/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2020 Inspur Corporation */ #include #include #include #include #include #include "gro_vxlan_udp4.h" void * gro_vxlan_udp4_tbl_create(uint16_t socket_id, uint16_t max_flow_num, uint16_t max_item_per_flow) { struct gro_vxlan_udp4_tbl *tbl; size_t size; uint32_t entries_num, i; entries_num = max_flow_num * max_item_per_flow; entries_num = RTE_MIN(entries_num, GRO_VXLAN_UDP4_TBL_MAX_ITEM_NUM); if (entries_num == 0) return NULL; tbl = rte_zmalloc_socket(__func__, sizeof(struct gro_vxlan_udp4_tbl), RTE_CACHE_LINE_SIZE, socket_id); if (tbl == NULL) return NULL; size = sizeof(struct gro_vxlan_udp4_item) * entries_num; tbl->items = rte_zmalloc_socket(__func__, size, RTE_CACHE_LINE_SIZE, socket_id); if (tbl->items == NULL) { rte_free(tbl); return NULL; } tbl->max_item_num = entries_num; size = sizeof(struct gro_vxlan_udp4_flow) * entries_num; tbl->flows = rte_zmalloc_socket(__func__, size, RTE_CACHE_LINE_SIZE, socket_id); if (tbl->flows == NULL) { rte_free(tbl->items); rte_free(tbl); return NULL; } for (i = 0; i < entries_num; i++) tbl->flows[i].start_index = INVALID_ARRAY_INDEX; tbl->max_flow_num = entries_num; return tbl; } void gro_vxlan_udp4_tbl_destroy(void *tbl) { struct gro_vxlan_udp4_tbl *vxlan_tbl = tbl; if (vxlan_tbl) { rte_free(vxlan_tbl->items); rte_free(vxlan_tbl->flows); } rte_free(vxlan_tbl); } static inline uint32_t find_an_empty_item(struct gro_vxlan_udp4_tbl *tbl) { uint32_t max_item_num = tbl->max_item_num, i; for (i = 0; i < max_item_num; i++) if (tbl->items[i].inner_item.firstseg == NULL) return i; return INVALID_ARRAY_INDEX; } static inline uint32_t find_an_empty_flow(struct gro_vxlan_udp4_tbl *tbl) { uint32_t max_flow_num = tbl->max_flow_num, i; for (i = 0; i < max_flow_num; i++) if (tbl->flows[i].start_index == INVALID_ARRAY_INDEX) return i; return INVALID_ARRAY_INDEX; } static inline uint32_t insert_new_item(struct gro_vxlan_udp4_tbl *tbl, struct rte_mbuf *pkt, uint64_t start_time, uint32_t prev_idx, uint16_t frag_offset, uint8_t is_last_frag) { uint32_t item_idx; item_idx = find_an_empty_item(tbl); if (unlikely(item_idx == INVALID_ARRAY_INDEX)) return INVALID_ARRAY_INDEX; tbl->items[item_idx].inner_item.firstseg = pkt; tbl->items[item_idx].inner_item.lastseg = rte_pktmbuf_lastseg(pkt); tbl->items[item_idx].inner_item.start_time = start_time; tbl->items[item_idx].inner_item.next_pkt_idx = INVALID_ARRAY_INDEX; tbl->items[item_idx].inner_item.frag_offset = frag_offset; tbl->items[item_idx].inner_item.is_last_frag = is_last_frag; tbl->items[item_idx].inner_item.nb_merged = 1; tbl->item_num++; /* If the previous packet exists, chain the new one with it. */ if (prev_idx != INVALID_ARRAY_INDEX) { tbl->items[item_idx].inner_item.next_pkt_idx = tbl->items[prev_idx].inner_item.next_pkt_idx; tbl->items[prev_idx].inner_item.next_pkt_idx = item_idx; } return item_idx; } static inline uint32_t delete_item(struct gro_vxlan_udp4_tbl *tbl, uint32_t item_idx, uint32_t prev_item_idx) { uint32_t next_idx = tbl->items[item_idx].inner_item.next_pkt_idx; /* NULL indicates an empty item. */ tbl->items[item_idx].inner_item.firstseg = NULL; tbl->item_num--; if (prev_item_idx != INVALID_ARRAY_INDEX) tbl->items[prev_item_idx].inner_item.next_pkt_idx = next_idx; return next_idx; } static inline uint32_t insert_new_flow(struct gro_vxlan_udp4_tbl *tbl, struct vxlan_udp4_flow_key *src, uint32_t item_idx) { struct vxlan_udp4_flow_key *dst; uint32_t flow_idx; flow_idx = find_an_empty_flow(tbl); if (unlikely(flow_idx == INVALID_ARRAY_INDEX)) return INVALID_ARRAY_INDEX; dst = &(tbl->flows[flow_idx].key); rte_ether_addr_copy(&(src->inner_key.eth_saddr), &(dst->inner_key.eth_saddr)); rte_ether_addr_copy(&(src->inner_key.eth_daddr), &(dst->inner_key.eth_daddr)); dst->inner_key.ip_src_addr = src->inner_key.ip_src_addr; dst->inner_key.ip_dst_addr = src->inner_key.ip_dst_addr; dst->inner_key.ip_id = src->inner_key.ip_id; dst->vxlan_hdr.vx_flags = src->vxlan_hdr.vx_flags; dst->vxlan_hdr.vx_vni = src->vxlan_hdr.vx_vni; rte_ether_addr_copy(&(src->outer_eth_saddr), &(dst->outer_eth_saddr)); rte_ether_addr_copy(&(src->outer_eth_daddr), &(dst->outer_eth_daddr)); dst->outer_ip_src_addr = src->outer_ip_src_addr; dst->outer_ip_dst_addr = src->outer_ip_dst_addr; dst->outer_dst_port = src->outer_dst_port; tbl->flows[flow_idx].start_index = item_idx; tbl->flow_num++; return flow_idx; } static inline int is_same_vxlan_udp4_flow(struct vxlan_udp4_flow_key k1, struct vxlan_udp4_flow_key k2) { /* For VxLAN packet, outer udp src port is calculated from * inner packet RSS hash, udp src port of the first UDP * fragment is different from one of other UDP fragments * even if they are same flow, so we have to skip outer udp * src port comparison here. */ return (rte_is_same_ether_addr(&k1.outer_eth_saddr, &k2.outer_eth_saddr) && rte_is_same_ether_addr(&k1.outer_eth_daddr, &k2.outer_eth_daddr) && (k1.outer_ip_src_addr == k2.outer_ip_src_addr) && (k1.outer_ip_dst_addr == k2.outer_ip_dst_addr) && (k1.outer_dst_port == k2.outer_dst_port) && (k1.vxlan_hdr.vx_flags == k2.vxlan_hdr.vx_flags) && (k1.vxlan_hdr.vx_vni == k2.vxlan_hdr.vx_vni) && is_same_udp4_flow(k1.inner_key, k2.inner_key)); } static inline int udp4_check_vxlan_neighbor(struct gro_vxlan_udp4_item *item, uint16_t frag_offset, uint16_t ip_dl) { struct rte_mbuf *pkt = item->inner_item.firstseg; int cmp; uint16_t l2_offset; int ret = 0; /* Note: if outer DF bit is set, i.e outer_is_atomic is 0, * we needn't compare outer_ip_id because they are same, * for the case outer_is_atomic is 1, we also have no way * to compare outer_ip_id because the difference between * outer_ip_ids of two received packets isn't always +/-1. * So skip outer_ip_id comparison here. */ l2_offset = pkt->outer_l2_len + pkt->outer_l3_len; cmp = udp4_check_neighbor(&item->inner_item, frag_offset, ip_dl, l2_offset); if (cmp > 0) /* Append the new packet. */ ret = 1; else if (cmp < 0) /* Prepend the new packet. */ ret = -1; return ret; } static inline int merge_two_vxlan_udp4_packets(struct gro_vxlan_udp4_item *item, struct rte_mbuf *pkt, int cmp, uint16_t frag_offset, uint8_t is_last_frag) { if (merge_two_udp4_packets(&item->inner_item, pkt, cmp, frag_offset, is_last_frag, pkt->outer_l2_len + pkt->outer_l3_len)) { return 1; } return 0; } static inline void update_vxlan_header(struct gro_vxlan_udp4_item *item) { struct rte_ipv4_hdr *ipv4_hdr; struct rte_udp_hdr *udp_hdr; struct rte_mbuf *pkt = item->inner_item.firstseg; uint16_t len; uint16_t frag_offset; /* Update the outer IPv4 header. */ len = pkt->pkt_len - pkt->outer_l2_len; ipv4_hdr = (struct rte_ipv4_hdr *)(rte_pktmbuf_mtod(pkt, char *) + pkt->outer_l2_len); ipv4_hdr->total_length = rte_cpu_to_be_16(len); /* Update the outer UDP header. */ len -= pkt->outer_l3_len; udp_hdr = (struct rte_udp_hdr *)((char *)ipv4_hdr + pkt->outer_l3_len); udp_hdr->dgram_len = rte_cpu_to_be_16(len); /* Update the inner IPv4 header. */ len -= pkt->l2_len; ipv4_hdr = (struct rte_ipv4_hdr *)((char *)udp_hdr + pkt->l2_len); ipv4_hdr->total_length = rte_cpu_to_be_16(len); /* Clear MF bit if it is last fragment */ if (item->inner_item.is_last_frag) { frag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset); ipv4_hdr->fragment_offset = rte_cpu_to_be_16(frag_offset & ~RTE_IPV4_HDR_MF_FLAG); } } int32_t gro_vxlan_udp4_reassemble(struct rte_mbuf *pkt, struct gro_vxlan_udp4_tbl *tbl, uint64_t start_time) { struct rte_ether_hdr *outer_eth_hdr, *eth_hdr; struct rte_ipv4_hdr *outer_ipv4_hdr, *ipv4_hdr; struct rte_udp_hdr *udp_hdr; struct rte_vxlan_hdr *vxlan_hdr; uint16_t frag_offset; uint8_t is_last_frag; int16_t ip_dl; uint16_t ip_id; struct vxlan_udp4_flow_key key; uint32_t cur_idx, prev_idx, item_idx; uint32_t i, max_flow_num, remaining_flow_num; int cmp; uint16_t hdr_len; uint8_t find; outer_eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *); outer_ipv4_hdr = (struct rte_ipv4_hdr *)((char *)outer_eth_hdr + pkt->outer_l2_len); udp_hdr = (struct rte_udp_hdr *)((char *)outer_ipv4_hdr + pkt->outer_l3_len); vxlan_hdr = (struct rte_vxlan_hdr *)((char *)udp_hdr + sizeof(struct rte_udp_hdr)); eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_hdr + sizeof(struct rte_vxlan_hdr)); /* l2_len = outer udp hdr len + vxlan hdr len + inner l2 len */ ipv4_hdr = (struct rte_ipv4_hdr *)((char *)udp_hdr + pkt->l2_len); /* * Don't process the packet which has non-fragment inner IP. */ if (!is_ipv4_fragment(ipv4_hdr)) return -1; hdr_len = pkt->outer_l2_len + pkt->outer_l3_len + pkt->l2_len + pkt->l3_len; /* * Don't process the packet whose payload length is less than or * equal to 0. */ if (pkt->pkt_len <= hdr_len) return -1; ip_dl = pkt->pkt_len - hdr_len; ip_id = rte_be_to_cpu_16(ipv4_hdr->packet_id); frag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset); is_last_frag = ((frag_offset & RTE_IPV4_HDR_MF_FLAG) == 0) ? 1 : 0; frag_offset = (uint16_t)(frag_offset & RTE_IPV4_HDR_OFFSET_MASK) << 3; rte_ether_addr_copy(&(eth_hdr->s_addr), &(key.inner_key.eth_saddr)); rte_ether_addr_copy(&(eth_hdr->d_addr), &(key.inner_key.eth_daddr)); key.inner_key.ip_src_addr = ipv4_hdr->src_addr; key.inner_key.ip_dst_addr = ipv4_hdr->dst_addr; key.inner_key.ip_id = ip_id; key.vxlan_hdr.vx_flags = vxlan_hdr->vx_flags; key.vxlan_hdr.vx_vni = vxlan_hdr->vx_vni; rte_ether_addr_copy(&(outer_eth_hdr->s_addr), &(key.outer_eth_saddr)); rte_ether_addr_copy(&(outer_eth_hdr->d_addr), &(key.outer_eth_daddr)); key.outer_ip_src_addr = outer_ipv4_hdr->src_addr; key.outer_ip_dst_addr = outer_ipv4_hdr->dst_addr; /* Note: It is unnecessary to save outer_src_port here because it can * be different for VxLAN UDP fragments from the same flow. */ key.outer_dst_port = udp_hdr->dst_port; /* Search for a matched flow. */ max_flow_num = tbl->max_flow_num; remaining_flow_num = tbl->flow_num; find = 0; for (i = 0; i < max_flow_num && remaining_flow_num; i++) { if (tbl->flows[i].start_index != INVALID_ARRAY_INDEX) { if (is_same_vxlan_udp4_flow(tbl->flows[i].key, key)) { find = 1; break; } remaining_flow_num--; } } /* * Can't find a matched flow. Insert a new flow and store the * packet into the flow. */ if (find == 0) { item_idx = insert_new_item(tbl, pkt, start_time, INVALID_ARRAY_INDEX, frag_offset, is_last_frag); if (unlikely(item_idx == INVALID_ARRAY_INDEX)) return -1; if (insert_new_flow(tbl, &key, item_idx) == INVALID_ARRAY_INDEX) { /* * Fail to insert a new flow, so * delete the inserted packet. */ delete_item(tbl, item_idx, INVALID_ARRAY_INDEX); return -1; } return 0; } /* Check all packets in the flow and try to find a neighbor. */ cur_idx = tbl->flows[i].start_index; prev_idx = cur_idx; do { cmp = udp4_check_vxlan_neighbor(&(tbl->items[cur_idx]), frag_offset, ip_dl); if (cmp) { if (merge_two_vxlan_udp4_packets( &(tbl->items[cur_idx]), pkt, cmp, frag_offset, is_last_frag)) { return 1; } /* * Can't merge two packets, as the packet * length will be greater than the max value. * Insert the packet into the flow. */ if (insert_new_item(tbl, pkt, start_time, prev_idx, frag_offset, is_last_frag) == INVALID_ARRAY_INDEX) return -1; return 0; } /* Ensure inserted items are ordered by frag_offset */ if (frag_offset < tbl->items[cur_idx].inner_item.frag_offset) { break; } prev_idx = cur_idx; cur_idx = tbl->items[cur_idx].inner_item.next_pkt_idx; } while (cur_idx != INVALID_ARRAY_INDEX); /* Can't find neighbor. Insert the packet into the flow. */ if (cur_idx == tbl->flows[i].start_index) { /* Insert it before the first packet of the flow */ item_idx = insert_new_item(tbl, pkt, start_time, INVALID_ARRAY_INDEX, frag_offset, is_last_frag); if (unlikely(item_idx == INVALID_ARRAY_INDEX)) return -1; tbl->items[item_idx].inner_item.next_pkt_idx = cur_idx; tbl->flows[i].start_index = item_idx; } else { if (insert_new_item(tbl, pkt, start_time, prev_idx, frag_offset, is_last_frag ) == INVALID_ARRAY_INDEX) return -1; } return 0; } static int gro_vxlan_udp4_merge_items(struct gro_vxlan_udp4_tbl *tbl, uint32_t start_idx) { uint16_t frag_offset; uint8_t is_last_frag; int16_t ip_dl; struct rte_mbuf *pkt; int cmp; uint32_t item_idx; uint16_t hdr_len; item_idx = tbl->items[start_idx].inner_item.next_pkt_idx; while (item_idx != INVALID_ARRAY_INDEX) { pkt = tbl->items[item_idx].inner_item.firstseg; hdr_len = pkt->outer_l2_len + pkt->outer_l3_len + pkt->l2_len + pkt->l3_len; ip_dl = pkt->pkt_len - hdr_len; frag_offset = tbl->items[item_idx].inner_item.frag_offset; is_last_frag = tbl->items[item_idx].inner_item.is_last_frag; cmp = udp4_check_vxlan_neighbor(&(tbl->items[start_idx]), frag_offset, ip_dl); if (cmp) { if (merge_two_vxlan_udp4_packets( &(tbl->items[start_idx]), pkt, cmp, frag_offset, is_last_frag)) { item_idx = delete_item(tbl, item_idx, INVALID_ARRAY_INDEX); tbl->items[start_idx].inner_item.next_pkt_idx = item_idx; } else return 0; } else return 0; } return 0; } uint16_t gro_vxlan_udp4_tbl_timeout_flush(struct gro_vxlan_udp4_tbl *tbl, uint64_t flush_timestamp, struct rte_mbuf **out, uint16_t nb_out) { uint16_t k = 0; uint32_t i, j; uint32_t max_flow_num = tbl->max_flow_num; for (i = 0; i < max_flow_num; i++) { if (unlikely(tbl->flow_num == 0)) return k; j = tbl->flows[i].start_index; while (j != INVALID_ARRAY_INDEX) { if (tbl->items[j].inner_item.start_time <= flush_timestamp) { gro_vxlan_udp4_merge_items(tbl, j); out[k++] = tbl->items[j].inner_item.firstseg; if (tbl->items[j].inner_item.nb_merged > 1) update_vxlan_header(&(tbl->items[j])); /* * Delete the item and get the next packet * index. */ j = delete_item(tbl, j, INVALID_ARRAY_INDEX); tbl->flows[i].start_index = j; if (j == INVALID_ARRAY_INDEX) tbl->flow_num--; if (unlikely(k == nb_out)) return k; } else /* * Flushing packets does not strictly follow * timestamp. It does not flush left packets of * the flow this time once it finds one item * whose start_time is greater than * flush_timestamp. So go to check other flows. */ break; } } return k; } uint32_t gro_vxlan_udp4_tbl_pkt_count(void *tbl) { struct gro_vxlan_udp4_tbl *gro_tbl = tbl; if (gro_tbl) return gro_tbl->item_num; return 0; }