst(void *__qp, struct rte_crypto_op **ops, uint16_t nb_ops) { struct aesni_mb_qp *qp = __qp; unsigned int nb_enqueued; nb_enqueued = rte_ring_enqueue_burst(qp->ingress_queue, (void **)ops, nb_ops, NULL); qp->stats.enqueued_count += nb_enqueued; return nb_enqueued; } /** Get multi buffer session */ static inline struct aesni_mb_session * get_session(struct aesni_mb_qp *qp, struct rte_crypto_op *op) { struct aesni_mb_session *sess = NULL; if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) { if (likely(op->sym->session != NULL)) sess = (struct aesni_mb_session *) get_sym_session_private_data( op->sym->session, cryptodev_driver_id); #ifdef AESNI_MB_DOCSIS_SEC_ENABLED } else if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) { if (likely(op->sym->sec_session != NULL)) sess = (struct aesni_mb_session *) get_sec_session_private_data( op->sym->sec_session); #endif } else { void *_sess = rte_cryptodev_sym_session_create(qp->sess_mp); void *_sess_private_data = NULL; if (_sess == NULL) return NULL; if (rte_mempool_get(qp->sess_mp_priv, (void **)&_sess_private_data)) return NULL; sess = (struct aesni_mb_session *)_sess_private_data; if (unlikely(aesni_mb_set_session_parameters(qp->mb_mgr, sess, op->sym->xform) != 0)) { rte_mempool_put(qp->sess_mp, _sess); rte_mempool_put(qp->sess_mp_priv, _sess_private_data); sess = NULL; } op->sym->session = (struct rte_cryptodev_sym_session *)_sess; set_sym_session_private_data(op->sym->session, cryptodev_driver_id, _sess_private_data); } if (unlikely(sess == NULL)) op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; return sess; } static inline uint64_t auth_start_offset(struct rte_crypto_op *op, struct aesni_mb_session *session, uint32_t oop, const uint32_t auth_offset, const uint32_t cipher_offset, const uint32_t auth_length, const uint32_t cipher_length) { struct rte_mbuf *m_src, *m_dst; uint8_t *p_src, *p_dst; uintptr_t u_src, u_dst; uint32_t cipher_end, auth_end; /* Only cipher then hash needs special calculation. */ if (!oop || session->chain_order != CIPHER_HASH) return auth_offset; m_src = op->sym->m_src; m_dst = op->sym->m_dst; p_src = rte_pktmbuf_mtod(m_src, uint8_t *); p_dst = rte_pktmbuf_mtod(m_dst, uint8_t *); u_src = (uintptr_t)p_src; u_dst = (uintptr_t)p_dst + auth_offset; /** * Copy the content between cipher offset and auth offset for generating * correct digest. */ if (cipher_offset > auth_offset) memcpy(p_dst + auth_offset, p_src + auth_offset, cipher_offset - auth_offset); /** * Copy the content between (cipher offset + length) and (auth offset + * length) for generating correct digest */ cipher_end = cipher_offset + cipher_length; auth_end = auth_offset + auth_length; if (cipher_end < auth_end) memcpy(p_dst + cipher_end, p_src + cipher_end, auth_end - cipher_end); /** * Since intel-ipsec-mb only supports positive values, * we need to deduct the correct offset between src and dst. */ return u_src < u_dst ? (u_dst - u_src) : (UINT64_MAX - u_src + u_dst + 1); } static inline void set_cpu_mb_job_params(JOB_AES_HMAC *job, struct aesni_mb_session *session, union rte_crypto_sym_ofs sofs, void *buf, uint32_t len, struct rte_crypto_va_iova_ptr *iv, struct rte_crypto_va_iova_ptr *aad, void *digest, void *udata) { /* Set crypto operation */ job->chain_order = session->chain_order; /* Set cipher parameters */ job->cipher_direction = session->cipher.direction; job->cipher_mode = session->cipher.mode; job->aes_key_len_in_bytes = session->cipher.key_length_in_bytes; /* Set authentication parameters */ job->hash_alg = session->auth.algo; job->iv = iv->va; switch (job->hash_alg) { case AES_XCBC: job->u.XCBC._k1_expanded = session->auth.xcbc.k1_expanded; job->u.XCBC._k2 = session->auth.xcbc.k2; job->u.XCBC._k3 = session->auth.xcbc.k3; job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; break; case AES_CCM: job->u.CCM.aad = (uint8_t *)aad->va + 18; job->u.CCM.aad_len_in_bytes = session->aead.aad_len; job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; job->iv++; break; case AES_CMAC: job->u.CMAC._key_expanded = session->auth.cmac.expkey; job->u.CMAC._skey1 = session->auth.cmac.skey1; job->u.CMAC._skey2 = session->auth.cmac.skey2; job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; break; case AES_GMAC: if (session->cipher.mode == GCM) { job->u.GCM.aad = aad->va; job->u.GCM.aad_len_in_bytes = session->aead.aad_len; } else { /* For GMAC */ job->u.GCM.aad = buf; job->u.GCM.aad_len_in_bytes = len; job->cipher_mode = GCM; } job->aes_enc_key_expanded = &session->cipher.gcm_key; job->aes_dec_key_expanded = &session->cipher.gcm_key; break; #if IMB_VERSION(0, 54, 3) <= IMB_VERSION_NUM case IMB_AUTH_CHACHA20_POLY1305: job->u.CHACHA20_POLY1305.aad = aad->va; job->u.CHACHA20_POLY1305.aad_len_in_bytes = session->aead.aad_len; job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.encode; break; #endif default: job->u.HMAC._hashed_auth_key_xor_ipad = session->auth.pads.inner; job->u.HMAC._hashed_auth_key_xor_opad = session->auth.pads.outer; if (job->cipher_mode == DES3) { job->aes_enc_key_expanded = session->cipher.exp_3des_keys.ks_ptr; job->aes_dec_key_expanded = session->cipher.exp_3des_keys.ks_ptr; } else { job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; } } /* * Multi-buffer library current only support returning a truncated * digest length as specified in the relevant IPsec RFCs */ /* Set digest location and length */ job->auth_tag_output = digest; job->auth_tag_output_len_in_bytes = session->auth.gen_digest_len; /* Set IV parameters */ job->iv_len_in_bytes = session->iv.length; /* Data Parameters */ job->src = buf; job->dst = (uint8_t *)buf + sofs.ofs.cipher.head; job->cipher_start_src_offset_in_bytes = sofs.ofs.cipher.head; job->hash_start_src_offset_in_bytes = sofs.ofs.auth.head; if (job->hash_alg == AES_GMAC && session->cipher.mode != GCM) { job->msg_len_to_hash_in_bytes = 0; job->msg_len_to_cipher_in_bytes = 0; } else { job->msg_len_to_hash_in_bytes = len - sofs.ofs.auth.head - sofs.ofs.auth.tail; job->msg_len_to_cipher_in_bytes = len - sofs.ofs.cipher.head - sofs.ofs.cipher.tail; } job->user_data = udata; } /** * Process a crypto operation and complete a JOB_AES_HMAC job structure for * submission to the multi buffer library for processing. * * @param qp queue pair * @param job JOB_AES_HMAC structure to fill * @param m mbuf to process * * @return * - Completed JOB_AES_HMAC structure pointer on success * - NULL pointer if completion of JOB_AES_HMAC structure isn't possible */ static inline int set_mb_job_params(JOB_AES_HMAC *job, struct aesni_mb_qp *qp, struct rte_crypto_op *op, uint8_t *digest_idx) { struct rte_mbuf *m_src = op->sym->m_src, *m_dst; struct aesni_mb_session *session; uint32_t m_offset, oop; #if IMB_VERSION(0, 53, 3) <= IMB_VERSION_NUM uint32_t auth_off_in_bytes; uint32_t ciph_off_in_bytes; uint32_t auth_len_in_bytes; uint32_t ciph_len_in_bytes; #endif session = get_session(qp, op); if (session == NULL) { op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; return -1; } /* Set crypto operation */ job->chain_order = session->chain_order; /* Set cipher parameters */ job->cipher_direction = session->cipher.direction; job->cipher_mode = session->cipher.mode; job->aes_key_len_in_bytes = session->cipher.key_length_in_bytes; /* Set authentication parameters */ job->hash_alg = session->auth.algo; const int aead = is_aead_algo(job->hash_alg, job->cipher_mode); if (job->cipher_mode == DES3) { job->aes_enc_key_expanded = session->cipher.exp_3des_keys.ks_ptr; job->aes_dec_key_expanded = session->cipher.exp_3des_keys.ks_ptr; } else { job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; } switch (job->hash_alg) { case AES_XCBC: job->u.XCBC._k1_expanded = session->auth.xcbc.k1_expanded; job->u.XCBC._k2 = session->auth.xcbc.k2; job->u.XCBC._k3 = session->auth.xcbc.k3; job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; break; case AES_CCM: job->u.CCM.aad = op->sym->aead.aad.data + 18; job->u.CCM.aad_len_in_bytes = session->aead.aad_len; job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; break; case AES_CMAC: job->u.CMAC._key_expanded = session->auth.cmac.expkey; job->u.CMAC._skey1 = session->auth.cmac.skey1; job->u.CMAC._skey2 = session->auth.cmac.skey2; job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; break; case AES_GMAC: if (session->cipher.mode == GCM) { job->u.GCM.aad = op->sym->aead.aad.data; job->u.GCM.aad_len_in_bytes = session->aead.aad_len; } else { /* For GMAC */ job->u.GCM.aad = rte_pktmbuf_mtod_offset(m_src, uint8_t *, op->sym->auth.data.offset); job->u.GCM.aad_len_in_bytes = op->sym->auth.data.length; job->cipher_mode = GCM; } job->aes_enc_key_expanded = &session->cipher.gcm_key; job->aes_dec_key_expanded = &session->cipher.gcm_key; break; #if IMB_VERSION(0, 53, 3) <= IMB_VERSION_NUM case IMB_AUTH_ZUC_EIA3_BITLEN: job->u.ZUC_EIA3._key = session->auth.zuc_auth_key; job->u.ZUC_EIA3._iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->auth_iv.offset); break; case IMB_AUTH_SNOW3G_UIA2_BITLEN: job->u.SNOW3G_UIA2._key = (void *) &session->auth.pKeySched_snow3g_auth; job->u.SNOW3G_UIA2._iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->auth_iv.offset); break; case IMB_AUTH_KASUMI_UIA1: job->u.KASUMI_UIA1._key = (void *) &session->auth.pKeySched_kasumi_auth; break; #endif #if IMB_VERSION(0, 54, 3) <= IMB_VERSION_NUM case IMB_AUTH_CHACHA20_POLY1305: job->u.CHACHA20_POLY1305.aad = op->sym->aead.aad.data; job->u.CHACHA20_POLY1305.aad_len_in_bytes = session->aead.aad_len; job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.encode; break; #endif default: job->u.HMAC._hashed_auth_key_xor_ipad = session->auth.pads.inner; job->u.HMAC._hashed_auth_key_xor_opad = session->auth.pads.outer; } if (aead) m_offset = op->sym->aead.data.offset; else m_offset = op->sym->cipher.data.offset; #if IMB_VERSION(0, 53, 3) <= IMB_VERSION_NUM if (job->cipher_mode == IMB_CIPHER_ZUC_EEA3) { job->aes_enc_key_expanded = session->cipher.zuc_cipher_key; job->aes_dec_key_expanded = session->cipher.zuc_cipher_key; m_offset >>= 3; } else if (job->cipher_mode == IMB_CIPHER_SNOW3G_UEA2_BITLEN) { job->enc_keys = &session->cipher.pKeySched_snow3g_cipher; m_offset = 0; } else if (job->cipher_mode == IMB_CIPHER_KASUMI_UEA1_BITLEN) { job->enc_keys = &session->cipher.pKeySched_kasumi_cipher; m_offset = 0; } #endif if (!op->sym->m_dst) { /* in-place operation */ m_dst = m_src; oop = 0; } else if (op->sym->m_dst == op->sym->m_src) { /* in-place operation */ m_dst = m_src; oop = 0; } else { /* out-of-place operation */ m_dst = op->sym->m_dst; oop = 1; } /* Set digest output location */ if (job->hash_alg != NULL_HASH && session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) { job->auth_tag_output = qp->temp_digests[*digest_idx]; *digest_idx = (*digest_idx + 1) % MAX_JOBS; } else { if (aead) job->auth_tag_output = op->sym->aead.digest.data; else job->auth_tag_output = op->sym->auth.digest.data; if (session->auth.req_digest_len != session->auth.gen_digest_len) { job->auth_tag_output = qp->temp_digests[*digest_idx]; *digest_idx = (*digest_idx + 1) % MAX_JOBS; } } /* * Multi-buffer library current only support returning a truncated * digest length as specified in the relevant IPsec RFCs */ /* Set digest length */ job->auth_tag_output_len_in_bytes = session->auth.gen_digest_len; /* Set IV parameters */ job->iv_len_in_bytes = session->iv.length; /* Data Parameters */ job->src = rte_pktmbuf_mtod(m_src, uint8_t *); job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset); switch (job->hash_alg) { case AES_CCM: job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_hash_in_bytes = op->sym->aead.data.length; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset + 1); break; case AES_GMAC: if (session->cipher.mode == GCM) { job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_hash_in_bytes = op->sym->aead.data.length; } else { /* AES-GMAC only, only AAD used */ job->msg_len_to_hash_in_bytes = 0; job->hash_start_src_offset_in_bytes = 0; } job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); break; #if IMB_VERSION(0, 54, 3) <= IMB_VERSION_NUM case IMB_AUTH_CHACHA20_POLY1305: job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_hash_in_bytes = op->sym->aead.data.length; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); break; #endif #if IMB_VERSION(0, 53, 3) <= IMB_VERSION_NUM /* ZUC and SNOW3G require length in bits and offset in bytes */ case IMB_AUTH_ZUC_EIA3_BITLEN: case IMB_AUTH_SNOW3G_UIA2_BITLEN: auth_off_in_bytes = op->sym->auth.data.offset >> 3; ciph_off_in_bytes = op->sym->cipher.data.offset >> 3; auth_len_in_bytes = op->sym->auth.data.length >> 3; ciph_len_in_bytes = op->sym->cipher.data.length >> 3; job->hash_start_src_offset_in_bytes = auth_start_offset(op, session, oop, auth_off_in_bytes, ciph_off_in_bytes, auth_len_in_bytes, ciph_len_in_bytes); job->msg_len_to_hash_in_bits = op->sym->auth.data.length; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); break; /* KASUMI requires lengths and offset in bytes */ case IMB_AUTH_KASUMI_UIA1: auth_off_in_bytes = op->sym->auth.data.offset >> 3; ciph_off_in_bytes = op->sym->cipher.data.offset >> 3; auth_len_in_bytes = op->sym->auth.data.length >> 3; ciph_len_in_bytes = op->sym->cipher.data.length >> 3; job->hash_start_src_offset_in_bytes = auth_start_offset(op, session, oop, auth_off_in_bytes, ciph_off_in_bytes, auth_len_in_bytes, ciph_len_in_bytes); job->msg_len_to_hash_in_bytes = auth_len_in_bytes; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); break; #endif default: job->hash_start_src_offset_in_bytes = auth_start_offset(op, session, oop, op->sym->auth.data.offset, op->sym->cipher.data.offset, op->sym->auth.data.length, op->sym->cipher.data.length); job->msg_len_to_hash_in_bytes = op->sym->auth.data.length; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); } switch (job->cipher_mode) { #if IMB_VERSION(0, 53, 3) <= IMB_VERSION_NUM /* ZUC requires length and offset in bytes */ case IMB_CIPHER_ZUC_EEA3: job->cipher_start_src_offset_in_bytes = op->sym->cipher.data.offset >> 3; job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length >> 3; break; /* ZUC and SNOW3G require length and offset in bits */ case IMB_CIPHER_SNOW3G_UEA2_BITLEN: case IMB_CIPHER_KASUMI_UEA1_BITLEN: job->cipher_start_src_offset_in_bits = op->sym->cipher.data.offset; job->msg_len_to_cipher_in_bits = op->sym->cipher.data.length; break; #endif case GCM: if (session->cipher.mode == NULL_CIPHER) { /* AES-GMAC only (only AAD used) */ job->msg_len_to_cipher_in_bytes = 0; job->cipher_start_src_offset_in_bytes = 0; } else { job->cipher_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length; } break; case CCM: #if IMB_VERSION(0, 54, 3) <= IMB_VERSION_NUM case IMB_CIPHER_CHACHA20_POLY1305: #endif job->cipher_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length; break; default: job->cipher_start_src_offset_in_bytes = op->sym->cipher.data.offset; job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length; } /* Set user data to be crypto operation data struct */ job->user_data = op; return 0; } #ifdef AESNI_MB_DOCSIS_SEC_ENABLED /** * Process a crypto operation containing a security op and complete a * JOB_AES_HMAC job structure for submission to the multi buffer library for * processing. */ static inline int set_sec_mb_job_params(JOB_AES_HMAC *job, struct aesni_mb_qp *qp, struct rte_crypto_op *op, uint8_t *digest_idx) { struct rte_mbuf *m_src, *m_dst; struct rte_crypto_sym_op *sym; struct aesni_mb_session *session; session = get_session(qp, op); if (unlikely(session == NULL)) { op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; return -1; } /* Only DOCSIS protocol operations supported now */ if (session->cipher.mode != IMB_CIPHER_DOCSIS_SEC_BPI || session->auth.algo != IMB_AUTH_DOCSIS_CRC32) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; return -1; } sym = op->sym; m_src = sym->m_src; if (likely(sym->m_dst == NULL || sym->m_dst == m_src)) { /* in-place operation */ m_dst = m_src; } else { /* out-of-place operation not supported */ op->status = RTE_CRYPTO_OP_STATUS_ERROR; return -ENOTSUP; } /* Set crypto operation */ job->chain_order = session->chain_order; /* Set cipher parameters */ job->cipher_direction = session->cipher.direction; job->cipher_mode = session->cipher.mode; job->aes_key_len_in_bytes = session->cipher.key_length_in_bytes; job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; /* Set IV parameters */ job->iv_len_in_bytes = session->iv.length; job->iv = (uint8_t *)op + session->iv.offset; /* Set authentication parameters */ job->hash_alg = session->auth.algo; /* Set digest output location */ job->auth_tag_output = qp->temp_digests[*digest_idx]; *digest_idx = (*digest_idx + 1) % MAX_JOBS; /* Set digest length */ job->auth_tag_output_len_in_bytes = session->auth.gen_digest_len; /* Set data parameters */ job->src = rte_pktmbuf_mtod(m_src, uint8_t *); job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, sym->cipher.data.offset); job->cipher_start_src_offset_in_bytes = sym->cipher.data.offset; job->msg_len_to_cipher_in_bytes = sym->cipher.data.length; job->hash_start_src_offset_in_bytes = sym->auth.data.offset; job->msg_len_to_hash_in_bytes = sym->auth.data.length; job->user_data = op; return 0; } static inline void verify_docsis_sec_crc(JOB_AES_HMAC *job, uint8_t *status) { uint16_t crc_offset; uint8_t *crc; if (!job->msg_len_to_hash_in_bytes) return; crc_offset = job->hash_start_src_offset_in_bytes + job->msg_len_to_hash_in_bytes - job->cipher_start_src_offset_in_bytes; crc = job->dst + crc_offset; /* Verify CRC (at the end of the message) */ if (memcmp(job->auth_tag_output, crc, RTE_ETHER_CRC_LEN) != 0) *status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; } #endif static inline void verify_digest(JOB_AES_HMAC *job, void *digest, uint16_t len, uint8_t *status) { /* Verify digest if required */ if (memcmp(job->auth_tag_output, digest, len) != 0) *status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; } static inline void generate_digest(JOB_AES_HMAC *job, struct rte_crypto_op *op, struct aesni_mb_session *sess) { /* No extra copy needed */ if (likely(sess->auth.req_digest_len == sess->auth.gen_digest_len)) return; /* * This can only happen for HMAC, so only digest * for authentication algos is required */ memcpy(op->sym->auth.digest.data, job->auth_tag_output, sess->auth.req_digest_len); } /** * Process a completed job and return rte_mbuf which job processed * * @param qp Queue Pair to process * @param job JOB_AES_HMAC job to process * * @return * - Returns processed crypto operation. * - Returns NULL on invalid job */ static inline struct rte_crypto_op * post_process_mb_job(struct aesni_mb_qp *qp, JOB_AES_HMAC *job) { struct rte_crypto_op *op = (struct rte_crypto_op *)job->user_data; struct aesni_mb_session *sess = NULL; #ifdef AESNI_MB_DOCSIS_SEC_ENABLED uint8_t is_docsis_sec = 0; if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) { /* * Assuming at this point that if it's a security type op, that * this is for DOCSIS */ is_docsis_sec = 1; sess = get_sec_session_private_data(op->sym->sec_session); } else #endif { sess = get_sym_session_private_data(op->sym->session, cryptodev_driver_id); } if (unlikely(sess == NULL)) { op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; return op; } if (likely(op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)) { switch (job->status) { case STS_COMPLETED: op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; if (job->hash_alg == NULL_HASH) break; if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) { if (is_aead_algo(job->hash_alg, sess->cipher.mode)) verify_digest(job, op->sym->aead.digest.data, sess->auth.req_digest_len, &op->status); #ifdef AESNI_MB_DOCSIS_SEC_ENABLED else if (is_docsis_sec) verify_docsis_sec_crc(job, &op->status); #endif else verify_digest(job, op->sym->auth.digest.data, sess->auth.req_digest_len, &op->status); } else generate_digest(job, op, sess); break; default: op->status = RTE_CRYPTO_OP_STATUS_ERROR; } } /* Free session if a session-less crypto op */ if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) { memset(sess, 0, sizeof(struct aesni_mb_session)); memset(op->sym->session, 0, rte_cryptodev_sym_get_existing_header_session_size( op->sym->session)); rte_mempool_put(qp->sess_mp_priv, sess); rte_mempool_put(qp->sess_mp, op->sym->session); op->sym->session = NULL; } return op; } static inline void post_process_mb_sync_job(JOB_AES_HMAC *job) { uint32_t *st; st = job->user_data; st[0] = (job->status == STS_COMPLETED) ? 0 : EBADMSG; } /** * Process a completed JOB_AES_HMAC job and keep processing jobs until * get_completed_job return NULL * * @param qp Queue Pair to process * @param job JOB_AES_HMAC job * * @return * - Number of processed jobs */ static unsigned handle_completed_jobs(struct aesni_mb_qp *qp, JOB_AES_HMAC *job, struct rte_crypto_op **ops, uint16_t nb_ops) { struct rte_crypto_op *op = NULL; unsigned processed_jobs = 0; while (job != NULL) { op = post_process_mb_job(qp, job); if (op) { ops[processed_jobs++] = op; qp->stats.dequeued_count++; } else { qp->stats.dequeue_err_count++; break; } if (processed_jobs == nb_ops) break; job = IMB_GET_COMPLETED_JOB(qp->mb_mgr); } return processed_jobs; } static inline uint32_t handle_completed_sync_jobs(JOB_AES_HMAC *job, MB_MGR *mb_mgr) { uint32_t i; for (i = 0; job != NULL; i++, job = IMB_GET_COMPLETED_JOB(mb_mgr)) post_process_mb_sync_job(job); return i; } static inline uint32_t flush_mb_sync_mgr(MB_MGR *mb_mgr) { JOB_AES_HMAC *job; job = IMB_FLUSH_JOB(mb_mgr); return handle_completed_sync_jobs(job, mb_mgr); } static inline uint16_t flush_mb_mgr(struct aesni_mb_qp *qp, struct rte_crypto_op **ops, uint16_t nb_ops) { int processed_ops = 0; /* Flush the remaining jobs */ JOB_AES_HMAC *job = IMB_FLUSH_JOB(qp->mb_mgr); if (job) processed_ops += handle_completed_jobs(qp, job, &ops[processed_ops], nb_ops - processed_ops); return processed_ops; } static inline JOB_AES_HMAC * set_job_null_op(JOB_AES_HMAC *job, struct rte_crypto_op *op) { job->chain_order = HASH_CIPHER; job->cipher_mode = NULL_CIPHER; job->hash_alg = NULL_HASH; job->cipher_direction = DECRYPT; /* Set user data to be crypto operation data struct */ job->user_data = op; return job; } static uint16_t aesni_mb_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { struct aesni_mb_qp *qp = queue_pair; struct rte_crypto_op *op; JOB_AES_HMAC *job; int retval, processed_jobs = 0; if (unlikely(nb_ops == 0)) return 0; uint8_t digest_idx = qp->digest_idx; do { /* Get next free mb job struct from mb manager */ job = IMB_GET_NEXT_JOB(qp->mb_mgr); if (unlikely(job == NULL)) { /* if no free mb job structs we need to flush mb_mgr */ processed_jobs += flush_mb_mgr(qp, &ops[processed_jobs], nb_ops - processed_jobs); if (nb_ops == processed_jobs) break; job = IMB_GET_NEXT_JOB(qp->mb_mgr); } /* * Get next operation to process from ingress queue. * There is no need to return the job to the MB_MGR * if there are no more operations to process, since the MB_MGR * can use that pointer again in next get_next calls. */ retval = rte_ring_dequeue(qp->ingress_queue, (void **)&op); if (retval < 0) break; #ifdef AESNI_MB_DOCSIS_SEC_ENABLED if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) retval = set_sec_mb_job_params(job, qp, op, &digest_idx); else #endif retval = set_mb_job_params(job, qp, op, &digest_idx); if (unlikely(retval != 0)) { qp->stats.dequeue_err_count++; set_job_null_op(job, op); } /* Submit job to multi-buffer for processing */ #ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG job = IMB_SUBMIT_JOB(qp->mb_mgr); #else job = IMB_SUBMIT_JOB_NOCHECK(qp->mb_mgr); #endif /* * If submit returns a processed job then handle it, * before submitting subsequent jobs */ if (job) processed_jobs += handle_completed_jobs(qp, job, &ops[processed_jobs], nb_ops - processed_jobs); } while (processed_jobs < nb_ops); qp->digest_idx = digest_idx; if (processed_jobs < 1) processed_jobs += flush_mb_mgr(qp, &ops[processed_jobs], nb_ops - processed_jobs); return processed_jobs; } static MB_MGR * alloc_init_mb_mgr(enum aesni_mb_vector_mode vector_mode) { MB_MGR *mb_mgr = alloc_mb_mgr(0); if (mb_mgr == NULL) return NULL; switch (vector_mode) { case RTE_AESNI_MB_SSE: init_mb_mgr_sse(mb_mgr); break; case RTE_AESNI_MB_AVX: init_mb_mgr_avx(mb_mgr); break; case RTE_AESNI_MB_AVX2: init_mb_mgr_avx2(mb_mgr); break; case RTE_AESNI_MB_AVX512: init_mb_mgr_avx512(mb_mgr); break; default: AESNI_MB_LOG(ERR, "Unsupported vector mode %u\n", vector_mode); free_mb_mgr(mb_mgr); return NULL; } return mb_mgr; } static inline void aesni_mb_fill_error_code(struct rte_crypto_sym_vec *vec, int32_t err) { uint32_t i; for (i = 0; i != vec->num; ++i) vec->status[i] = err; } static inline int check_crypto_sgl(union rte_crypto_sym_ofs so, const struct rte_crypto_sgl *sgl) { /* no multi-seg support with current AESNI-MB PMD */ if (sgl->num != 1) return ENOTSUP; else if (so.ofs.cipher.head + so.ofs.cipher.tail > sgl->vec[0].len) return EINVAL; return 0; } static inline JOB_AES_HMAC * submit_sync_job(MB_MGR *mb_mgr) { #ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG return IMB_SUBMIT_JOB(mb_mgr); #else return IMB_SUBMIT_JOB_NOCHECK(mb_mgr); #endif } static inline uint32_t generate_sync_dgst(struct rte_crypto_sym_vec *vec, const uint8_t dgst[][DIGEST_LENGTH_MAX], uint32_t len) { uint32_t i, k; for (i = 0, k = 0; i != vec->num; i++) { if (vec->status[i] == 0) { memcpy(vec->digest[i].va, dgst[i], len); k++; } } return k; } static inline uint32_t verify_sync_dgst(struct rte_crypto_sym_vec *vec, const uint8_t dgst[][DIGEST_LENGTH_MAX], uint32_t len) { uint32_t i, k; for (i = 0, k = 0; i != vec->num; i++) { if (vec->status[i] == 0) { if (memcmp(vec->digest[i].va, dgst[i], len) != 0) vec->status[i] = EBADMSG; else k++; } } return k; } uint32_t aesni_mb_cpu_crypto_process_bulk(struct rte_cryptodev *dev, struct rte_cryptodev_sym_session *sess, union rte_crypto_sym_ofs sofs, struct rte_crypto_sym_vec *vec) { int32_t ret; uint32_t i, j, k, len; void *buf; JOB_AES_HMAC *job; MB_MGR *mb_mgr; struct aesni_mb_private *priv; struct aesni_mb_session *s; uint8_t tmp_dgst[vec->num][DIGEST_LENGTH_MAX]; s = get_sym_session_private_data(sess, dev->driver_id); if (s == NULL) { aesni_mb_fill_error_code(vec, EINVAL); return 0; } /* get per-thread MB MGR, create one if needed */ mb_mgr = RTE_PER_LCORE(sync_mb_mgr); if (mb_mgr == NULL) { priv = dev->data->dev_private; mb_mgr = alloc_init_mb_mgr(priv->vector_mode); if (mb_mgr == NULL) { aesni_mb_fill_error_code(vec, ENOMEM); return 0; } RTE_PER_LCORE(sync_mb_mgr) = mb_mgr; } for (i = 0, j = 0, k = 0; i != vec->num; i++) { ret = check_crypto_sgl(sofs, vec->sgl + i); if (ret != 0) { vec->status[i] = ret; continue; } buf = vec->sgl[i].vec[0].base; len = vec->sgl[i].vec[0].len; job = IMB_GET_NEXT_JOB(mb_mgr); if (job == NULL) { k += flush_mb_sync_mgr(mb_mgr); job = IMB_GET_NEXT_JOB(mb_mgr); RTE_ASSERT(job != NULL); } /* Submit job for processing */ set_cpu_mb_job_params(job, s, sofs, buf, len, &vec->iv[i], &vec->aad[i], tmp_dgst[i], &vec->status[i]); job = submit_sync_job(mb_mgr); j++; /* handle completed jobs */ k += handle_completed_sync_jobs(job, mb_mgr); } /* flush remaining jobs */ while (k != j) k += flush_mb_sync_mgr(mb_mgr); /* finish processing for successful jobs: check/update digest */ if (k != 0) { if (s->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) k = verify_sync_dgst(vec, (const uint8_t (*)[DIGEST_LENGTH_MAX])tmp_dgst, s->auth.req_digest_len); else k = generate_sync_dgst(vec, (const uint8_t (*)[DIGEST_LENGTH_MAX])tmp_dgst, s->auth.req_digest_len); } return k; } static int cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev); static uint64_t vec_mode_to_flags(enum aesni_mb_vector_mode mode) { switch (mode) { case RTE_AESNI_MB_SSE: return RTE_CRYPTODEV_FF_CPU_SSE; case RTE_AESNI_MB_AVX: return RTE_CRYPTODEV_FF_CPU_AVX; case RTE_AESNI_MB_AVX2: return RTE_CRYPTODEV_FF_CPU_AVX2; case RTE_AESNI_MB_AVX512: return RTE_CRYPTODEV_FF_CPU_AVX512; default: AESNI_MB_LOG(ERR, "Unsupported vector mode %u\n", mode); return 0; } } static int cryptodev_aesni_mb_create(const char *name, struct rte_vdev_device *vdev, struct rte_cryptodev_pmd_init_params *init_params) { struct rte_cryptodev *dev; struct aesni_mb_private *internals; enum aesni_mb_vector_mode vector_mode; MB_MGR *mb_mgr; dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params); if (dev == NULL) { AESNI_MB_LOG(ERR, "failed to create cryptodev vdev"); return -ENODEV; } /* Check CPU for supported vector instruction set */ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F)) vector_mode = RTE_AESNI_MB_AVX512; else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2)) vector_mode = RTE_AESNI_MB_AVX2; else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX)) vector_mode = RTE_AESNI_MB_AVX; else vector_mode = RTE_AESNI_MB_SSE; dev->driver_id = cryptodev_driver_id; dev->dev_ops = rte_aesni_mb_pmd_ops; /* register rx/tx burst functions for data path */ dev->dequeue_burst = aesni_mb_pmd_dequeue_burst; dev->enqueue_burst = aesni_mb_pmd_enqueue_burst; dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT | RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO | RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA | RTE_CRYPTODEV_FF_SYM_SESSIONLESS; #ifdef AESNI_MB_DOCSIS_SEC_ENABLED struct rte_security_ctx *security_instance; security_instance = rte_malloc("aesni_mb_sec", sizeof(struct rte_security_ctx), RTE_CACHE_LINE_SIZE); if (security_instance == NULL) { AESNI_MB_LOG(ERR, "rte_security_ctx memory alloc failed"); rte_cryptodev_pmd_destroy(dev); return -ENOMEM; } security_instance->device = (void *)dev; security_instance->ops = rte_aesni_mb_pmd_sec_ops; security_instance->sess_cnt = 0; dev->security_ctx = security_instance; dev->feature_flags |= RTE_CRYPTODEV_FF_SECURITY; #endif /* Check CPU for support for AES instruction set */ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AESNI; else AESNI_MB_LOG(WARNING, "AES instructions not supported by CPU"); dev->feature_flags |= vec_mode_to_flags(vector_mode); mb_mgr = alloc_init_mb_mgr(vector_mode); if (mb_mgr == NULL) { #ifdef AESNI_MB_DOCSIS_SEC_ENABLED rte_free(dev->security_ctx); dev->security_ctx = NULL; #endif rte_cryptodev_pmd_destroy(dev); return -ENOMEM; } /* Set vector instructions mode supported */ internals = dev->data->dev_private; internals->vector_mode = vector_mode; internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs; internals->mb_mgr = mb_mgr; AESNI_MB_LOG(INFO, "IPSec Multi-buffer library version used: %s\n", imb_get_version_str()); return 0; } static int cryptodev_aesni_mb_probe(struct rte_vdev_device *vdev) { struct rte_cryptodev_pmd_init_params init_params = { "", sizeof(struct aesni_mb_private), rte_socket_id(), RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS }; const char *name, *args; int retval; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; args = rte_vdev_device_args(vdev); retval = rte_cryptodev_pmd_parse_input_args(&init_params, args); if (retval) { AESNI_MB_LOG(ERR, "Failed to parse initialisation arguments[%s]", args); return -EINVAL; } return cryptodev_aesni_mb_create(name, vdev, &init_params); } static int cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev) { struct rte_cryptodev *cryptodev; struct aesni_mb_private *internals; const char *name; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; cryptodev = rte_cryptodev_pmd_get_named_dev(name); if (cryptodev == NULL) return -ENODEV; internals = cryptodev->data->dev_private; free_mb_mgr(internals->mb_mgr); if (RTE_PER_LCORE(sync_mb_mgr)) { free_mb_mgr(RTE_PER_LCORE(sync_mb_mgr)); RTE_PER_LCORE(sync_mb_mgr) = NULL; } #ifdef AESNI_MB_DOCSIS_SEC_ENABLED rte_free(cryptodev->security_ctx); cryptodev->security_ctx = NULL; #endif return rte_cryptodev_pmd_destroy(cryptodev); } static struct rte_vdev_driver cryptodev_aesni_mb_pmd_drv = { .probe = cryptodev_aesni_mb_probe, .remove = cryptodev_aesni_mb_remove }; static struct cryptodev_driver aesni_mb_crypto_drv; RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd_drv); RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd); RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_MB_PMD, "max_nb_queue_pairs= " "socket_id="); RTE_PMD_REGISTER_CRYPTO_DRIVER(aesni_mb_crypto_drv, cryptodev_aesni_mb_pmd_drv.driver, cryptodev_driver_id); RTE_LOG_REGISTER(aesni_mb_logtype_driver, pmd.crypto.aesni_mb, NOTICE);