/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2017 Intel Corporation */ #include "test.h" #include #include #include #include #include #include #include #include #include #define ITER_POWER 20 /* log 2 of how many iterations we do when timing. */ #define BURST 32 #define BIG_BATCH 1024 typedef uint32_t seq_dynfield_t; static int seq_dynfield_offset = -1; static inline seq_dynfield_t * seq_field(struct rte_mbuf *mbuf) { return RTE_MBUF_DYNFIELD(mbuf, seq_dynfield_offset, seq_dynfield_t *); } struct worker_params { char name[64]; struct rte_distributor *dist; }; struct worker_params worker_params; /* statics - all zero-initialized by default */ static volatile int quit; /**< general quit variable for all threads */ static volatile int zero_quit; /**< var for when we just want thr0 to quit*/ static volatile int zero_sleep; /**< thr0 has quit basic loop and is sleeping*/ static volatile unsigned worker_idx; static volatile unsigned zero_idx; struct worker_stats { volatile unsigned handled_packets; } __rte_cache_aligned; struct worker_stats worker_stats[RTE_MAX_LCORE]; /* returns the total count of the number of packets handled by the worker * functions given below. */ static inline unsigned total_packet_count(void) { unsigned i, count = 0; for (i = 0; i < worker_idx; i++) count += __atomic_load_n(&worker_stats[i].handled_packets, __ATOMIC_RELAXED); return count; } /* resets the packet counts for a new test */ static inline void clear_packet_count(void) { unsigned int i; for (i = 0; i < RTE_MAX_LCORE; i++) __atomic_store_n(&worker_stats[i].handled_packets, 0, __ATOMIC_RELAXED); } /* this is the basic worker function for sanity test * it does nothing but return packets and count them. */ static int handle_work(void *arg) { struct rte_mbuf *buf[8] __rte_cache_aligned; struct worker_params *wp = arg; struct rte_distributor *db = wp->dist; unsigned int num; unsigned int id = __atomic_fetch_add(&worker_idx, 1, __ATOMIC_RELAXED); num = rte_distributor_get_pkt(db, id, buf, NULL, 0); while (!quit) { __atomic_fetch_add(&worker_stats[id].handled_packets, num, __ATOMIC_RELAXED); num = rte_distributor_get_pkt(db, id, buf, buf, num); } __atomic_fetch_add(&worker_stats[id].handled_packets, num, __ATOMIC_RELAXED); rte_distributor_return_pkt(db, id, buf, num); return 0; } /* do basic sanity testing of the distributor. This test tests the following: * - send 32 packets through distributor with the same tag and ensure they * all go to the one worker * - send 32 packets through the distributor with two different tags and * verify that they go equally to two different workers. * - send 32 packets with different tags through the distributors and * just verify we get all packets back. * - send 1024 packets through the distributor, gathering the returned packets * as we go. Then verify that we correctly got all 1024 pointers back again, * not necessarily in the same order (as different flows). */ static int sanity_test(struct worker_params *wp, struct rte_mempool *p) { struct rte_distributor *db = wp->dist; struct rte_mbuf *bufs[BURST]; struct rte_mbuf *returns[BURST*2]; unsigned int i, count; unsigned int retries; unsigned int processed; printf("=== Basic distributor sanity tests ===\n"); clear_packet_count(); if (rte_mempool_get_bulk(p, (void *)bufs, BURST) != 0) { printf("line %d: Error getting mbufs from pool\n", __LINE__); return -1; } /* now set all hash values in all buffers to zero, so all pkts go to the * one worker thread */ for (i = 0; i < BURST; i++) bufs[i]->hash.usr = 0; processed = 0; while (processed < BURST) processed += rte_distributor_process(db, &bufs[processed], BURST - processed); count = 0; do { rte_distributor_flush(db); count += rte_distributor_returned_pkts(db, returns, BURST*2); } while (count < BURST); if (total_packet_count() != BURST) { printf("Line %d: Error, not all packets flushed. " "Expected %u, got %u\n", __LINE__, BURST, total_packet_count()); rte_mempool_put_bulk(p, (void *)bufs, BURST); return -1; } for (i = 0; i < rte_lcore_count() - 1; i++) printf("Worker %u handled %u packets\n", i, __atomic_load_n(&worker_stats[i].handled_packets, __ATOMIC_RELAXED)); printf("Sanity test with all zero hashes done.\n"); /* pick two flows and check they go correctly */ if (rte_lcore_count() >= 3) { clear_packet_count(); for (i = 0; i < BURST; i++) bufs[i]->hash.usr = (i & 1) << 8; rte_distributor_process(db, bufs, BURST); count = 0; do { rte_distributor_flush(db); count += rte_distributor_returned_pkts(db, returns, BURST*2); } while (count < BURST); if (total_packet_count() != BURST) { printf("Line %d: Error, not all packets flushed. " "Expected %u, got %u\n", __LINE__, BURST, total_packet_count()); rte_mempool_put_bulk(p, (void *)bufs, BURST); return -1; } for (i = 0; i < rte_lcore_count() - 1; i++) printf("Worker %u handled %u packets\n", i, __atomic_load_n( &worker_stats[i].handled_packets, __ATOMIC_RELAXED)); printf("Sanity test with two hash values done\n"); } /* give a different hash value to each packet, * so load gets distributed */ clear_packet_count(); for (i = 0; i < BURST; i++) bufs[i]->hash.usr = i+1; rte_distributor_process(db, bufs, BURST); count = 0; do { rte_distributor_flush(db); count += rte_distributor_returned_pkts(db, returns, BURST*2); } while (count < BURST); if (total_packet_count() != BURST) { printf("Line %d: Error, not all packets flushed. " "Expected %u, got %u\n", __LINE__, BURST, total_packet_count()); rte_mempool_put_bulk(p, (void *)bufs, BURST); return -1; } for (i = 0; i < rte_lcore_count() - 1; i++) printf("Worker %u handled %u packets\n", i, __atomic_load_n(&worker_stats[i].handled_packets, __ATOMIC_RELAXED)); printf("Sanity test with non-zero hashes done\n"); rte_mempool_put_bulk(p, (void *)bufs, BURST); /* sanity test with BIG_BATCH packets to ensure they all arrived back * from the returned packets function */ clear_packet_count(); struct rte_mbuf *many_bufs[BIG_BATCH], *return_bufs[BIG_BATCH]; unsigned num_returned = 0; unsigned int num_being_processed = 0; unsigned int return_buffer_capacity = 127;/* RTE_DISTRIB_RETURNS_MASK */ /* flush out any remaining packets */ rte_distributor_flush(db); rte_distributor_clear_returns(db); if (rte_mempool_get_bulk(p, (void *)many_bufs, BIG_BATCH) != 0) { printf("line %d: Error getting mbufs from pool\n", __LINE__); return -1; } for (i = 0; i < BIG_BATCH; i++) many_bufs[i]->hash.usr = i << 2; printf("=== testing big burst (%s) ===\n", wp->name); for (i = 0; i < BIG_BATCH/BURST; i++) { rte_distributor_process(db, &many_bufs[i*BURST], BURST); num_being_processed += BURST; do { count = rte_distributor_returned_pkts(db, &return_bufs[num_returned], BIG_BATCH - num_returned); num_being_processed -= count; num_returned += count; rte_distributor_flush(db); } while (num_being_processed + BURST > return_buffer_capacity); } retries = 0; do { rte_distributor_flush(db); count = rte_distributor_returned_pkts(db, &return_bufs[num_returned], BIG_BATCH - num_returned); num_returned += count; retries++; } while ((num_returned < BIG_BATCH) && (retries < 100)); if (num_returned != BIG_BATCH) { printf("line %d: Missing packets, expected %d\n", __LINE__, num_returned); rte_mempool_put_bulk(p, (void *)many_bufs, BIG_BATCH); return -1; } /* big check - make sure all packets made it back!! */ for (i = 0; i < BIG_BATCH; i++) { unsigned j; struct rte_mbuf *src = many_bufs[i]; for (j = 0; j < BIG_BATCH; j++) { if (return_bufs[j] == src) break; } if (j == BIG_BATCH) { printf("Error: could not find source packet #%u\n", i); rte_mempool_put_bulk(p, (void *)many_bufs, BIG_BATCH); return -1; } } printf("Sanity test of returned packets done\n"); rte_mempool_put_bulk(p, (void *)many_bufs, BIG_BATCH); printf("\n"); return 0; } /* to test that the distributor does not lose packets, we use this worker * function which frees mbufs when it gets them. The distributor thread does * the mbuf allocation. If distributor drops packets we'll eventually run out * of mbufs. */ static int handle_work_with_free_mbufs(void *arg) { struct rte_mbuf *buf[8] __rte_cache_aligned; struct worker_params *wp = arg; struct rte_distributor *d = wp->dist; unsigned int i; unsigned int num; unsigned int id = __atomic_fetch_add(&worker_idx, 1, __ATOMIC_RELAXED); num = rte_distributor_get_pkt(d, id, buf, NULL, 0); while (!quit) { __atomic_fetch_add(&worker_stats[id].handled_packets, num, __ATOMIC_RELAXED); for (i = 0; i < num; i++) rte_pktmbuf_free(buf[i]); num = rte_distributor_get_pkt(d, id, buf, NULL, 0); } __atomic_fetch_add(&worker_stats[id].handled_packets, num, __ATOMIC_RELAXED); rte_distributor_return_pkt(d, id, buf, num); return 0; } /* Perform a sanity test of the distributor with a large number of packets, * where we allocate a new set of mbufs for each burst. The workers then * free the mbufs. This ensures that we don't have any packet leaks in the * library. */ static int sanity_test_with_mbuf_alloc(struct worker_params *wp, struct rte_mempool *p) { struct rte_distributor *d = wp->dist; unsigned i; struct rte_mbuf *bufs[BURST]; unsigned int processed; printf("=== Sanity test with mbuf alloc/free (%s) ===\n", wp->name); clear_packet_count(); for (i = 0; i < ((1<hash.usr = (i+j) << 1; } processed = 0; while (processed < BURST) processed += rte_distributor_process(d, &bufs[processed], BURST - processed); } rte_distributor_flush(d); rte_delay_us(10000); if (total_packet_count() < (1<dist; unsigned int num; unsigned int zero_id = 0; unsigned int zero_unset; const unsigned int id = __atomic_fetch_add(&worker_idx, 1, __ATOMIC_RELAXED); num = rte_distributor_get_pkt(d, id, buf, NULL, 0); if (num > 0) { zero_unset = RTE_MAX_LCORE; __atomic_compare_exchange_n(&zero_idx, &zero_unset, id, false, __ATOMIC_ACQ_REL, __ATOMIC_ACQUIRE); } zero_id = __atomic_load_n(&zero_idx, __ATOMIC_ACQUIRE); /* wait for quit single globally, or for worker zero, wait * for zero_quit */ while (!quit && !(id == zero_id && zero_quit)) { __atomic_fetch_add(&worker_stats[id].handled_packets, num, __ATOMIC_RELAXED); num = rte_distributor_get_pkt(d, id, buf, NULL, 0); if (num > 0) { zero_unset = RTE_MAX_LCORE; __atomic_compare_exchange_n(&zero_idx, &zero_unset, id, false, __ATOMIC_ACQ_REL, __ATOMIC_ACQUIRE); } zero_id = __atomic_load_n(&zero_idx, __ATOMIC_ACQUIRE); } __atomic_fetch_add(&worker_stats[id].handled_packets, num, __ATOMIC_RELAXED); if (id == zero_id) { rte_distributor_return_pkt(d, id, NULL, 0); /* for worker zero, allow it to restart to pick up last packet * when all workers are shutting down. */ __atomic_store_n(&zero_sleep, 1, __ATOMIC_RELEASE); while (zero_quit) usleep(100); __atomic_store_n(&zero_sleep, 0, __ATOMIC_RELEASE); num = rte_distributor_get_pkt(d, id, buf, NULL, 0); while (!quit) { __atomic_fetch_add(&worker_stats[id].handled_packets, num, __ATOMIC_RELAXED); num = rte_distributor_get_pkt(d, id, buf, NULL, 0); } } rte_distributor_return_pkt(d, id, buf, num); return 0; } /* Perform a sanity test of the distributor with a large number of packets, * where we allocate a new set of mbufs for each burst. The workers then * free the mbufs. This ensures that we don't have any packet leaks in the * library. */ static int sanity_test_with_worker_shutdown(struct worker_params *wp, struct rte_mempool *p) { struct rte_distributor *d = wp->dist; struct rte_mbuf *bufs[BURST]; struct rte_mbuf *bufs2[BURST]; unsigned int i; unsigned int failed = 0; unsigned int processed = 0; printf("=== Sanity test of worker shutdown ===\n"); clear_packet_count(); if (rte_mempool_get_bulk(p, (void *)bufs, BURST) != 0) { printf("line %d: Error getting mbufs from pool\n", __LINE__); return -1; } /* * Now set all hash values in all buffers to same value so all * pkts go to the one worker thread */ for (i = 0; i < BURST; i++) bufs[i]->hash.usr = 1; processed = 0; while (processed < BURST) processed += rte_distributor_process(d, &bufs[processed], BURST - processed); rte_distributor_flush(d); /* at this point, we will have processed some packets and have a full * backlog for the other ones at worker 0. */ /* get more buffers to queue up, again setting them to the same flow */ if (rte_mempool_get_bulk(p, (void *)bufs2, BURST) != 0) { printf("line %d: Error getting mbufs from pool\n", __LINE__); rte_mempool_put_bulk(p, (void *)bufs, BURST); return -1; } for (i = 0; i < BURST; i++) bufs2[i]->hash.usr = 1; /* get worker zero to quit */ zero_quit = 1; rte_distributor_process(d, bufs2, BURST); /* flush the distributor */ rte_distributor_flush(d); while (!__atomic_load_n(&zero_sleep, __ATOMIC_ACQUIRE)) rte_distributor_flush(d); zero_quit = 0; while (__atomic_load_n(&zero_sleep, __ATOMIC_ACQUIRE)) rte_delay_us(100); for (i = 0; i < rte_lcore_count() - 1; i++) printf("Worker %u handled %u packets\n", i, __atomic_load_n(&worker_stats[i].handled_packets, __ATOMIC_RELAXED)); if (total_packet_count() != BURST * 2) { printf("Line %d: Error, not all packets flushed. " "Expected %u, got %u\n", __LINE__, BURST * 2, total_packet_count()); failed = 1; } rte_mempool_put_bulk(p, (void *)bufs, BURST); rte_mempool_put_bulk(p, (void *)bufs2, BURST); if (failed) return -1; printf("Sanity test with worker shutdown passed\n\n"); return 0; } /* Test that the flush function is able to move packets between workers when * one worker shuts down.. */ static int test_flush_with_worker_shutdown(struct worker_params *wp, struct rte_mempool *p) { struct rte_distributor *d = wp->dist; struct rte_mbuf *bufs[BURST]; unsigned int i; unsigned int failed = 0; unsigned int processed; printf("=== Test flush fn with worker shutdown (%s) ===\n", wp->name); clear_packet_count(); if (rte_mempool_get_bulk(p, (void *)bufs, BURST) != 0) { printf("line %d: Error getting mbufs from pool\n", __LINE__); return -1; } /* now set all hash values in all buffers to zero, so all pkts go to the * one worker thread */ for (i = 0; i < BURST; i++) bufs[i]->hash.usr = 0; processed = 0; while (processed < BURST) processed += rte_distributor_process(d, &bufs[processed], BURST - processed); /* at this point, we will have processed some packets and have a full * backlog for the other ones at worker 0. */ /* get worker zero to quit */ zero_quit = 1; /* flush the distributor */ rte_distributor_flush(d); while (!__atomic_load_n(&zero_sleep, __ATOMIC_ACQUIRE)) rte_distributor_flush(d); zero_quit = 0; while (__atomic_load_n(&zero_sleep, __ATOMIC_ACQUIRE)) rte_delay_us(100); for (i = 0; i < rte_lcore_count() - 1; i++) printf("Worker %u handled %u packets\n", i, __atomic_load_n(&worker_stats[i].handled_packets, __ATOMIC_RELAXED)); if (total_packet_count() != BURST) { printf("Line %d: Error, not all packets flushed. " "Expected %u, got %u\n", __LINE__, BURST, total_packet_count()); failed = 1; } rte_mempool_put_bulk(p, (void *)bufs, BURST); if (failed) return -1; printf("Flush test with worker shutdown passed\n\n"); return 0; } static int handle_and_mark_work(void *arg) { struct rte_mbuf *buf[8] __rte_cache_aligned; struct worker_params *wp = arg; struct rte_distributor *db = wp->dist; unsigned int num, i; unsigned int id = __atomic_fetch_add(&worker_idx, 1, __ATOMIC_RELAXED); num = rte_distributor_get_pkt(db, id, buf, NULL, 0); while (!quit) { __atomic_fetch_add(&worker_stats[id].handled_packets, num, __ATOMIC_RELAXED); for (i = 0; i < num; i++) *seq_field(buf[i]) += id + 1; num = rte_distributor_get_pkt(db, id, buf, buf, num); } __atomic_fetch_add(&worker_stats[id].handled_packets, num, __ATOMIC_RELAXED); rte_distributor_return_pkt(db, id, buf, num); return 0; } /* sanity_mark_test sends packets to workers which mark them. * Every packet has also encoded sequence number. * The returned packets are sorted and verified if they were handled * by proper workers. */ static int sanity_mark_test(struct worker_params *wp, struct rte_mempool *p) { const unsigned int buf_count = 24; const unsigned int burst = 8; const unsigned int shift = 12; const unsigned int seq_shift = 10; struct rte_distributor *db = wp->dist; struct rte_mbuf *bufs[buf_count]; struct rte_mbuf *returns[buf_count]; unsigned int i, count, id; unsigned int sorted[buf_count], seq; unsigned int failed = 0; unsigned int processed; printf("=== Marked packets test ===\n"); clear_packet_count(); if (rte_mempool_get_bulk(p, (void *)bufs, buf_count) != 0) { printf("line %d: Error getting mbufs from pool\n", __LINE__); return -1; } /* bufs' hashes will be like these below, but shifted left. * The shifting is for avoiding collisions with backlogs * and in-flight tags left by previous tests. * [1, 1, 1, 1, 1, 1, 1, 1 * 1, 1, 1, 1, 2, 2, 2, 2 * 2, 2, 2, 2, 1, 1, 1, 1] */ for (i = 0; i < burst; i++) { bufs[0 * burst + i]->hash.usr = 1 << shift; bufs[1 * burst + i]->hash.usr = ((i < burst / 2) ? 1 : 2) << shift; bufs[2 * burst + i]->hash.usr = ((i < burst / 2) ? 2 : 1) << shift; } /* Assign a sequence number to each packet. The sequence is shifted, * so that lower bits will hold mark from worker. */ for (i = 0; i < buf_count; i++) *seq_field(bufs[i]) = i << seq_shift; count = 0; for (i = 0; i < buf_count/burst; i++) { processed = 0; while (processed < burst) processed += rte_distributor_process(db, &bufs[i * burst + processed], burst - processed); count += rte_distributor_returned_pkts(db, &returns[count], buf_count - count); } do { rte_distributor_flush(db); count += rte_distributor_returned_pkts(db, &returns[count], buf_count - count); } while (count < buf_count); for (i = 0; i < rte_lcore_count() - 1; i++) printf("Worker %u handled %u packets\n", i, __atomic_load_n(&worker_stats[i].handled_packets, __ATOMIC_RELAXED)); /* Sort returned packets by sent order (sequence numbers). */ for (i = 0; i < buf_count; i++) { seq = *seq_field(returns[i]) >> seq_shift; id = *seq_field(returns[i]) - (seq << seq_shift); sorted[seq] = id; } /* Verify that packets [0-11] and [20-23] were processed * by the same worker */ for (i = 1; i < 12; i++) { if (sorted[i] != sorted[0]) { printf("Packet number %u processed by worker %u," " but should be processes by worker %u\n", i, sorted[i], sorted[0]); failed = 1; } } for (i = 20; i < 24; i++) { if (sorted[i] != sorted[0]) { printf("Packet number %u processed by worker %u," " but should be processes by worker %u\n", i, sorted[i], sorted[0]); failed = 1; } } /* And verify that packets [12-19] were processed * by the another worker */ for (i = 13; i < 20; i++) { if (sorted[i] != sorted[12]) { printf("Packet number %u processed by worker %u," " but should be processes by worker %u\n", i, sorted[i], sorted[12]); failed = 1; } } rte_mempool_put_bulk(p, (void *)bufs, buf_count); if (failed) return -1; printf("Marked packets test passed\n"); return 0; } static int test_error_distributor_create_name(void) { struct rte_distributor *d = NULL; struct rte_distributor *db = NULL; char *name = NULL; d = rte_distributor_create(name, rte_socket_id(), rte_lcore_count() - 1, RTE_DIST_ALG_SINGLE); if (d != NULL || rte_errno != EINVAL) { printf("ERROR: No error on create() with NULL name param\n"); return -1; } db = rte_distributor_create(name, rte_socket_id(), rte_lcore_count() - 1, RTE_DIST_ALG_BURST); if (db != NULL || rte_errno != EINVAL) { printf("ERROR: No error on create() with NULL param\n"); return -1; } return 0; } static int test_error_distributor_create_numworkers(void) { struct rte_distributor *ds = NULL; struct rte_distributor *db = NULL; ds = rte_distributor_create("test_numworkers", rte_socket_id(), RTE_MAX_LCORE + 10, RTE_DIST_ALG_SINGLE); if (ds != NULL || rte_errno != EINVAL) { printf("ERROR: No error on create() with num_workers > MAX\n"); return -1; } db = rte_distributor_create("test_numworkers", rte_socket_id(), RTE_MAX_LCORE + 10, RTE_DIST_ALG_BURST); if (db != NULL || rte_errno != EINVAL) { printf("ERROR: No error on create() num_workers > MAX\n"); return -1; } return 0; } /* Useful function which ensures that all worker functions terminate */ static void quit_workers(struct worker_params *wp, struct rte_mempool *p) { struct rte_distributor *d = wp->dist; const unsigned num_workers = rte_lcore_count() - 1; unsigned i; struct rte_mbuf *bufs[RTE_MAX_LCORE]; struct rte_mbuf *returns[RTE_MAX_LCORE]; if (rte_mempool_get_bulk(p, (void *)bufs, num_workers) != 0) { printf("line %d: Error getting mbufs from pool\n", __LINE__); return; } zero_quit = 0; quit = 1; for (i = 0; i < num_workers; i++) { bufs[i]->hash.usr = i << 1; rte_distributor_process(d, &bufs[i], 1); } rte_distributor_process(d, NULL, 0); rte_distributor_flush(d); rte_eal_mp_wait_lcore(); while (rte_distributor_returned_pkts(d, returns, RTE_MAX_LCORE)) ; rte_distributor_clear_returns(d); rte_mempool_put_bulk(p, (void *)bufs, num_workers); quit = 0; worker_idx = 0; zero_idx = RTE_MAX_LCORE; zero_quit = 0; zero_sleep = 0; } static int test_distributor(void) { static struct rte_distributor *ds; static struct rte_distributor *db; static struct rte_distributor *dist[2]; static struct rte_mempool *p; int i; static const struct rte_mbuf_dynfield seq_dynfield_desc = { .name = "test_distributor_dynfield_seq", .size = sizeof(seq_dynfield_t), .align = __alignof__(seq_dynfield_t), }; seq_dynfield_offset = rte_mbuf_dynfield_register(&seq_dynfield_desc); if (seq_dynfield_offset < 0) { printf("Error registering mbuf field\n"); return TEST_FAILED; } if (rte_lcore_count() < 2) { printf("Not enough cores for distributor_autotest, expecting at least 2\n"); return TEST_SKIPPED; } if (db == NULL) { db = rte_distributor_create("Test_dist_burst", rte_socket_id(), rte_lcore_count() - 1, RTE_DIST_ALG_BURST); if (db == NULL) { printf("Error creating burst distributor\n"); return -1; } } else { rte_distributor_flush(db); rte_distributor_clear_returns(db); } if (ds == NULL) { ds = rte_distributor_create("Test_dist_single", rte_socket_id(), rte_lcore_count() - 1, RTE_DIST_ALG_SINGLE); if (ds == NULL) { printf("Error creating single distributor\n"); return -1; } } else { rte_distributor_flush(ds); rte_distributor_clear_returns(ds); } const unsigned nb_bufs = (511 * rte_lcore_count()) < BIG_BATCH ? (BIG_BATCH * 2) - 1 : (511 * rte_lcore_count()); if (p == NULL) { p = rte_pktmbuf_pool_create("DT_MBUF_POOL", nb_bufs, BURST, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); if (p == NULL) { printf("Error creating mempool\n"); return -1; } } dist[0] = ds; dist[1] = db; for (i = 0; i < 2; i++) { worker_params.dist = dist[i]; if (i) strlcpy(worker_params.name, "burst", sizeof(worker_params.name)); else strlcpy(worker_params.name, "single", sizeof(worker_params.name)); rte_eal_mp_remote_launch(handle_work, &worker_params, SKIP_MAIN); if (sanity_test(&worker_params, p) < 0) goto err; quit_workers(&worker_params, p); rte_eal_mp_remote_launch(handle_work_with_free_mbufs, &worker_params, SKIP_MAIN); if (sanity_test_with_mbuf_alloc(&worker_params, p) < 0) goto err; quit_workers(&worker_params, p); if (rte_lcore_count() > 2) { rte_eal_mp_remote_launch(handle_work_for_shutdown_test, &worker_params, SKIP_MAIN); if (sanity_test_with_worker_shutdown(&worker_params, p) < 0) goto err; quit_workers(&worker_params, p); rte_eal_mp_remote_launch(handle_work_for_shutdown_test, &worker_params, SKIP_MAIN); if (test_flush_with_worker_shutdown(&worker_params, p) < 0) goto err; quit_workers(&worker_params, p); rte_eal_mp_remote_launch(handle_and_mark_work, &worker_params, SKIP_MAIN); if (sanity_mark_test(&worker_params, p) < 0) goto err; quit_workers(&worker_params, p); } else { printf("Too few cores to run worker shutdown test\n"); } } if (test_error_distributor_create_numworkers() == -1 || test_error_distributor_create_name() == -1) { printf("rte_distributor_create parameter check tests failed"); return -1; } return 0; err: quit_workers(&worker_params, p); return -1; } REGISTER_TEST_COMMAND(distributor_autotest, test_distributor);