/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017-2020 Intel Corporation */ #include #include #include #include #include "net_crc.h" #include /** PCLMULQDQ CRC computation context structure */ struct crc_pclmulqdq_ctx { __m128i rk1_rk2; __m128i rk5_rk6; __m128i rk7_rk8; }; static struct crc_pclmulqdq_ctx crc32_eth_pclmulqdq __rte_aligned(16); static struct crc_pclmulqdq_ctx crc16_ccitt_pclmulqdq __rte_aligned(16); /** * @brief Performs one folding round * * Logically function operates as follows: * DATA = READ_NEXT_16BYTES(); * F1 = LSB8(FOLD) * F2 = MSB8(FOLD) * T1 = CLMUL(F1, RK1) * T2 = CLMUL(F2, RK2) * FOLD = XOR(T1, T2, DATA) * * @param data_block * 16 byte data block * @param precomp * Precomputed rk1 constant * @param fold * Current16 byte folded data * * @return * New 16 byte folded data */ static __rte_always_inline __m128i crcr32_folding_round(__m128i data_block, __m128i precomp, __m128i fold) { __m128i tmp0 = _mm_clmulepi64_si128(fold, precomp, 0x01); __m128i tmp1 = _mm_clmulepi64_si128(fold, precomp, 0x10); return _mm_xor_si128(tmp1, _mm_xor_si128(data_block, tmp0)); } /** * Performs reduction from 128 bits to 64 bits * * @param data128 * 128 bits data to be reduced * @param precomp * precomputed constants rk5, rk6 * * @return * 64 bits reduced data */ static __rte_always_inline __m128i crcr32_reduce_128_to_64(__m128i data128, __m128i precomp) { __m128i tmp0, tmp1, tmp2; /* 64b fold */ tmp0 = _mm_clmulepi64_si128(data128, precomp, 0x00); tmp1 = _mm_srli_si128(data128, 8); tmp0 = _mm_xor_si128(tmp0, tmp1); /* 32b fold */ tmp2 = _mm_slli_si128(tmp0, 4); tmp1 = _mm_clmulepi64_si128(tmp2, precomp, 0x10); return _mm_xor_si128(tmp1, tmp0); } /** * Performs Barret's reduction from 64 bits to 32 bits * * @param data64 * 64 bits data to be reduced * @param precomp * rk7 precomputed constant * * @return * reduced 32 bits data */ static __rte_always_inline uint32_t crcr32_reduce_64_to_32(__m128i data64, __m128i precomp) { static const uint32_t mask1[4] __rte_aligned(16) = { 0xffffffff, 0xffffffff, 0x00000000, 0x00000000 }; static const uint32_t mask2[4] __rte_aligned(16) = { 0x00000000, 0xffffffff, 0xffffffff, 0xffffffff }; __m128i tmp0, tmp1, tmp2; tmp0 = _mm_and_si128(data64, _mm_load_si128((const __m128i *)mask2)); tmp1 = _mm_clmulepi64_si128(tmp0, precomp, 0x00); tmp1 = _mm_xor_si128(tmp1, tmp0); tmp1 = _mm_and_si128(tmp1, _mm_load_si128((const __m128i *)mask1)); tmp2 = _mm_clmulepi64_si128(tmp1, precomp, 0x10); tmp2 = _mm_xor_si128(tmp2, tmp1); tmp2 = _mm_xor_si128(tmp2, tmp0); return _mm_extract_epi32(tmp2, 2); } static const uint8_t crc_xmm_shift_tab[48] __rte_aligned(16) = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; /** * Shifts left 128 bit register by specified number of bytes * * @param reg * 128 bit value * @param num * number of bytes to shift left reg by (0-16) * * @return * reg << (num * 8) */ static __rte_always_inline __m128i xmm_shift_left(__m128i reg, const unsigned int num) { const __m128i *p = (const __m128i *)(crc_xmm_shift_tab + 16 - num); return _mm_shuffle_epi8(reg, _mm_loadu_si128(p)); } static __rte_always_inline uint32_t crc32_eth_calc_pclmulqdq( const uint8_t *data, uint32_t data_len, uint32_t crc, const struct crc_pclmulqdq_ctx *params) { __m128i temp, fold, k; uint32_t n; /* Get CRC init value */ temp = _mm_insert_epi32(_mm_setzero_si128(), crc, 0); /** * Folding all data into single 16 byte data block * Assumes: fold holds first 16 bytes of data */ if (unlikely(data_len < 32)) { if (unlikely(data_len == 16)) { /* 16 bytes */ fold = _mm_loadu_si128((const __m128i *)data); fold = _mm_xor_si128(fold, temp); goto reduction_128_64; } if (unlikely(data_len < 16)) { /* 0 to 15 bytes */ uint8_t buffer[16] __rte_aligned(16); memset(buffer, 0, sizeof(buffer)); memcpy(buffer, data, data_len); fold = _mm_load_si128((const __m128i *)buffer); fold = _mm_xor_si128(fold, temp); if (unlikely(data_len < 4)) { fold = xmm_shift_left(fold, 8 - data_len); goto barret_reduction; } fold = xmm_shift_left(fold, 16 - data_len); goto reduction_128_64; } /* 17 to 31 bytes */ fold = _mm_loadu_si128((const __m128i *)data); fold = _mm_xor_si128(fold, temp); n = 16; k = params->rk1_rk2; goto partial_bytes; } /** At least 32 bytes in the buffer */ /** Apply CRC initial value */ fold = _mm_loadu_si128((const __m128i *)data); fold = _mm_xor_si128(fold, temp); /** Main folding loop - the last 16 bytes is processed separately */ k = params->rk1_rk2; for (n = 16; (n + 16) <= data_len; n += 16) { temp = _mm_loadu_si128((const __m128i *)&data[n]); fold = crcr32_folding_round(temp, k, fold); } partial_bytes: if (likely(n < data_len)) { const uint32_t mask3[4] __rte_aligned(16) = { 0x80808080, 0x80808080, 0x80808080, 0x80808080 }; const uint8_t shf_table[32] __rte_aligned(16) = { 0x00, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }; __m128i last16, a, b; last16 = _mm_loadu_si128((const __m128i *)&data[data_len - 16]); temp = _mm_loadu_si128((const __m128i *) &shf_table[data_len & 15]); a = _mm_shuffle_epi8(fold, temp); temp = _mm_xor_si128(temp, _mm_load_si128((const __m128i *)mask3)); b = _mm_shuffle_epi8(fold, temp); b = _mm_blendv_epi8(b, last16, temp); /* k = rk1 & rk2 */ temp = _mm_clmulepi64_si128(a, k, 0x01); fold = _mm_clmulepi64_si128(a, k, 0x10); fold = _mm_xor_si128(fold, temp); fold = _mm_xor_si128(fold, b); } /** Reduction 128 -> 32 Assumes: fold holds 128bit folded data */ reduction_128_64: k = params->rk5_rk6; fold = crcr32_reduce_128_to_64(fold, k); barret_reduction: k = params->rk7_rk8; n = crcr32_reduce_64_to_32(fold, k); return n; } void rte_net_crc_sse42_init(void) { uint64_t k1, k2, k5, k6; uint64_t p = 0, q = 0; /** Initialize CRC16 data */ k1 = 0x189aeLLU; k2 = 0x8e10LLU; k5 = 0x189aeLLU; k6 = 0x114aaLLU; q = 0x11c581910LLU; p = 0x10811LLU; /** Save the params in context structure */ crc16_ccitt_pclmulqdq.rk1_rk2 = _mm_setr_epi64(_mm_cvtsi64_m64(k1), _mm_cvtsi64_m64(k2)); crc16_ccitt_pclmulqdq.rk5_rk6 = _mm_setr_epi64(_mm_cvtsi64_m64(k5), _mm_cvtsi64_m64(k6)); crc16_ccitt_pclmulqdq.rk7_rk8 = _mm_setr_epi64(_mm_cvtsi64_m64(q), _mm_cvtsi64_m64(p)); /** Initialize CRC32 data */ k1 = 0xccaa009eLLU; k2 = 0x1751997d0LLU; k5 = 0xccaa009eLLU; k6 = 0x163cd6124LLU; q = 0x1f7011640LLU; p = 0x1db710641LLU; /** Save the params in context structure */ crc32_eth_pclmulqdq.rk1_rk2 = _mm_setr_epi64(_mm_cvtsi64_m64(k1), _mm_cvtsi64_m64(k2)); crc32_eth_pclmulqdq.rk5_rk6 = _mm_setr_epi64(_mm_cvtsi64_m64(k5), _mm_cvtsi64_m64(k6)); crc32_eth_pclmulqdq.rk7_rk8 = _mm_setr_epi64(_mm_cvtsi64_m64(q), _mm_cvtsi64_m64(p)); /** * Reset the register as following calculation may * use other data types such as float, double, etc. */ _mm_empty(); } uint32_t rte_crc16_ccitt_sse42_handler(const uint8_t *data, uint32_t data_len) { /** return 16-bit CRC value */ return (uint16_t)~crc32_eth_calc_pclmulqdq(data, data_len, 0xffff, &crc16_ccitt_pclmulqdq); } uint32_t rte_crc32_eth_sse42_handler(const uint8_t *data, uint32_t data_len) { return ~crc32_eth_calc_pclmulqdq(data, data_len, 0xffffffffUL, &crc32_eth_pclmulqdq); }