/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Intel Corporation */ #include #include #include #include #include "comp_perf_test_verify.h" #include "comp_perf_test_common.h" void cperf_verify_test_destructor(void *arg) { if (arg) { comp_perf_free_memory( ((struct cperf_verify_ctx *)arg)->options, &((struct cperf_verify_ctx *)arg)->mem); rte_free(arg); } } void * cperf_verify_test_constructor(uint8_t dev_id, uint16_t qp_id, struct comp_test_data *options) { struct cperf_verify_ctx *ctx = NULL; ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0); if (ctx == NULL) return NULL; ctx->mem.dev_id = dev_id; ctx->mem.qp_id = qp_id; ctx->options = options; if (!comp_perf_allocate_memory(ctx->options, &ctx->mem) && !prepare_bufs(ctx->options, &ctx->mem)) return ctx; cperf_verify_test_destructor(ctx); return NULL; } static int main_loop(struct cperf_verify_ctx *ctx, enum rte_comp_xform_type type) { struct comp_test_data *test_data = ctx->options; uint8_t *output_data_ptr = NULL; size_t *output_data_sz = NULL; struct cperf_mem_resources *mem = &ctx->mem; uint8_t dev_id = mem->dev_id; uint32_t i, iter, num_iter; struct rte_comp_op **ops, **deq_ops; void *priv_xform = NULL; struct rte_comp_xform xform; size_t output_size = 0; struct rte_mbuf **input_bufs, **output_bufs; int res = 0; int allocated = 0; uint32_t out_seg_sz; if (test_data == NULL || !test_data->burst_sz) { RTE_LOG(ERR, USER1, "Unknown burst size\n"); return -1; } ops = rte_zmalloc_socket(NULL, 2 * mem->total_bufs * sizeof(struct rte_comp_op *), 0, rte_socket_id()); if (ops == NULL) { RTE_LOG(ERR, USER1, "Can't allocate memory for ops structures\n"); return -1; } deq_ops = &ops[mem->total_bufs]; if (type == RTE_COMP_COMPRESS) { xform = (struct rte_comp_xform) { .type = RTE_COMP_COMPRESS, .compress = { .algo = RTE_COMP_ALGO_DEFLATE, .deflate.huffman = test_data->huffman_enc, .level = test_data->level, .window_size = test_data->window_sz, .chksum = RTE_COMP_CHECKSUM_NONE, .hash_algo = RTE_COMP_HASH_ALGO_NONE } }; output_data_ptr = ctx->mem.compressed_data; output_data_sz = &ctx->comp_data_sz; input_bufs = mem->decomp_bufs; output_bufs = mem->comp_bufs; out_seg_sz = test_data->out_seg_sz; } else { xform = (struct rte_comp_xform) { .type = RTE_COMP_DECOMPRESS, .decompress = { .algo = RTE_COMP_ALGO_DEFLATE, .chksum = RTE_COMP_CHECKSUM_NONE, .window_size = test_data->window_sz, .hash_algo = RTE_COMP_HASH_ALGO_NONE } }; output_data_ptr = ctx->mem.decompressed_data; output_data_sz = &ctx->decomp_data_sz; input_bufs = mem->comp_bufs; output_bufs = mem->decomp_bufs; out_seg_sz = test_data->seg_sz; } /* Create private xform */ if (rte_compressdev_private_xform_create(dev_id, &xform, &priv_xform) < 0) { RTE_LOG(ERR, USER1, "Private xform could not be created\n"); res = -1; goto end; } num_iter = 1; for (iter = 0; iter < num_iter; iter++) { uint32_t total_ops = mem->total_bufs; uint32_t remaining_ops = mem->total_bufs; uint32_t total_deq_ops = 0; uint32_t total_enq_ops = 0; uint16_t ops_unused = 0; uint16_t num_enq = 0; uint16_t num_deq = 0; output_size = 0; while (remaining_ops > 0) { uint16_t num_ops = RTE_MIN(remaining_ops, test_data->burst_sz); uint16_t ops_needed = num_ops - ops_unused; /* * Move the unused operations from the previous * enqueue_burst call to the front, to maintain order */ if ((ops_unused > 0) && (num_enq > 0)) { size_t nb_b_to_mov = ops_unused * sizeof(struct rte_comp_op *); memmove(ops, &ops[num_enq], nb_b_to_mov); } /* Allocate compression operations */ if (ops_needed && !rte_comp_op_bulk_alloc( mem->op_pool, &ops[ops_unused], ops_needed)) { RTE_LOG(ERR, USER1, "Could not allocate enough operations\n"); res = -1; goto end; } allocated += ops_needed; for (i = 0; i < ops_needed; i++) { /* * Calculate next buffer to attach to operation */ uint32_t buf_id = total_enq_ops + i + ops_unused; uint16_t op_id = ops_unused + i; /* Reset all data in output buffers */ struct rte_mbuf *m = output_bufs[buf_id]; m->pkt_len = out_seg_sz * m->nb_segs; while (m) { m->data_len = m->buf_len - m->data_off; m = m->next; } ops[op_id]->m_src = input_bufs[buf_id]; ops[op_id]->m_dst = output_bufs[buf_id]; ops[op_id]->src.offset = 0; ops[op_id]->src.length = rte_pktmbuf_pkt_len(input_bufs[buf_id]); ops[op_id]->dst.offset = 0; ops[op_id]->flush_flag = RTE_COMP_FLUSH_FINAL; ops[op_id]->input_chksum = buf_id; ops[op_id]->private_xform = priv_xform; } if (unlikely(test_data->perf_comp_force_stop)) goto end; num_enq = rte_compressdev_enqueue_burst(dev_id, mem->qp_id, ops, num_ops); if (num_enq == 0) { struct rte_compressdev_stats stats; rte_compressdev_stats_get(dev_id, &stats); if (stats.enqueue_err_count) { res = -1; goto end; } } ops_unused = num_ops - num_enq; remaining_ops -= num_enq; total_enq_ops += num_enq; num_deq = rte_compressdev_dequeue_burst(dev_id, mem->qp_id, deq_ops, test_data->burst_sz); total_deq_ops += num_deq; for (i = 0; i < num_deq; i++) { struct rte_comp_op *op = deq_ops[i]; if (op->status == RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED || op->status == RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE) { RTE_LOG(ERR, USER1, "Out of space error occurred due to uncompressible input data expanding to larger than destination buffer. Increase the EXPANSE_RATIO constant to use this data.\n"); res = -1; goto end; } else if (op->status != RTE_COMP_OP_STATUS_SUCCESS) { RTE_LOG(ERR, USER1, "Some operations were not successful\n"); goto end; } const void *read_data_addr = rte_pktmbuf_read(op->m_dst, 0, op->produced, output_data_ptr); if (read_data_addr == NULL) { RTE_LOG(ERR, USER1, "Could not copy buffer in destination\n"); res = -1; goto end; } if (read_data_addr != output_data_ptr) rte_memcpy(output_data_ptr, rte_pktmbuf_mtod(op->m_dst, uint8_t *), op->produced); output_data_ptr += op->produced; output_size += op->produced; } if (iter == num_iter - 1) { for (i = 0; i < num_deq; i++) { struct rte_comp_op *op = deq_ops[i]; struct rte_mbuf *m = op->m_dst; m->pkt_len = op->produced; uint32_t remaining_data = op->produced; uint16_t data_to_append; while (remaining_data > 0) { data_to_append = RTE_MIN(remaining_data, out_seg_sz); m->data_len = data_to_append; remaining_data -= data_to_append; m = m->next; } } } rte_mempool_put_bulk(mem->op_pool, (void **)deq_ops, num_deq); allocated -= num_deq; } /* Dequeue the last operations */ while (total_deq_ops < total_ops) { if (unlikely(test_data->perf_comp_force_stop)) goto end; num_deq = rte_compressdev_dequeue_burst(dev_id, mem->qp_id, deq_ops, test_data->burst_sz); if (num_deq == 0) { struct rte_compressdev_stats stats; rte_compressdev_stats_get(dev_id, &stats); if (stats.dequeue_err_count) { res = -1; goto end; } } total_deq_ops += num_deq; for (i = 0; i < num_deq; i++) { struct rte_comp_op *op = deq_ops[i]; if (op->status == RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED || op->status == RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE) { RTE_LOG(ERR, USER1, "Out of space error occurred due to uncompressible input data expanding to larger than destination buffer. Increase the EXPANSE_RATIO constant to use this data.\n"); res = -1; goto end; } else if (op->status != RTE_COMP_OP_STATUS_SUCCESS) { RTE_LOG(ERR, USER1, "Some operations were not successful\n"); goto end; } const void *read_data_addr = rte_pktmbuf_read(op->m_dst, op->dst.offset, op->produced, output_data_ptr); if (read_data_addr == NULL) { RTE_LOG(ERR, USER1, "Could not copy buffer in destination\n"); res = -1; goto end; } if (read_data_addr != output_data_ptr) rte_memcpy(output_data_ptr, rte_pktmbuf_mtod( op->m_dst, uint8_t *), op->produced); output_data_ptr += op->produced; output_size += op->produced; } if (iter == num_iter - 1) { for (i = 0; i < num_deq; i++) { struct rte_comp_op *op = deq_ops[i]; struct rte_mbuf *m = op->m_dst; m->pkt_len = op->produced; uint32_t remaining_data = op->produced; uint16_t data_to_append; while (remaining_data > 0) { data_to_append = RTE_MIN(remaining_data, out_seg_sz); m->data_len = data_to_append; remaining_data -= data_to_append; m = m->next; } } } rte_mempool_put_bulk(mem->op_pool, (void **)deq_ops, num_deq); allocated -= num_deq; } } if (output_data_sz) *output_data_sz = output_size; end: rte_mempool_put_bulk(mem->op_pool, (void **)ops, allocated); rte_compressdev_private_xform_free(dev_id, priv_xform); rte_free(ops); if (test_data->perf_comp_force_stop) { RTE_LOG(ERR, USER1, "lcore: %d Perf. test has been aborted by user\n", mem->lcore_id); res = -1; } return res; } int cperf_verify_test_runner(void *test_ctx) { struct cperf_verify_ctx *ctx = test_ctx; struct comp_test_data *test_data = ctx->options; int ret = EXIT_SUCCESS; static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0); uint32_t lcore = rte_lcore_id(); ctx->mem.lcore_id = lcore; test_data->ratio = 0; if (main_loop(ctx, RTE_COMP_COMPRESS) < 0) { ret = EXIT_FAILURE; goto end; } if (main_loop(ctx, RTE_COMP_DECOMPRESS) < 0) { ret = EXIT_FAILURE; goto end; } if (ctx->decomp_data_sz != test_data->input_data_sz) { RTE_LOG(ERR, USER1, "Decompressed data length not equal to input data length\n"); RTE_LOG(ERR, USER1, "Decompressed size = %zu, expected = %zu\n", ctx->decomp_data_sz, test_data->input_data_sz); ret = EXIT_FAILURE; goto end; } else { if (memcmp(ctx->mem.decompressed_data, test_data->input_data, test_data->input_data_sz) != 0) { RTE_LOG(ERR, USER1, "Decompressed data is not the same as file data\n"); ret = EXIT_FAILURE; goto end; } } ctx->ratio = (double) ctx->comp_data_sz / test_data->input_data_sz * 100; if (!ctx->silent) { if (rte_atomic16_test_and_set(&display_once)) { printf("%12s%6s%12s%17s\n", "lcore id", "Level", "Comp size", "Comp ratio [%]"); } printf("%12u%6u%12zu%17.2f\n", ctx->mem.lcore_id, test_data->level, ctx->comp_data_sz, ctx->ratio); } end: return ret; }