/* * Copyright (c) 2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ah_devid.h" #ifdef AH_DEBUG #include "ah_desc.h" /* NB: for HAL_PHYERR* */ #endif #include "ar9300/ar9300.h" #include "ar9300/ar9300reg.h" #include "ar9300/ar9300phy.h" void ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs) { struct ath_hal_9300 *ahp = AH9300(ah); *hangs = 0; if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) { *hangs |= HAL_RIFS_BB_HANG_WAR; } if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) { *hangs |= HAL_DFS_BB_HANG_WAR; } if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL) == HAL_OK) { *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR; } if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) { *hangs |= HAL_MAC_HANG_WAR; } if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL) == HAL_OK) { *hangs |= HAL_PHYRESTART_CLR_WAR; } ahp->ah_hang_wars = *hangs; } /* * XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about * HT20, HT40, fast-clock, turbo mode, etc. */ static u_int ar9300_mac_to_usec(struct ath_hal *ah, u_int clks) { #if 0 const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; if (chan && IEEE80211_IS_CHAN_HT40(chan)) { return (ath_hal_mac_usec(ah, clks) / 2); } else { return (ath_hal_mac_usec(ah, clks)); } #endif return (ath_hal_mac_usec(ah, clks)); } u_int ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs) { #if 0 const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; if (chan && IEEE80211_IS_CHAN_HT40(chan)) { return (ath_hal_mac_clks(ah, usecs) * 2); } else { return (ath_hal_mac_clks(ah, usecs)); } #endif return (ath_hal_mac_clks(ah, usecs)); } void ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac) { struct ath_hal_9300 *ahp = AH9300(ah); OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN); } HAL_BOOL ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac) { struct ath_hal_9300 *ahp = AH9300(ah); OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN); return AH_TRUE; } void ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask) { struct ath_hal_9300 *ahp = AH9300(ah); OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN); } HAL_BOOL ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask) { struct ath_hal_9300 *ahp = AH9300(ah); /* save it since it must be rewritten on reset */ OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN); OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask)); OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4)); return AH_TRUE; } /* * Attempt to change the cards operating regulatory domain to the given value * Returns: A_EINVAL for an unsupported regulatory domain. * A_HARDWARE for an unwritable EEPROM or bad EEPROM version */ HAL_BOOL ar9300_set_regulatory_domain(struct ath_hal *ah, u_int16_t reg_domain, HAL_STATUS *status) { HAL_STATUS ecode; if (AH_PRIVATE(ah)->ah_currentRD == 0) { AH_PRIVATE(ah)->ah_currentRD = reg_domain; return AH_TRUE; } ecode = HAL_EIO; #if 0 bad: #endif if (status) { *status = ecode; } return AH_FALSE; } /* * Return the wireless modes (a,b,g,t) supported by hardware. * * This value is what is actually supported by the hardware * and is unaffected by regulatory/country code settings. * */ u_int ar9300_get_wireless_modes(struct ath_hal *ah) { return AH_PRIVATE(ah)->ah_caps.halWirelessModes; } /* * Set the interrupt and GPIO values so the ISR can disable RF * on a switch signal. Assumes GPIO port and interrupt polarity * are set prior to call. */ void ar9300_enable_rf_kill(struct ath_hal *ah) { /* TODO - can this really be above the hal on the GPIO interface for * TODO - the client only? */ struct ath_hal_9300 *ahp = AH9300(ah); if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) { /* Check RF kill GPIO before set/clear RFSILENT bits. */ if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) { OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT), AR_RFSILENT_FORCE); OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB); } else { OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT), AR_RFSILENT_FORCE); OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB); } } else { /* Connect rfsilent_bb_l to baseband */ OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL), AR_GPIO_INPUT_EN_VAL_RFSILENT_BB); /* Set input mux for rfsilent_bb_l to GPIO #0 */ OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2), AR_GPIO_INPUT_MUX2_RFSILENT); OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2), (ahp->ah_gpio_select & 0x0f) << 4); /* * Configure the desired GPIO port for input and * enable baseband rf silence */ ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select); OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB); } /* * If radio disable switch connection to GPIO bit x is enabled * program GPIO interrupt. * If rfkill bit on eeprom is 1, setupeeprommap routine has already * verified that it is a later version of eeprom, it has a place for * rfkill bit and it is set to 1, indicating that GPIO bit x hardware * connection is present. */ /* * RFKill uses polling not interrupt, * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue */ if (ath_hal_hasrfkill_int(ah)) { if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) { /* switch already closed, set to interrupt upon open */ ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit); } else { ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit); } } } /* * Change the LED blinking pattern to correspond to the connectivity */ void ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state) { static const u_int32_t ledbits[8] = { AR_CFG_LED_ASSOC_NONE, /* HAL_LED_RESET */ AR_CFG_LED_ASSOC_PENDING, /* HAL_LED_INIT */ AR_CFG_LED_ASSOC_PENDING, /* HAL_LED_READY */ AR_CFG_LED_ASSOC_PENDING, /* HAL_LED_SCAN */ AR_CFG_LED_ASSOC_PENDING, /* HAL_LED_AUTH */ AR_CFG_LED_ASSOC_ACTIVE, /* HAL_LED_ASSOC */ AR_CFG_LED_ASSOC_ACTIVE, /* HAL_LED_RUN */ AR_CFG_LED_ASSOC_NONE, }; OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]); } /* * Sets the Power LED on the cardbus without affecting the Network LED. */ void ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled) { u_int32_t val; val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF; OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val); } /* * Sets the Network LED on the cardbus without affecting the Power LED. */ void ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled) { u_int32_t val; val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF; OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val); } /* * Change association related fields programmed into the hardware. * Writing a valid BSSID to the hardware effectively enables the hardware * to synchronize its TSF to the correct beacons and receive frames coming * from that BSSID. It is called by the SME JOIN operation. */ void ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid, u_int16_t assoc_id) { struct ath_hal_9300 *ahp = AH9300(ah); /* save bssid and assoc_id for restore on reset */ OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN); ahp->ah_assoc_id = assoc_id; OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) | ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S)); } /* * Get the current hardware tsf for stamlme */ u_int64_t ar9300_get_tsf64(struct ath_hal *ah) { u_int64_t tsf; /* XXX sync multi-word read? */ tsf = OS_REG_READ(ah, AR_TSF_U32); tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32); return tsf; } void ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf) { OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff)); OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff)); } /* * Get the current hardware tsf for stamlme */ u_int32_t ar9300_get_tsf32(struct ath_hal *ah) { return OS_REG_READ(ah, AR_TSF_L32); } u_int32_t ar9300_get_tsf2_32(struct ath_hal *ah) { return OS_REG_READ(ah, AR_TSF2_L32); } /* * Reset the current hardware tsf for stamlme. */ void ar9300_reset_tsf(struct ath_hal *ah) { int count; count = 0; while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) { count++; if (count > 10) { HALDEBUG(ah, HAL_DEBUG_RESET, "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__); break; } OS_DELAY(10); } OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); } /* * Set or clear hardware basic rate bit * Set hardware basic rate set if basic rate is found * and basic rate is equal or less than 2Mbps */ void ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs) { const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; u_int32_t reg; u_int8_t xset; int i; if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) { return; } xset = 0; for (i = 0; i < rs->rs_count; i++) { u_int8_t rset = rs->rs_rates[i]; /* Basic rate defined? */ if ((rset & 0x80) && (rset &= 0x7f) >= xset) { xset = rset; } } /* * Set the h/w bit to reflect whether or not the basic * rate is found to be equal or less than 2Mbps. */ reg = OS_REG_READ(ah, AR_STA_ID1); if (xset && xset / 2 <= 2) { OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B); } else { OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B); } } /* * Grab a semi-random value from hardware registers - may not * change often */ u_int32_t ar9300_get_random_seed(struct ath_hal *ah) { u_int32_t nf; nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff; if (nf & 0x100) { nf = 0 - ((nf ^ 0x1ff) + 1); } return (OS_REG_READ(ah, AR_TSF_U32) ^ OS_REG_READ(ah, AR_TSF_L32) ^ nf); } /* * Detect if our card is present */ HAL_BOOL ar9300_detect_card_present(struct ath_hal *ah) { u_int16_t mac_version, mac_rev; u_int32_t v; /* * Read the Silicon Revision register and compare that * to what we read at attach time. If the same, we say * a card/device is present. */ v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID; if (v == 0xFF) { /* new SREV format */ v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)); /* * Include 6-bit Chip Type (masked to 0) to differentiate * from pre-Sowl versions */ mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; mac_rev = MS(v, AR_SREV_REVISION2); } else { mac_version = MS(v, AR_SREV_VERSION); mac_rev = v & AR_SREV_REVISION; } return (AH_PRIVATE(ah)->ah_macVersion == mac_version && AH_PRIVATE(ah)->ah_macRev == mac_rev); } /* * Update MIB Counters */ void ar9300_update_mib_mac_stats(struct ath_hal *ah) { struct ath_hal_9300 *ahp = AH9300(ah); HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats; stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL); stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL); stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL); stats->rts_good += OS_REG_READ(ah, AR_RTS_OK); stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT); } void ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats) { struct ath_hal_9300 *ahp = AH9300(ah); HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats; stats->ackrcv_bad = istats->ackrcv_bad; stats->rts_bad = istats->rts_bad; stats->fcs_bad = istats->fcs_bad; stats->rts_good = istats->rts_good; stats->beacons = istats->beacons; } /* * Detect if the HW supports spreading a CCK signal on channel 14 */ HAL_BOOL ar9300_is_japan_channel_spread_supported(struct ath_hal *ah) { return AH_TRUE; } /* * Get the rssi of frame curently being received. */ u_int32_t ar9300_get_cur_rssi(struct ath_hal *ah) { /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */ /* get combined RSSI */ return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff); } #if ATH_GEN_RANDOMNESS /* * Get the rssi value from BB on ctl chain0. */ u_int32_t ar9300_get_rssi_chain0(struct ath_hal *ah) { /* get ctl chain0 RSSI */ return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff; } #endif u_int ar9300_get_def_antenna(struct ath_hal *ah) { return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7); } /* Setup coverage class */ void ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now) { } void ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna) { OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); } HAL_BOOL ar9300_set_antenna_switch(struct ath_hal *ah, HAL_ANT_SETTING settings, const struct ieee80211_channel *chan, u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd) { struct ath_hal_9300 *ahp = AH9300(ah); /* * Owl does not support diversity or changing antennas. * * Instead this API and function are defined differently for AR9300. * To support Tablet PC's, this interface allows the system * to dramatically reduce the TX power on a particular chain. * * Based on the value of (redefined) diversity_control, the * reset code will decrease power on chain 0 or chain 1/2. * * Based on the value of bit 0 of antenna_switch_swap, * the mapping between OID call and chain is defined as: * 0: map A -> 0, B -> 1; * 1: map A -> 1, B -> 0; * * NOTE: * The devices that use this OID should use a tx_chain_mask and * tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is * used in order to ensure an active transmit antenna. This * API will allow the host to turn off the only transmitting * antenna to ensure the antenna closest to the user's body is * powered-down. */ /* * Set antenna control for use during reset sequence by * ar9300_decrease_chain_power() */ ahp->ah_diversity_control = settings; return AH_TRUE; } HAL_BOOL ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah) { return AH_TRUE; } HAL_BOOL ar9300_set_slot_time(struct ath_hal *ah, u_int us) { struct ath_hal_9300 *ahp = AH9300(ah); if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) { HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us); ahp->ah_slot_time = (u_int) -1; /* restore default handling */ return AH_FALSE; } else { /* convert to system clocks */ OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us)); ahp->ah_slot_time = us; return AH_TRUE; } } HAL_BOOL ar9300_set_ack_timeout(struct ath_hal *ah, u_int us) { struct ath_hal_9300 *ahp = AH9300(ah); if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) { HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us); ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */ return AH_FALSE; } else { /* convert to system clocks */ OS_REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us)); ahp->ah_ack_timeout = us; return AH_TRUE; } } u_int ar9300_get_ack_timeout(struct ath_hal *ah) { u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK); return ar9300_mac_to_usec(ah, clks); /* convert from system clocks */ } HAL_STATUS ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration, u_int32_t next_start, HAL_QUIET_FLAG flag) { #define TU_TO_USEC(_tu) ((_tu) << 10) HAL_STATUS status = HAL_EIO; u_int32_t tsf = 0, j, next_start_us = 0; if (flag & HAL_QUIET_ENABLE) { for (j = 0; j < 2; j++) { next_start_us = TU_TO_USEC(next_start); tsf = OS_REG_READ(ah, AR_TSF_L32); if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) { next_start_us += tsf; } if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) { next_start_us += ah->ah_config.ah_sw_beacon_response_time; } OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1); OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR)); OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period)); OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us); OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN); if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) { status = HAL_OK; break; } HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved " "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf); /* TSF shouldn't count twice or reg access is taking forever */ HALASSERT(j < 1); } } else { OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN); status = HAL_OK; } return status; #undef TU_TO_USEC } #ifdef ATH_SUPPORT_DFS void ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable) { u32 reg1, reg2; reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE)); reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1)); AH9300(ah)->ah_cac_quiet_enabled = enable; if (enable) { OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE), reg1 | AR_PCU_FORCE_QUIET_COLL); OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1), reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE); } else { OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE), reg1 & ~AR_PCU_FORCE_QUIET_COLL); OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1), reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE); } } #endif /* ATH_SUPPORT_DFS */ void ar9300_set_pcu_config(struct ath_hal *ah) { ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode); } HAL_STATUS ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type, u_int32_t capability, u_int32_t *result) { struct ath_hal_9300 *ahp = AH9300(ah); const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps; struct ar9300_ani_state *ani; switch (type) { case HAL_CAP_CIPHER: /* cipher handled in hardware */ switch (capability) { case HAL_CIPHER_AES_CCM: case HAL_CIPHER_AES_OCB: case HAL_CIPHER_TKIP: case HAL_CIPHER_WEP: case HAL_CIPHER_MIC: case HAL_CIPHER_CLR: return HAL_OK; default: return HAL_ENOTSUPP; } case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */ switch (capability) { case 0: /* hardware capability */ return HAL_OK; case 1: return (ahp->ah_sta_id1_defaults & AR_STA_ID1_CRPT_MIC_ENABLE) ? HAL_OK : HAL_ENXIO; default: return HAL_ENOTSUPP; } case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */ switch (capability) { case 0: /* hardware capability */ return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK; case 1: /* current setting */ return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ? HAL_ENXIO : HAL_OK; default: return HAL_ENOTSUPP; } case HAL_CAP_WME_TKIPMIC: /* hardware can do TKIP MIC when WMM is turned on */ return HAL_OK; case HAL_CAP_PHYCOUNTERS: /* hardware PHY error counters */ return HAL_OK; case HAL_CAP_DIVERSITY: /* hardware supports fast diversity */ switch (capability) { case 0: /* hardware capability */ return HAL_OK; case 1: /* current setting */ return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) & AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ? HAL_OK : HAL_ENXIO; } return HAL_EINVAL; case HAL_CAP_TPC: switch (capability) { case 0: /* hardware capability */ return HAL_OK; case 1: return ah->ah_config.ath_hal_desc_tpc ? HAL_OK : HAL_ENXIO; } return HAL_OK; case HAL_CAP_PHYDIAG: /* radar pulse detection capability */ return HAL_OK; case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */ switch (capability) { case 0: /* hardware capability */ return HAL_OK; case 1: if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) { /* * Owl and Merlin have problems in mcast key search. * Disable this cap. in Ad-hoc mode. see Bug 25776 and * 26802 */ return HAL_ENXIO; } else { return (ahp->ah_sta_id1_defaults & AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO; } } return HAL_EINVAL; case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */ switch (capability) { case 0: /* hardware capability */ return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP; case 1: return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ? HAL_OK : HAL_ENXIO; } return HAL_EINVAL; case HAL_CAP_RFSILENT: /* rfsilent support */ if (capability == 3) { /* rfkill interrupt */ /* * XXX: Interrupt-based notification of RF Kill state * changes not working yet. Report that this feature * is not supported so that polling is used instead. */ return (HAL_ENOTSUPP); } return ath_hal_getcapability(ah, type, capability, result); case HAL_CAP_4ADDR_AGGR: return HAL_OK; case HAL_CAP_BB_RIFS_HANG: return HAL_ENOTSUPP; case HAL_CAP_BB_DFS_HANG: return HAL_ENOTSUPP; case HAL_CAP_BB_RX_CLEAR_STUCK_HANG: /* Track chips that are known to have BB hangs related * to rx_clear stuck low. */ return HAL_ENOTSUPP; case HAL_CAP_MAC_HANG: /* Track chips that are known to have MAC hangs. */ return HAL_OK; case HAL_CAP_RIFS_RX_ENABLED: /* Is RIFS RX currently enabled */ return (ahp->ah_rifs_enabled == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP; #if 0 case HAL_CAP_ANT_CFG_2GHZ: *result = p_cap->halNumAntCfg2Ghz; return HAL_OK; case HAL_CAP_ANT_CFG_5GHZ: *result = p_cap->halNumAntCfg5Ghz; return HAL_OK; case HAL_CAP_RX_STBC: *result = p_cap->hal_rx_stbc_support; return HAL_OK; case HAL_CAP_TX_STBC: *result = p_cap->hal_tx_stbc_support; return HAL_OK; #endif case HAL_CAP_LDPC: *result = p_cap->halLDPCSupport; return HAL_OK; case HAL_CAP_DYNAMIC_SMPS: return HAL_OK; case HAL_CAP_DS: return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) || (p_cap->halTxChainMask & 0x3) != 0x3 || (p_cap->halRxChainMask & 0x3) != 0x3) ? HAL_ENOTSUPP : HAL_OK; case HAL_CAP_TS: return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) || (p_cap->halTxChainMask & 0x7) != 0x7 || (p_cap->halRxChainMask & 0x7) != 0x7) ? HAL_ENOTSUPP : HAL_OK; case HAL_CAP_OL_PWRCTRL: return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ? HAL_OK : HAL_ENOTSUPP; case HAL_CAP_CRDC: #if ATH_SUPPORT_CRDC return (AR_SREV_WASP(ah) && ah->ah_config.ath_hal_crdc_enable) ? HAL_OK : HAL_ENOTSUPP; #else return HAL_ENOTSUPP; #endif #if 0 case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS: *result = (u_int32_t)(-1); return HAL_OK; case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS: *result = (u_int32_t)(-1); return HAL_OK; #endif case HAL_CAP_BB_PANIC_WATCHDOG: return HAL_OK; case HAL_CAP_PHYRESTART_CLR_WAR: if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) && (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10)) { return HAL_OK; } else { return HAL_ENOTSUPP; } case HAL_CAP_ENTERPRISE_MODE: *result = ahp->ah_enterprise_mode >> 16; /* * WAR for EV 77658 - Add delimiters to first sub-frame when using * RTS/CTS with aggregation and non-enterprise Osprey. * * Bug fixed in AR9580/Peacock, Wasp1.1 and later */ if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) && !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) || AR_SREV_WASP_10(ah))) { *result |= AH_ENT_RTSCTS_DELIM_WAR; } return HAL_OK; case HAL_CAP_LDPCWAR: /* WAR for RIFS+LDPC issue is required for all chips currently * supported by ar9300 HAL. */ return HAL_OK; case HAL_CAP_ENABLE_APM: *result = p_cap->halApmEnable; return HAL_OK; case HAL_CAP_PCIE_LCR_EXTSYNC_EN: return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP; case HAL_CAP_PCIE_LCR_OFFSET: *result = p_cap->hal_pcie_lcr_offset; return HAL_OK; case HAL_CAP_SMARTANTENNA: /* FIXME A request is pending with h/w team to add feature bit in * caldata to detect if board has smart antenna or not, once added * we need to fix his piece of code to read and return value without * any compile flags */ #if UMAC_SUPPORT_SMARTANTENNA /* enable smart antenna for Peacock, Wasp and scorpion for future chips need to modify */ if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) { return HAL_OK; } else { return HAL_ENOTSUPP; } #else return HAL_ENOTSUPP; #endif #ifdef ATH_TRAFFIC_FAST_RECOVER case HAL_CAP_TRAFFIC_FAST_RECOVER: if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) { return HAL_OK; } else { return HAL_ENOTSUPP; } #endif /* FreeBSD ANI */ case HAL_CAP_INTMIT: /* interference mitigation */ switch (capability) { case HAL_CAP_INTMIT_PRESENT: /* hardware capability */ return HAL_OK; case HAL_CAP_INTMIT_ENABLE: return (ahp->ah_proc_phy_err & HAL_PROCESS_ANI) ? HAL_OK : HAL_ENXIO; case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL: case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL: // case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR: case HAL_CAP_INTMIT_FIRSTEP_LEVEL: case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL: ani = ar9300_ani_get_current_state(ah); if (ani == AH_NULL) return HAL_ENXIO; switch (capability) { /* XXX AR9300 HAL has OFDM/CCK noise immunity level params? */ case 2: *result = ani->ofdm_noise_immunity_level; break; case 3: *result = !ani->ofdm_weak_sig_detect_off; break; // case 4: *result = ani->cck_weak_sig_threshold; break; case 5: *result = ani->firstep_level; break; case 6: *result = ani->spur_immunity_level; break; } return HAL_OK; } return HAL_EINVAL; case HAL_CAP_ENFORCE_TXOP: if (capability == 0) return (HAL_OK); if (capability != 1) return (HAL_ENOTSUPP); (*result) = !! (ahp->ah_misc_mode & AR_PCU_TXOP_TBTT_LIMIT_ENA); return (HAL_OK); default: return ath_hal_getcapability(ah, type, capability, result); } } HAL_BOOL ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type, u_int32_t capability, u_int32_t setting, HAL_STATUS *status) { struct ath_hal_9300 *ahp = AH9300(ah); const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps; u_int32_t v; switch (type) { case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */ if (! p_cap->halTkipMicTxRxKeySupport) return AH_FALSE; if (setting) ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA; else ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode); return AH_TRUE; case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */ if (setting) { ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE; } else { ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE; } return AH_TRUE; case HAL_CAP_DIVERSITY: v = OS_REG_READ(ah, AR_PHY_CCK_DETECT); if (setting) { v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; } else { v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; } OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v); return AH_TRUE; case HAL_CAP_DIAG: /* hardware diagnostic support */ /* * NB: could split this up into virtual capabilities, * (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly * seems worth the additional complexity. */ #ifdef AH_DEBUG AH_PRIVATE(ah)->ah_diagreg = setting; #else AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */ #endif OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); return AH_TRUE; case HAL_CAP_TPC: ah->ah_config.ath_hal_desc_tpc = (setting != 0); return AH_TRUE; case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */ if (setting) { ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH; } else { ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH; } return AH_TRUE; case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */ if (p_cap->halTsfAddSupport) { if (setting) { ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF; } else { ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF; } return AH_TRUE; } return AH_FALSE; /* FreeBSD interrupt mitigation / ANI */ case HAL_CAP_INTMIT: { /* interference mitigation */ /* This maps the public ANI commands to the internal ANI commands */ /* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */ static const HAL_ANI_CMD cmds[] = { HAL_ANI_PRESENT, HAL_ANI_MODE, HAL_ANI_NOISE_IMMUNITY_LEVEL, HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION, HAL_ANI_CCK_WEAK_SIGNAL_THR, HAL_ANI_FIRSTEP_LEVEL, HAL_ANI_SPUR_IMMUNITY_LEVEL, }; #define N(a) (sizeof(a) / sizeof(a[0])) return capability < N(cmds) ? ar9300_ani_control(ah, cmds[capability], setting) : AH_FALSE; #undef N } case HAL_CAP_RXBUFSIZE: /* set MAC receive buffer size */ ahp->rx_buf_size = setting & AR_DATABUF_MASK; OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size); return AH_TRUE; case HAL_CAP_ENFORCE_TXOP: if (capability != 1) return AH_FALSE; if (setting) { ahp->ah_misc_mode |= AR_PCU_TXOP_TBTT_LIMIT_ENA; OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA); } else { ahp->ah_misc_mode &= ~AR_PCU_TXOP_TBTT_LIMIT_ENA; OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA); } return AH_TRUE; /* fall thru... */ default: return ath_hal_setcapability(ah, type, capability, setting, status); } } #ifdef AH_DEBUG static void ar9300_print_reg(struct ath_hal *ah, u_int32_t args) { u_int32_t i = 0; /* Read 0x80d0 to trigger pcie analyzer */ HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0)); if (args & HAL_DIAG_PRINT_REG_COUNTER) { struct ath_hal_9300 *ahp = AH9300(ah); u_int32_t tf, rf, rc, cc; tf = OS_REG_READ(ah, AR_TFCNT); rf = OS_REG_READ(ah, AR_RFCNT); rc = OS_REG_READ(ah, AR_RCCNT); cc = OS_REG_READ(ah, AR_CCCNT); HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf); HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf); HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc); HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc); ahp->last_tf = tf; ahp->last_rf = rf; ahp->last_rc = rc; ahp->last_cc = cc; HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0)); HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1)); HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2)); HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3)); HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4)); HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5)); HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6)); HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7)); } if (args & HAL_DIAG_PRINT_REG_ALL) { for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) { HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", i, OS_REG_READ(ah, i)); } for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) { HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", i, OS_REG_READ(ah, i)); } HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i)); HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i)); for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) { HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", i, OS_REG_READ(ah, i)); } for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) { HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", i, OS_REG_READ(ah, i)); } for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) { HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", i, OS_REG_READ(ah, i)); } for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) { HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", i, OS_REG_READ(ah, i)); } for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) { HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", i, OS_REG_READ(ah, i)); } for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) { HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", i, OS_REG_READ(ah, i)); } for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) { HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", i, OS_REG_READ(ah, i)); } for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) { HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", i, OS_REG_READ(ah, i)); } for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) { HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", i, OS_REG_READ(ah, i)); } for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) { HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", i, OS_REG_READ(ah, i)); } for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) { HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n", i, OS_REG_READ(ah, i)); } } } #endif HAL_BOOL ar9300_get_diag_state(struct ath_hal *ah, int request, const void *args, u_int32_t argsize, void **result, u_int32_t *resultsize) { struct ath_hal_9300 *ahp = AH9300(ah); struct ar9300_ani_state *ani; (void) ahp; if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) { return AH_TRUE; } switch (request) { #ifdef AH_PRIVATE_DIAG case HAL_DIAG_EEPROM: *result = &ahp->ah_eeprom; *resultsize = sizeof(ar9300_eeprom_t); return AH_TRUE; #if 0 /* XXX - TODO */ case HAL_DIAG_EEPROM_EXP_11A: case HAL_DIAG_EEPROM_EXP_11B: case HAL_DIAG_EEPROM_EXP_11G: pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A]; *result = pe->p_channels; *resultsize = (*result == AH_NULL) ? 0 : roundup(sizeof(u_int16_t) * pe->num_channels, sizeof(u_int32_t)) + sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels; return AH_TRUE; #endif case HAL_DIAG_RFGAIN: *result = &ahp->ah_gain_values; *resultsize = sizeof(GAIN_VALUES); return AH_TRUE; case HAL_DIAG_RFGAIN_CURSTEP: *result = (void *) ahp->ah_gain_values.curr_step; *resultsize = (*result == AH_NULL) ? 0 : sizeof(GAIN_OPTIMIZATION_STEP); return AH_TRUE; #if 0 /* XXX - TODO */ case HAL_DIAG_PCDAC: *result = ahp->ah_pcdac_table; *resultsize = ahp->ah_pcdac_table_size; return AH_TRUE; #endif case HAL_DIAG_ANI_CURRENT: ani = ar9300_ani_get_current_state(ah); if (ani == AH_NULL) return AH_FALSE; /* Convert ar9300 HAL to FreeBSD HAL ANI state */ /* XXX TODO: add all of these to the HAL ANI state structure */ bzero(&ahp->ext_ani_state, sizeof(ahp->ext_ani_state)); /* XXX should this be OFDM or CCK noise immunity level? */ ahp->ext_ani_state.noiseImmunityLevel = ani->ofdm_noise_immunity_level; ahp->ext_ani_state.spurImmunityLevel = ani->spur_immunity_level; ahp->ext_ani_state.firstepLevel = ani->firstep_level; ahp->ext_ani_state.ofdmWeakSigDetectOff = ani->ofdm_weak_sig_detect_off; /* mrc_cck_off */ /* cck_noise_immunity_level */ ahp->ext_ani_state.listenTime = ani->listen_time; *result = &ahp->ext_ani_state; *resultsize = sizeof(ahp->ext_ani_state); #if 0 *result = ar9300_ani_get_current_state(ah); *resultsize = (*result == AH_NULL) ? 0 : sizeof(struct ar9300_ani_state); #endif return AH_TRUE; case HAL_DIAG_ANI_STATS: *result = ar9300_ani_get_current_stats(ah); *resultsize = (*result == AH_NULL) ? 0 : sizeof(HAL_ANI_STATS); return AH_TRUE; case HAL_DIAG_ANI_CMD: if (argsize != 2*sizeof(u_int32_t)) { return AH_FALSE; } ar9300_ani_control( ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]); return AH_TRUE; #if 0 case HAL_DIAG_TXCONT: /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/ return AH_TRUE; #endif /* 0 */ #endif /* AH_PRIVATE_DIAG */ case HAL_DIAG_CHANNELS: #if 0 *result = &(ahp->ah_priv.ah_channels[0]); *resultsize = sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan; #endif return AH_TRUE; #ifdef AH_DEBUG case HAL_DIAG_PRINT_REG: ar9300_print_reg(ah, *((const u_int32_t *)args)); return AH_TRUE; #endif default: break; } return AH_FALSE; } void ar9300_dma_reg_dump(struct ath_hal *ah) { #ifdef AH_DEBUG #define NUM_DMA_DEBUG_REGS 8 #define NUM_QUEUES 10 u_int32_t val[NUM_DMA_DEBUG_REGS]; int qcu_offset = 0, dcu_offset = 0; u_int32_t *qcu_base = &val[0], *dcu_base = &val[4], reg; int i, j, k; int16_t nfarray[HAL_NUM_NF_READINGS]; #ifdef ATH_NF_PER_CHAN HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan); #endif /* ATH_NF_PER_CHAN */ HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan); /* selecting DMA OBS 8 */ OS_REG_WRITE(ah, AR_MACMISC, ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) | (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S))); ath_hal_printf(ah, "Raw DMA Debug values:\n"); for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) { if (i % 4 == 0) { ath_hal_printf(ah, "\n"); } val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t))); ath_hal_printf(ah, "%d: %08x ", i, val[i]); } ath_hal_printf(ah, "\n\n"); ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n"); for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) { if (i == 8) { /* only 8 QCU entries in val[0] */ qcu_offset = 0; qcu_base++; } if (i == 6) { /* only 6 DCU entries in val[4] */ dcu_offset = 0; dcu_base++; } ath_hal_printf(ah, "%2d %2x %1x %2x %2x\n", i, (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset, (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3), val[2] & (0x7 << (i * 3)) >> (i * 3), (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset); } ath_hal_printf(ah, "\n"); ath_hal_printf(ah, "qcu_stitch state: %2x qcu_fetch state: %2x\n", (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22); ath_hal_printf(ah, "qcu_complete state: %2x dcu_complete state: %2x\n", (val[3] & 0x1c000000) >> 26, (val[6] & 0x3)); ath_hal_printf(ah, "dcu_arb state: %2x dcu_fp state: %2x\n", (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27); ath_hal_printf(ah, "chan_idle_dur: %3d chan_idle_dur_valid: %1d\n", (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10); ath_hal_printf(ah, "txfifo_valid_0: %1d txfifo_valid_1: %1d\n", (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12); ath_hal_printf(ah, "txfifo_dcu_num_0: %2d txfifo_dcu_num_1: %2d\n", (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17); ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1)); ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR)); ar9300_upload_noise_floor(ah, 1, nfarray); ath_hal_printf(ah, "2G:\n"); ath_hal_printf(ah, "Min CCA Out:\n"); ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n"); ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n", nfarray[0], nfarray[1], nfarray[2]); ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n", nfarray[3], nfarray[4], nfarray[5]); ar9300_upload_noise_floor(ah, 0, nfarray); ath_hal_printf(ah, "5G:\n"); ath_hal_printf(ah, "Min CCA Out:\n"); ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n"); ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n", nfarray[0], nfarray[1], nfarray[2]); ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n", nfarray[3], nfarray[4], nfarray[5]); for (i = 0; i < HAL_NUM_NF_READINGS; i++) { ath_hal_printf(ah, "%s Chain %d NF History:\n", ((i < 3) ? "Control " : "Extension "), i%3); for (j = 0, k = h->base.curr_index; j < HAL_NF_CAL_HIST_LEN_FULL; j++, k++) { ath_hal_printf(ah, "Element %d: %d\n", j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]); } ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]); } reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW); ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n", MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW), MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW)); reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ); ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n", MS(reg, AR_PHY_DESIRED_SZ_TOT_DES), MS(reg, AR_PHY_DESIRED_SZ_TOT_DES)); ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n", MS(reg, AR_PHY_DESIRED_SZ_ADC), MS(reg, AR_PHY_DESIRED_SZ_ADC)); reg = OS_REG_READ(ah, AR_PHY_FIND_SIG); ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n", MS(reg, AR_PHY_FIND_SIG_FIRSTEP), MS(reg, AR_PHY_FIND_SIG_FIRSTEP)); reg = OS_REG_READ(ah, AR_PHY_AGC); ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n", MS(reg, AR_PHY_AGC_COARSE_HIGH), MS(reg, AR_PHY_AGC_COARSE_HIGH)); ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n", MS(reg, AR_PHY_AGC_COARSE_LOW), MS(reg, AR_PHY_AGC_COARSE_LOW)); ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n", MS(reg, AR_PHY_AGC_COARSE_PWR_CONST), MS(reg, AR_PHY_AGC_COARSE_PWR_CONST)); reg = OS_REG_READ(ah, AR_PHY_TIMING5); ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n", MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE)); ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n", MS(reg, AR_PHY_TIMING5_CYCPWR_THR1), MS(reg, AR_PHY_TIMING5_CYCPWR_THR1)); ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n", MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A), MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A)); reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK); ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n", MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR)); ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n", MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR), MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR)); /* Step 1a: Set bit 23 of register 0xa360 to 0 */ reg = OS_REG_READ(ah, 0xa360); reg &= ~0x00800000; OS_REG_WRITE(ah, 0xa360, reg); /* Step 2a: Set register 0xa364 to 0x1000 */ reg = 0x1000; OS_REG_WRITE(ah, 0xa364, reg); /* Step 3a: Read bits 17:0 of register 0x9c20 */ reg = OS_REG_READ(ah, 0x9c20); reg &= 0x0003ffff; ath_hal_printf(ah, "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n", __func__, reg); /* Step 1b: Set bit 23 of register 0xa360 to 0 */ reg = OS_REG_READ(ah, 0xa360); reg &= ~0x00800000; OS_REG_WRITE(ah, 0xa360, reg); /* Step 2b: Set register 0xa364 to 0x1400 */ reg = 0x1400; OS_REG_WRITE(ah, 0xa364, reg); /* Step 3b: Read bits 17:0 of register 0x9c20 */ reg = OS_REG_READ(ah, 0x9c20); reg &= 0x0003ffff; ath_hal_printf(ah, "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n", __func__, reg); /* Step 1c: Set bit 23 of register 0xa360 to 0 */ reg = OS_REG_READ(ah, 0xa360); reg &= ~0x00800000; OS_REG_WRITE(ah, 0xa360, reg); /* Step 2c: Set register 0xa364 to 0x3C00 */ reg = 0x3c00; OS_REG_WRITE(ah, 0xa364, reg); /* Step 3c: Read bits 17:0 of register 0x9c20 */ reg = OS_REG_READ(ah, 0x9c20); reg &= 0x0003ffff; ath_hal_printf(ah, "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n", __func__, reg); /* Step 1d: Set bit 24 of register 0xa360 to 0 */ reg = OS_REG_READ(ah, 0xa360); reg &= ~0x001040000; OS_REG_WRITE(ah, 0xa360, reg); /* Step 2d: Set register 0xa364 to 0x5005D */ reg = 0x5005D; OS_REG_WRITE(ah, 0xa364, reg); /* Step 3d: Read bits 17:0 of register 0xa368 */ reg = OS_REG_READ(ah, 0xa368); reg &= 0x0003ffff; ath_hal_printf(ah, "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n", __func__, reg); /* Step 1e: Set bit 24 of register 0xa360 to 0 */ reg = OS_REG_READ(ah, 0xa360); reg &= ~0x001040000; OS_REG_WRITE(ah, 0xa360, reg); /* Step 2e: Set register 0xa364 to 0x7005D */ reg = 0x7005D; OS_REG_WRITE(ah, 0xa364, reg); /* Step 3e: Read bits 17:0 of register 0xa368 */ reg = OS_REG_READ(ah, 0xa368); reg &= 0x0003ffff; ath_hal_printf(ah, "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n", __func__, reg); /* Step 1f: Set bit 24 of register 0xa360 to 0 */ reg = OS_REG_READ(ah, 0xa360); reg &= ~0x001000000; reg |= 0x40000; OS_REG_WRITE(ah, 0xa360, reg); /* Step 2f: Set register 0xa364 to 0x3005D */ reg = 0x3005D; OS_REG_WRITE(ah, 0xa364, reg); /* Step 3f: Read bits 17:0 of register 0xa368 */ reg = OS_REG_READ(ah, 0xa368); reg &= 0x0003ffff; ath_hal_printf(ah, "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n", __func__, reg); /* Step 1g: Set bit 24 of register 0xa360 to 0 */ reg = OS_REG_READ(ah, 0xa360); reg &= ~0x001000000; reg |= 0x40000; OS_REG_WRITE(ah, 0xa360, reg); /* Step 2g: Set register 0xa364 to 0x6005D */ reg = 0x6005D; OS_REG_WRITE(ah, 0xa364, reg); /* Step 3g: Read bits 17:0 of register 0xa368 */ reg = OS_REG_READ(ah, 0xa368); reg &= 0x0003ffff; ath_hal_printf(ah, "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n", __func__, reg); #endif /* AH_DEBUG */ } /* * Return the busy for rx_frame, rx_clear, and tx_frame */ u_int32_t ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt, u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt) { struct ath_hal_9300 *ahp = AH9300(ah); u_int32_t good = 1; u_int32_t rc = OS_REG_READ(ah, AR_RCCNT); u_int32_t rf = OS_REG_READ(ah, AR_RFCNT); u_int32_t tf = OS_REG_READ(ah, AR_TFCNT); u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */ if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) { /* * Cycle counter wrap (or initial call); it's not possible * to accurately calculate a value because the registers * right shift rather than wrap--so punt and return 0. */ HALDEBUG(ah, HAL_DEBUG_CHANNEL, "%s: cycle counter wrap. ExtBusy = 0\n", __func__); good = 0; } else { u_int32_t cc_d = cc - ahp->ah_cycles; u_int32_t rc_d = rc - ahp->ah_rx_clear; u_int32_t rf_d = rf - ahp->ah_rx_frame; u_int32_t tf_d = tf - ahp->ah_tx_frame; if (cc_d != 0) { *rxc_pcnt = rc_d * 100 / cc_d; *rxf_pcnt = rf_d * 100 / cc_d; *txf_pcnt = tf_d * 100 / cc_d; } else { good = 0; } } ahp->ah_cycles = cc; ahp->ah_rx_frame = rf; ahp->ah_rx_clear = rc; ahp->ah_tx_frame = tf; return good; } /* * Return approximation of extension channel busy over an time interval * 0% (clear) -> 100% (busy) * -1 for invalid estimate */ uint32_t ar9300_get_11n_ext_busy(struct ath_hal *ah) { /* * Overflow condition to check before multiplying to get % * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28) */ #define OVERFLOW_LIMIT 0x28F5C28 #define ERROR_CODE -1 struct ath_hal_9300 *ahp = AH9300(ah); u_int32_t busy = 0; /* percentage */ int8_t busyper = 0; u_int32_t cycle_count, ctl_busy, ext_busy; /* cycle_count will always be the first to wrap; therefore, read it last * This sequence of reads is not atomic, and MIB counter wrap * could happen during it ? */ ctl_busy = OS_REG_READ(ah, AR_RCCNT); ext_busy = OS_REG_READ(ah, AR_EXTRCCNT); cycle_count = OS_REG_READ(ah, AR_CCCNT); if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) || (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy)) { /* * Cycle counter wrap (or initial call); it's not possible * to accurately calculate a value because the registers * right shift rather than wrap--so punt and return 0. */ busyper = ERROR_CODE; HALDEBUG(ah, HAL_DEBUG_CHANNEL, "%s: cycle counter wrap. ExtBusy = 0\n", __func__); } else { u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count; u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy; /* * Compute extension channel busy percentage * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100 * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0 * Will never happen, since (ext_busy_delta < cycle_delta) always, * and shift necessitated by large ext_busy_delta. * Due to timing difference to read the registers and counter overflow, * it may still happen that cycle_delta >> 7 = 0. * */ if (cycle_delta) { if (ext_busy_delta > OVERFLOW_LIMIT) { if (cycle_delta >> 7) { busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta >> 7); } else { busyper = ERROR_CODE; } } else { busy = (ext_busy_delta * 100) / cycle_delta; } } else { busyper = ERROR_CODE; } if (busy > 100) { busy = 100; } if ( busyper != ERROR_CODE ) { busyper = busy; } } ahp->ah_cycle_count = cycle_count; ahp->ah_ctl_busy = ctl_busy; ahp->ah_ext_busy = ext_busy; return busyper; #undef OVERFLOW_LIMIT #undef ERROR_CODE } /* BB Panic Watchdog declarations */ #define HAL_BB_PANIC_WD_HT20_FACTOR 74 /* 0.74 */ #define HAL_BB_PANIC_WD_HT40_FACTOR 37 /* 0.37 */ void ar9300_config_bb_panic_watchdog(struct ath_hal *ah) { #define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000 const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms; u_int32_t val, idle_count; if (idle_tmo_ms != 0) { /* enable IRQ, disable chip-reset for BB panic */ val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) & AR_PHY_BB_PANIC_CNTL2_MASK; OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2, (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE); /* bound limit to 10 secs */ if (idle_tmo_ms > 10000) { idle_tmo_ms = 10000; } if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) { idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR; } else { idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR; } /* * enable panic in non-IDLE mode, * disable in IDLE mode, * set idle time-out */ // EV92527 : Enable IDLE mode panic OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1, AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE | (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) | (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2))); } else { /* disable IRQ, disable chip-reset for BB panic */ OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2, OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) & ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE)); /* disable panic in non-IDLE mode, disable in IDLE mode */ OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1, OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) & ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE)); } HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n", __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms); #undef HAL_BB_PANIC_IDLE_TIME_OUT } void ar9300_handle_bb_panic(struct ath_hal *ah) { u_int32_t status; /* * we want to avoid printing in ISR context so we save * panic watchdog status to be printed later in DPC context */ AH9300(ah)->ah_bb_panic_last_status = status = OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS); /* * panic watchdog timer should reset on status read * but to make sure we write 0 to the watchdog status bit */ OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR); } int ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic) { bb_panic->status = AH9300(ah)->ah_bb_panic_last_status; /* * For signature 04000539 do not print anything. * This is a very common occurence as a compromise between * BB Panic and AH_FALSE detects (EV71009). It indicates * radar hang, which can be cleared by reprogramming * radar related register and does not requre a chip reset */ /* Suppress BB Status mesg following signature */ switch (bb_panic->status) { case 0x04000539: case 0x04008009: case 0x04000b09: case 0x1300000a: return -1; } bb_panic->tsf = ar9300_get_tsf32(ah); bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS); bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG); bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM); bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM); bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM); bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM); bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM); bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM); bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM); bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1); bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2); bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL); bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0; bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah, &bb_panic->rxc_pcnt, &bb_panic->rxf_pcnt, &bb_panic->txf_pcnt); if (ah->ah_config.ath_hal_show_bb_panic) { ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, " "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf); ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d " "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n", bb_panic->wd, bb_panic->det, bb_panic->rdar, bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm, bb_panic->t_cck, bb_panic->agc, bb_panic->src); ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n", bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2); ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n", bb_panic->phy_gen_ctrl); if (bb_panic->cycles) { ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, " "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt, bb_panic->rxf_pcnt, bb_panic->txf_pcnt); } ath_hal_printf(ah, "==== BB update: done ====\n\n"); } return 0; //The returned data will be stored for athstats to retrieve it } /* set the reason for HAL reset */ void ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason) { AH9300(ah)->ah_reset_reason = resetreason; } /* * Configure 20/40 operation * * 20/40 = joint rx clear (control and extension) * 20 = rx clear (control) * * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz * when changing from 20/40 => 20 only */ void ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode) { u_int32_t macmode; /* Configure MAC for 20/40 operation */ if (mode == HAL_HT_MACMODE_2040 && !ah->ah_config.ath_hal_cwm_ignore_ext_cca) { macmode = AR_2040_JOINED_RX_CLEAR; } else { macmode = 0; } OS_REG_WRITE(ah, AR_2040_MODE, macmode); } /* * Get Rx clear (control/extension channel) * * Returns active low (busy) for ctrl/ext channel * Owl 2.0 */ HAL_HT_RXCLEAR ar9300_get_11n_rx_clear(struct ath_hal *ah) { HAL_HT_RXCLEAR rxclear = 0; u_int32_t val; val = OS_REG_READ(ah, AR_DIAG_SW); /* control channel */ if (val & AR_DIAG_RX_CLEAR_CTL_LOW) { rxclear |= HAL_RX_CLEAR_CTL_LOW; } /* extension channel */ if (val & AR_DIAG_RX_CLEAR_EXT_LOW) { rxclear |= HAL_RX_CLEAR_EXT_LOW; } return rxclear; } /* * Set Rx clear (control/extension channel) * * Useful for forcing the channel to appear busy for * debugging/diagnostics * Owl 2.0 */ void ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear) { /* control channel */ if (rxclear & HAL_RX_CLEAR_CTL_LOW) { OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW); } else { OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW); } /* extension channel */ if (rxclear & HAL_RX_CLEAR_EXT_LOW) { OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW); } else { OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW); } } /* * HAL support code for force ppm tracking workaround. */ u_int32_t ar9300_ppm_get_rssi_dump(struct ath_hal *ah) { u_int32_t retval; u_int32_t off1; u_int32_t off2; if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) { off1 = 0x2000; off2 = 0x1000; } else { off1 = 0x1000; off2 = 0x2000; } retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 )) << 0) | ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) | ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16); return retval; } u_int32_t ar9300_ppm_force(struct ath_hal *ah) { u_int32_t data_fine; u_int32_t data4; //u_int32_t off1; //u_int32_t off2; HAL_BOOL signed_val = AH_FALSE; // if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) { // off1 = 0x2000; // off2 = 0x1000; // } else { // off1 = 0x1000; // off2 = 0x2000; // } data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK & OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF); /* * bit [11-0] is new ppm value. bit 11 is the signed bit. * So check value from bit[10:0]. * Now get the abs val of the ppm value read in bit[0:11]. * After that do bound check on abs value. * if value is off limit, CAP the value and and restore signed bit. */ if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT) { /* get the positive value */ data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK; signed_val = AH_TRUE; } if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT) { HALDEBUG(ah, HAL_DEBUG_REGIO, "%s Correcting ppm out of range %x\n", __func__, (data_fine & 0x7ff)); data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT; } /* * Restore signed value if changed above. * Use typecast to avoid compilation errors */ if (signed_val) { data_fine = (-(int32_t)data_fine) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK; } /* write value */ data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL); OS_REG_WRITE(ah, AR_PHY_TIMING2, data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM); return data_fine; } void ar9300_ppm_un_force(struct ath_hal *ah) { u_int32_t data4; data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM; OS_REG_WRITE(ah, AR_PHY_TIMING2, data4); } u_int32_t ar9300_ppm_arm_trigger(struct ath_hal *ah) { u_int32_t val; u_int32_t ret; val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY); ret = OS_REG_READ(ah, AR_TSF_L32); OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY, val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK); /* return low word of TSF at arm time */ return ret; } int ar9300_ppm_get_trigger(struct ath_hal *ah) { if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) & AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK) { /* has not triggered yet, return AH_FALSE */ return 0; } /* else triggered, return AH_TRUE */ return 1; } void ar9300_mark_phy_inactive(struct ath_hal *ah) { OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); } /* DEBUG */ u_int32_t ar9300_ppm_get_force_state(struct ath_hal *ah) { return OS_REG_READ(ah, AR_PHY_TIMING2) & (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL); } /* * Return the Cycle counts for rx_frame, rx_clear, and tx_frame */ HAL_BOOL ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs) { /* * XXX FreeBSD todo: reimplement this */ #if 0 p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT); p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT); p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT); p_cnts->cycle_count = OS_REG_READ(ah, AR_CCCNT); p_cnts->is_tx_active = (OS_REG_READ(ah, AR_TFCNT) == p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE; p_cnts->is_rx_active = (OS_REG_READ(ah, AR_RFCNT) == p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE; #endif return AH_FALSE; } void ar9300_clear_mib_counters(struct ath_hal *ah) { u_int32_t reg_val; reg_val = OS_REG_READ(ah, AR_MIBC); OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC); OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC); } /* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */ HAL_BOOL ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable) { struct ath_hal_9300 *ahp = AH9300(ah); HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan); HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan); u_int32_t tmp = 0; if (enable) { if (ahp->ah_rifs_enabled == AH_TRUE) { return AH_TRUE; } OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]); OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH, ahp->ah_rifs_reg[1]); ahp->ah_rifs_enabled = AH_TRUE; OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg)); } else { if (ahp->ah_rifs_enabled == AH_TRUE) { ahp->ah_rifs_reg[0] = OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY); ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH); } /* Change rifs init delay to 0 */ OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH, (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY))); tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY); if (is_chan_2g) { if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) { OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500); } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */ OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250); } } else { if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) { OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370); } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */ OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8); } } ahp->ah_rifs_enabled = AH_FALSE; } return AH_TRUE; } /* ar9300_set_rifs_delay () */ /* Set the current RIFS Rx setting */ HAL_BOOL ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable) { /* Non-Owl 11n chips */ if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) { if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) { return ar9300_set_rifs_delay(ah, enable); } return AH_FALSE; } return AH_TRUE; } /* ar9300_set_11n_rx_rifs () */ static hal_mac_hangs_t ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg, hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain) { int i = 0; hal_mac_hangs_t found_hangs = 0; if (hangs & dcu_chain_state) { for (i = 0; i < 6; i++) { if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) == hang_check.dcu_chain_state) { found_hangs |= dcu_chain_state; *dcu_chain = i; } } for (i = 0; i < 4; i++) { if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) == hang_check.dcu_chain_state) { found_hangs |= dcu_chain_state; *dcu_chain = i + 6; } } } if (hangs & dcu_complete_state) { if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) { found_hangs |= dcu_complete_state; } } return found_hangs; } /* end - ar9300_compare_dbg_hang */ #define NUM_STATUS_READS 50 HAL_BOOL ar9300_detect_mac_hang(struct ath_hal *ah) { struct ath_hal_9300 *ahp = AH9300(ah); mac_dbg_regs_t mac_dbg; hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0}; hal_mac_hangs_t hang_sig1 = (dcu_chain_state | dcu_complete_state); int i = 0; u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val; if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) { return AH_FALSE; } OS_MEMZERO(&mac_dbg, sizeof(mac_dbg)); mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4); mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5); mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6); HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n", mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5, mac_dbg.dma_dbg_6); if (hang_sig1 != ar9300_compare_dbg_hang(ah, mac_dbg, hang_sig1_val, hang_sig1, &dcu_chain)) { HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n"); return AH_FALSE; } shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain); shift_val *= 5; for (i = 1; i <= NUM_STATUS_READS; i++) { if (dcu_chain < 6) { mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4); current_dcu_chain_state = ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f); } else { mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5); current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f); } mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6); if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state) || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) { return AH_FALSE; } } HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__, ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]); ahp->ah_hang[MAC_HANG_SIG1]++; return AH_TRUE; } /* end - ar9300_detect_mac_hang */ /* Determine if the baseband is hung by reading the Observation Bus Register */ HAL_BOOL ar9300_detect_bb_hang(struct ath_hal *ah) { #define N(a) (sizeof(a) / sizeof(a[0])) struct ath_hal_9300 *ahp = AH9300(ah); u_int32_t hang_sig = 0; int i = 0; /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times * * 4 known BB hang signatures - * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52 * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18 * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2, * Rx State (bits 20-24) is 0x7. */ hal_hw_hang_check_t hang_list [] = { /* Offset Reg Value Reg Mask Hang Offset */ {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1}, {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2}, {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3}, {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4} }; if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR | HAL_DFS_BB_HANG_WAR | HAL_RX_STUCK_LOW_BB_HANG_WAR))) { return AH_FALSE; } hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1); for (i = 1; i <= NUM_STATUS_READS; i++) { if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) { return AH_FALSE; } } for (i = 0; i < N(hang_list); i++) { if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) { ahp->ah_hang[hang_list[i].hang_offset]++; HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d " "sig3count=%d sig4count=%d\n", __func__, ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2], ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]); return AH_TRUE; } } HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! " "<0x806c>=0x%x\n", __func__, hang_sig); return AH_FALSE; #undef N } /* end - ar9300_detect_bb_hang () */ #undef NUM_STATUS_READS HAL_STATUS ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg) { struct ath_hal_9300 *ahp = AH9300(ah); const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps; u_int16_t ant_config; u_int32_t hal_num_ant_config; hal_num_ant_config = IS_CHAN_2GHZ(ichan) ? p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz; if (cfg < hal_num_ant_config) { if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) { OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config); return HAL_OK; } } return HAL_EINVAL; } /* * Functions to get/set DCS mode */ void ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode) { AH9300(ah)->ah_dcs_enable = mode; } u_int32_t ar9300_get_dcs_mode(struct ath_hal *ah) { return AH9300(ah)->ah_dcs_enable; } #if ATH_BT_COEX void ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo) { struct ath_hal_9300 *ahp = AH9300(ah); ahp->ah_bt_module = btinfo->bt_module; ahp->ah_bt_coex_config_type = btinfo->bt_coex_config; ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active; ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority; ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active; ahp->ah_bt_active_polarity = btinfo->bt_active_polarity; ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant; ahp->ah_bt_wlan_isolation = btinfo->bt_isolation; } void ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf) { struct ath_hal_9300 *ahp = AH9300(ah); HAL_BOOL rx_clear_polarity; /* * For Kiwi and Osprey, the polarity of rx_clear is active high. * The bt_rxclear_polarity flag from ath_dev needs to be inverted. */ rx_clear_polarity = !btconf->bt_rxclear_polarity; ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) | SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) | SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) | SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) | SM(btconf->bt_mode, AR_BT_MODE) | SM(btconf->bt_quiet_collision, AR_BT_QUIET) | SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) | SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) | SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME); ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR); if (ahp->ah_bt_coex_single_ant == AH_FALSE) { /* Enable ACK to go out even though BT has higher priority. */ ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT; } } void ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum) { struct ath_hal_9300 *ahp = AH9300(ah); /* clear the old value, then set the new value */ ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH; ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH); } void ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type) { struct ath_hal_9300 *ahp = AH9300(ah); ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT; ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT; ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT; ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT; switch (stomp_type) { case HAL_BT_COEX_STOMP_ALL: ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0; ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1; break; case HAL_BT_COEX_STOMP_LOW: ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0; ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1; break; case HAL_BT_COEX_STOMP_ALL_FORCE: ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0; ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1; break; case HAL_BT_COEX_STOMP_LOW_FORCE: ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0; ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1; break; case HAL_BT_COEX_STOMP_NONE: case HAL_BT_COEX_NO_STOMP: ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0; ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1; break; default: /* There is a force_weight from registry */ ahp->ah_bt_coex_wlan_weight[0] = stomp_type; ahp->ah_bt_coex_wlan_weight[1] = stomp_type; break; } } void ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh) { struct ath_hal_9300 *ahp = AH9300(ah); /* clear the old value, then set the new value */ ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH; ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH); } static void ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value) { struct ath_hal_9300 *ahp = AH9300(ah); #if ATH_ANT_DIV_COMB //struct ath_hal_private *ahpriv = AH_PRIVATE(ah); const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; #endif HALDEBUG(ah, HAL_DEBUG_BT_COEX, "%s: called, value=%d\n", __func__, value); if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW) { if (ahp->ah_diversity_control == HAL_ANT_VARIABLE) { /* Config antenna diversity */ #if ATH_ANT_DIV_COMB ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan); #endif } } } void ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type, u_int32_t value) { struct ath_hal_9300 *ahp = AH9300(ah); struct ath_hal_private *ahpriv = AH_PRIVATE(ah); switch (type) { case HAL_BT_COEX_SET_ACK_PWR: if (value) { ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR; } else { ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR; } ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit, ahpriv->ah_extraTxPow, 0); break; case HAL_BT_COEX_ANTENNA_DIVERSITY: if (AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) { ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW; if (value) { ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE; } else { ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE; } ar9300_bt_coex_antenna_diversity(ah, value); } break; case HAL_BT_COEX_LOWER_TX_PWR: if (value) { ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR; } else { ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR; } ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit, ahpriv->ah_extraTxPow, 0); break; #if ATH_SUPPORT_MCI case HAL_BT_COEX_MCI_MAX_TX_PWR: if ((ah->ah_config.ath_hal_mci_config & ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN) { if (value) { ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR; ahp->ah_mci_concur_tx_en = AH_TRUE; } else { ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR; ahp->ah_mci_concur_tx_en = AH_FALSE; } ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit, ahpriv->ah_extraTxPow, 0); } HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n", ahp->ah_mci_concur_tx_en); break; case HAL_BT_COEX_MCI_FTP_STOMP_RX: if (value) { ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX; } else { ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX; } break; #endif default: break; } } void ar9300_bt_coex_disable(struct ath_hal *ah) { struct ath_hal_9300 *ahp = AH9300(ah); /* Always drive rx_clear_external output as 0 */ ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select, HAL_GPIO_OUTPUT_MUX_AS_OUTPUT); if (ahp->ah_bt_coex_single_ant == AH_TRUE) { OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1); OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0); } OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE); OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0); OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0); OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0); OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0); OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0); OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0); OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0); ahp->ah_bt_coex_enabled = AH_FALSE; } int ar9300_bt_coex_enable(struct ath_hal *ah) { struct ath_hal_9300 *ahp = AH9300(ah); /* Program coex mode and weight registers to actually enable coex */ OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode); OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2); OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]); OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]); OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]); OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]); OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]); OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]); if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) { OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER); } else { OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER); } OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1); if (ahp->ah_bt_coex_single_ant == AH_TRUE) { OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1); } else { OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0); } if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) { /* For 3-wire, configure the desired GPIO port for rx_clear */ ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select, HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE); } else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) && (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0)) { /* For 2-wire, configure the desired GPIO port for TX_FRAME output */ ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select, HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME); } /* * Enable a weak pull down on BT_ACTIVE. * When BT device is disabled, BT_ACTIVE might be floating. */ OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU), (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)), (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2))); ahp->ah_bt_coex_enabled = AH_TRUE; return 0; } u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg) { return 0; } u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn) { return bOn; } void ar9300_init_bt_coex(struct ath_hal *ah) { struct ath_hal_9300 *ahp = AH9300(ah); if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) { OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL), (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB | AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB)); /* * Set input mux for bt_prority_async and * bt_active_async to GPIO pins */ OS_REG_RMW_FIELD(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1), AR_GPIO_INPUT_MUX1_BT_ACTIVE, ahp->ah_bt_active_gpio_select); OS_REG_RMW_FIELD(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1), AR_GPIO_INPUT_MUX1_BT_PRIORITY, ahp->ah_bt_priority_gpio_select); /* Configure the desired GPIO ports for input */ ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select); ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select); if (ahp->ah_bt_coex_enabled) { ar9300_bt_coex_enable(ah); } else { ar9300_bt_coex_disable(ah); } } else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) && (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0)) { /* 2-wire */ if (ahp->ah_bt_coex_enabled) { /* Connect bt_active_async to baseband */ OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL), (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF | AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF)); OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL), AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB); /* * Set input mux for bt_prority_async and * bt_active_async to GPIO pins */ OS_REG_RMW_FIELD(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1), AR_GPIO_INPUT_MUX1_BT_ACTIVE, ahp->ah_bt_active_gpio_select); /* Configure the desired GPIO ports for input */ ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select); /* Enable coexistence on initialization */ ar9300_bt_coex_enable(ah); } } #if ATH_SUPPORT_MCI else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) { if (ahp->ah_bt_coex_enabled) { ar9300_mci_bt_coex_enable(ah); } else { ar9300_mci_bt_coex_disable(ah); } } #endif /* ATH_SUPPORT_MCI */ } #endif /* ATH_BT_COEX */ HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable) { u_int32_t val; int wasp_mm_rev; #define AR_SOC_RST_REVISION_ID 0xB8060090 #define REG_READ(_reg) *((volatile u_int32_t *)(_reg)) wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) & AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >> AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT; #undef AR_SOC_RST_REVISION_ID #undef REG_READ /* * Azimuth (ProxySTA) Mode is only supported correctly by * Peacock or WASP 1.3.0.1 or later (hopefully) chips. * * Enable this feature for Scorpion at this time. The silicon * still needs to be validated. */ if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) && !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) && !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) && ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) || (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 && wasp_mm_rev >= 0 /* 1 */)))) { HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, " "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n", __func__, AH_PRIVATE((ah))->ah_macVersion, AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev); return HAL_ENOTSUPP; } OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996); /* turn on mode bit[24] for proxy sta */ OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA); val = OS_REG_READ(ah, AR_AZIMUTH_MODE); if (enable) { val |= AR_AZIMUTH_KEY_SEARCH_AD1 | AR_AZIMUTH_CTS_MATCH_TX_AD2 | AR_AZIMUTH_BA_USES_AD1; /* turn off filter pass hold (bit 9) */ val &= ~AR_AZIMUTH_FILTER_PASS_HOLD; } else { val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 | AR_AZIMUTH_CTS_MATCH_TX_AD2 | AR_AZIMUTH_BA_USES_AD1); } OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val); /* enable promiscous mode */ OS_REG_WRITE(ah, AR_RX_FILTER, OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM); /* enable promiscous in azimuth mode */ OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE); OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE); /* turn on filter pass hold (bit 9) */ OS_REG_WRITE(ah, AR_AZIMUTH_MODE, OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD); return HAL_OK; } #if 0 void ar9300_mat_enable(struct ath_hal *ah, int enable) { /* * MAT (s/w ProxySTA) implementation requires to turn off interrupt * mitigation and turn on key search always for better performance. */ struct ath_hal_9300 *ahp = AH9300(ah); struct ath_hal_private *ap = AH_PRIVATE(ah); ahp->ah_intr_mitigation_rx = !enable; if (ahp->ah_intr_mitigation_rx) { /* * Enable Interrupt Mitigation for Rx. * If no build-specific limits for the rx interrupt mitigation * timer have been specified, use conservative defaults. */ #ifndef AH_RIMT_VAL_LAST #define AH_RIMT_LAST_MICROSEC 500 #endif #ifndef AH_RIMT_VAL_FIRST #define AH_RIMT_FIRST_MICROSEC 2000 #endif OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC); OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC); } else { OS_REG_WRITE(ah, AR_RIMT, 0); } ahp->ah_enable_keysearch_always = !!enable; ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always); } #endif void ar9300_enable_tpc(struct ath_hal *ah) { u_int32_t val = 0; ah->ah_config.ath_hal_desc_tpc = 1; /* Enable TPC */ OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1); /* * Disable per chain power reduction since we are already * accounting for this in our calculations */ val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB); if (AR_SREV_WASP(ah)) { OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB, val & AR_PHY_POWER_TX_SUB_2_DISABLE); } else { OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB, val & AR_PHY_POWER_TX_SUB_3_DISABLE); } } /* * ar9300_force_tsf_sync * This function forces the TSF sync to the given bssid, this is implemented * as a temp hack to get the AoW demo, and is primarily used in the WDS client * mode of operation, where we sync the TSF to RootAP TSF values */ void ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid, u_int16_t assoc_id) { ar9300_set_operating_mode(ah, HAL_M_STA); ar9300_write_associd(ah, bssid, assoc_id); } void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi) { struct ath_hal_9300 *ahp = AH9300(ah); u_int32_t temp_obdb_reg_val = 0, temp_tcp_reg_val; u_int32_t temp_powertx_rate9_reg_val; int8_t olpc_power_offset = 0; int8_t tmp_olpc_val = 0; HAL_RSSI_TX_POWER old_greentx_status; u_int8_t target_power_val_t[ar9300_rate_size]; int8_t tmp_rss1_thr1, tmp_rss1_thr2; if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) || !ah->ah_config.ath_hal_sta_update_tx_pwr_enable) { return; } old_greentx_status = AH9300(ah)->green_tx_status; if (ahp->ah_hw_green_tx_enable) { tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB; tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB; } else { tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB; tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB; } if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1) && (rssi > tmp_rss1_thr1)) { if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) { AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT; } } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2 && (rssi > tmp_rss1_thr2)) { if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) { AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE; } } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) { if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) { AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG; } } /* If status is not change, don't do anything */ if (old_greentx_status == AH9300(ah)->green_tx_status) { return; } /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */ if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE) && AR_SREV_POSEIDON(ah)) { if (ahp->ah_hw_green_tx_enable) { switch (AH9300(ah)->green_tx_status) { case HAL_RSSI_TX_POWER_SHORT: /* 1. TxPower Config */ OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short, sizeof(target_power_val_t)); /* 1.1 Store OLPC Delta Calibration Offset*/ olpc_power_offset = 0; /* 2. Store OB/DB */ /* 3. Store TPC settting */ temp_tcp_reg_val = (SM(14, AR_TPC_ACK) | SM(14, AR_TPC_CTS) | SM(14, AR_TPC_CHIRP) | SM(14, AR_TPC_RPT)); /* 4. Store BB_powertx_rate9 value */ temp_powertx_rate9_reg_val = AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE; break; case HAL_RSSI_TX_POWER_MIDDLE: /* 1. TxPower Config */ OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle, sizeof(target_power_val_t)); /* 1.1 Store OLPC Delta Calibration Offset*/ olpc_power_offset = 0; /* 2. Store OB/DB */ /* 3. Store TPC settting */ temp_tcp_reg_val = (SM(18, AR_TPC_ACK) | SM(18, AR_TPC_CTS) | SM(18, AR_TPC_CHIRP) | SM(18, AR_TPC_RPT)); /* 4. Store BB_powertx_rate9 value */ temp_powertx_rate9_reg_val = AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE; break; case HAL_RSSI_TX_POWER_LONG: default: /* 1. TxPower Config */ OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power, sizeof(target_power_val_t)); /* 1.1 Store OLPC Delta Calibration Offset*/ olpc_power_offset = 0; /* 2. Store OB/DB1/DB2 */ /* 3. Store TPC settting */ temp_tcp_reg_val = AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC]; /* 4. Store BB_powertx_rate9 value */ temp_powertx_rate9_reg_val = AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9]; break; } } else { switch (AH9300(ah)->green_tx_status) { case HAL_RSSI_TX_POWER_SHORT: /* 1. TxPower Config */ OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short, sizeof(target_power_val_t)); /* 1.1 Store OLPC Delta Calibration Offset*/ olpc_power_offset = wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] - wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE]; /* 2. Store OB/DB */ temp_obdb_reg_val = AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB]; temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G | AR_PHY_65NM_CH0_TXRF2_OB2G_CCK | AR_PHY_65NM_CH0_TXRF2_OB2G_PSK | AR_PHY_65NM_CH0_TXRF2_OB2G_QAM); temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) | SM(WB225_OB_GREEN_TX_SHORT_VALUE, AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) | SM(WB225_OB_GREEN_TX_SHORT_VALUE, AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) | SM(WB225_OB_GREEN_TX_SHORT_VALUE, AR_PHY_65NM_CH0_TXRF2_OB2G_QAM)); /* 3. Store TPC settting */ temp_tcp_reg_val = (SM(6, AR_TPC_ACK) | SM(6, AR_TPC_CTS) | SM(6, AR_TPC_CHIRP) | SM(6, AR_TPC_RPT)); /* 4. Store BB_powertx_rate9 value */ temp_powertx_rate9_reg_val = WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE; break; case HAL_RSSI_TX_POWER_MIDDLE: /* 1. TxPower Config */ OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle, sizeof(target_power_val_t)); /* 1.1 Store OLPC Delta Calibration Offset*/ olpc_power_offset = wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] - wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE]; /* 2. Store OB/DB */ temp_obdb_reg_val = AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB]; temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G | AR_PHY_65NM_CH0_TXRF2_OB2G_CCK | AR_PHY_65NM_CH0_TXRF2_OB2G_PSK | AR_PHY_65NM_CH0_TXRF2_OB2G_QAM); temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) | SM(WB225_OB_GREEN_TX_MIDDLE_VALUE, AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) | SM(WB225_OB_GREEN_TX_MIDDLE_VALUE, AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) | SM(WB225_OB_GREEN_TX_MIDDLE_VALUE, AR_PHY_65NM_CH0_TXRF2_OB2G_QAM)); /* 3. Store TPC settting */ temp_tcp_reg_val = (SM(14, AR_TPC_ACK) | SM(14, AR_TPC_CTS) | SM(14, AR_TPC_CHIRP) | SM(14, AR_TPC_RPT)); /* 4. Store BB_powertx_rate9 value */ temp_powertx_rate9_reg_val = WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE; break; case HAL_RSSI_TX_POWER_LONG: default: /* 1. TxPower Config */ OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power, sizeof(target_power_val_t)); /* 1.1 Store OLPC Delta Calibration Offset*/ olpc_power_offset = wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] - wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE]; /* 2. Store OB/DB1/DB2 */ temp_obdb_reg_val = AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB]; /* 3. Store TPC settting */ temp_tcp_reg_val = AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC]; /* 4. Store BB_powertx_rate9 value */ temp_powertx_rate9_reg_val = AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9]; break; } } /* 1.1 Do OLPC Delta Calibration Offset */ tmp_olpc_val = (int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET]; tmp_olpc_val += olpc_power_offset; OS_REG_RMW(ah, AR_PHY_TPC_11_B0, (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S), AR_PHY_TPC_OLPC_GAIN_DELTA); /* 1.2 TxPower Config */ ar9300_transmit_power_reg_write(ah, target_power_val_t); /* 2. Config OB/DB */ if (!ahp->ah_hw_green_tx_enable) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val); } /* 3. config TPC settting */ OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val); /* 4. config BB_powertx_rate9 value */ OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val); } } #if 0 void ar9300_get_vow_stats( struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags) { if (vow_reg_flags & AR_REG_TX_FRM_CNT) { p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT); } if (vow_reg_flags & AR_REG_RX_FRM_CNT) { p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT); } if (vow_reg_flags & AR_REG_RX_CLR_CNT) { p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT); } if (vow_reg_flags & AR_REG_CYCLE_CNT) { p_stats->cycle_count = OS_REG_READ(ah, AR_CCCNT); } if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) { p_stats->ext_cycle_count = OS_REG_READ(ah, AR_EXTRCCNT); } } #endif /* * ar9300_is_skip_paprd_by_greentx * * This function check if we need to skip PAPRD tuning * when GreenTx in specific state. */ HAL_BOOL ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah) { if (AR_SREV_POSEIDON(ah) && ah->ah_config.ath_hal_sta_update_tx_pwr_enable && ((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) || (AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE))) { return AH_TRUE; } return AH_FALSE; } void ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah) { unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3] unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3] unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3] unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3] unsigned int valid_obdb_4_b0 = 0xd; // 1,5 - dB[0:2],oB[5:3] struct ath_hal_9300 *ahp = AH9300(ah); if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) { OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON, AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0); OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON, AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0); OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON, AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0); OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON, AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0); OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON, AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0); } } void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value) { struct ath_hal_9300 *ahp = AH9300(ah); if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) { if ((value == 0) || (value == 1)) { OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3, AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value); } } } void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah) { OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC); } int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah) { int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL); /* RSSI format is 8.4. Ignore lowest four bits */ val = val >> 4; return val; } void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah, u_int32_t rssi_threshold) { struct ath_hal_9300 *ahp = AH9300(ah); OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold); /* save value for restoring after chip reset */ ahp->ah_beacon_rssi_threshold = rssi_threshold; } void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah) { OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST); } void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on) { if (on) { OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE | AR_HWBCNPROC1_EXCLUDE_TIM_ELM); } else { OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE | AR_HWBCNPROC1_EXCLUDE_TIM_ELM); } } /* * Gets the contents of the specified key cache entry. */ HAL_BOOL ar9300_print_keycache(struct ath_hal *ah) { const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps; u_int32_t key0, key1, key2, key3, key4; u_int32_t mac_hi, mac_lo; u_int16_t entry = 0; u_int32_t valid = 0; u_int32_t key_type; ath_hal_printf(ah, "Slot Key\t\t\t Valid Type Mac \n"); for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) { key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry)); key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry)); key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry)); key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry)); key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry)); key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry)); mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry)); mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry)); if (mac_hi & AR_KEYTABLE_VALID) { valid = 1; } else { valid = 0; } if ((mac_hi != 0) && (mac_lo != 0)) { mac_hi &= ~0x8000; mac_hi <<= 1; mac_hi |= ((mac_lo & (1 << 31) )) >> 31; mac_lo <<= 1; } ath_hal_printf(ah, "%03d " "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x" " %02d %02d " "%02x:%02x:%02x:%02x:%02x:%02x \n", entry, (key0 << 24) >> 24, (key0 << 16) >> 24, (key0 << 8) >> 24, key0 >> 24, (key1 << 24) >> 24, (key1 << 16) >> 24, //(key1 << 8) >> 24, key1 >> 24, (key2 << 24) >> 24, (key2 << 16) >> 24, (key2 << 8) >> 24, key2 >> 24, (key3 << 24) >> 24, (key3 << 16) >> 24, //(key3 << 8) >> 24, key3 >> 24, (key4 << 24) >> 24, (key4 << 16) >> 24, (key4 << 8) >> 24, key4 >> 24, valid, key_type, (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24, (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 ); } return AH_TRUE; } /* enable/disable smart antenna mode */ HAL_BOOL ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable) { struct ath_hal_9300 *ahp = AH9300(ah); if (enable) { OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA); } else { OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA); } /* if scropion and smart antenna is enabled, write swcom1 with 0x440 * and swcom2 with 0 * FIXME Ideally these registers need to be made read from caldata. * Until the calibration team gets them, keep them along with board * configuration. */ if (enable && AR_SREV_SCORPION(ah) && (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) { OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440); OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0); } ahp->ah_smartantenna_enable = enable; return 1; } #ifdef ATH_TX99_DIAG #ifndef ATH_SUPPORT_HTC void ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c, u_int32_t txpower) { #define PWR_MAS(_r, _s) (((_r) & 0x3f) << (_s)) static int16_t p_pwr_array[ar9300_rate_size] = { 0 }; int32_t i; /* The max power is limited to 63 */ if (txpower <= AR9300_MAX_RATE_POWER) { for (i = 0; i < ar9300_rate_size; i++) { p_pwr_array[i] = txpower; } } else { for (i = 0; i < ar9300_rate_size; i++) { p_pwr_array[i] = AR9300_MAX_RATE_POWER; } } OS_REG_WRITE(ah, 0xa458, 0); /* Write the OFDM power per rate set */ /* 6 (LSB), 9, 12, 18 (MSB) */ OS_REG_WRITE(ah, 0xa3c0, PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24) | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16) | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 8) | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0) ); /* 24 (LSB), 36, 48, 54 (MSB) */ OS_REG_WRITE(ah, 0xa3c4, PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24) | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16) | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36], 8) | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0) ); /* Write the CCK power per rate set */ /* 1L (LSB), reserved, 2L, 2S (MSB) */ OS_REG_WRITE(ah, 0xa3c8, PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24) | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16) /* | PWR_MAS(txPowerTimes2, 8) */ /* this is reserved for Osprey */ | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0) ); /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */ OS_REG_WRITE(ah, 0xa3cc, PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24) | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16) | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S], 8) | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0) ); /* Write the HT20 power per rate set */ /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */ OS_REG_WRITE(ah, 0xa3d0, PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24) | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4], 16) | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19], 8) | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16], 0) ); /* 6 (LSB), 7, 12, 13 (MSB) */ OS_REG_WRITE(ah, 0xa3d4, PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24) | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12], 16) | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7], 8) | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6], 0) ); /* 14 (LSB), 15, 20, 21 */ OS_REG_WRITE(ah, 0xa3e4, PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24) | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20], 16) | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15], 8) | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14], 0) ); /* Mixed HT20 and HT40 rates */ /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */ OS_REG_WRITE(ah, 0xa3e8, PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24) | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22], 16) | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23], 8) | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22], 0) ); /* Write the HT40 power per rate set */ /* correct PAR difference between HT40 and HT20/LEGACY */ /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */ OS_REG_WRITE(ah, 0xa3d8, PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24) | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4], 16) | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19], 8) | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16], 0) ); /* 6 (LSB), 7, 12, 13 (MSB) */ OS_REG_WRITE(ah, 0xa3dc, PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24) | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12], 16) | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8) | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0) ); /* 14 (LSB), 15, 20, 21 */ OS_REG_WRITE(ah, 0xa3ec, PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24) | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20], 16) | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15], 8) | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14], 0) ); #undef PWR_MAS } void ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask) { if (tx_chainmask == 0x5) { OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN); } OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask); OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask); OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask); if (tx_chainmask == 0x5) { OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN); } } void ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask, int chtype) { OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff); OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1)); OS_REG_WRITE(ah, 0xa350, (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13)); /* 11G mode */ if (!chtype) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2)); if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP, OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2, (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2) | (0x1 << 26) | (0x7 << 24)) & ~(0x1 << 22)); } else { OS_REG_WRITE(ah, AR_HORNET_CH0_TOP, OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2, (OS_REG_READ(ah, AR_HORNET_CH0_TOP2) | (0x1 << 26) | (0x7 << 24)) & ~(0x1 << 22)); } /* chain zero */ if ((tx_chain_mask & 0x01) == 0x01) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1) | (0x1 << 31) | (0x5 << 15) | (0x3 << 9)) & ~(0x1 << 27) & ~(0x1 << 12)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 7)) & ~(0x1 << 11)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3) | (0x1 << 29) | (0x1 << 25) | (0x1 << 23) | (0x1 << 19) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 3)) & ~(0x1 << 28)& ~(0x1 << 24) & ~(0x1 << 22)& ~(0x1 << 7)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1, (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23))& ~(0x1 << 21)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1, OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 6) | (0x1 << 5) | (0x1 << 4) | (0x1 << 3) | (0x1 << 2)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2, OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31)); } if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) { /* chain one */ if ((tx_chain_mask & 0x02) == 0x02 ) { OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1) | (0x1 << 31) | (0x5 << 15) | (0x3 << 9)) & ~(0x1 << 27) & ~(0x1 << 12)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 7)) & ~(0x1 << 11)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3) | (0x1 << 29) | (0x1 << 25) | (0x1 << 23) | (0x1 << 19) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 3)) & ~(0x1 << 28)& ~(0x1 << 24) & ~(0x1 << 22)& ~(0x1 << 7)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1, (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23))& ~(0x1 << 21)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1, OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 6) | (0x1 << 5) | (0x1 << 4) | (0x1 << 3) | (0x1 << 2)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2, OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31)); } } if (AR_SREV_OSPREY(ah)) { /* chain two */ if ((tx_chain_mask & 0x04) == 0x04 ) { OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1) | (0x1 << 31) | (0x5 << 15) | (0x3 << 9)) & ~(0x1 << 27) & ~(0x1 << 12)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 7)) & ~(0x1 << 11)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3) | (0x1 << 29) | (0x1 << 25) | (0x1 << 23) | (0x1 << 19) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 3)) & ~(0x1 << 28)& ~(0x1 << 24) & ~(0x1 << 22)& ~(0x1 << 7)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1, (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23))& ~(0x1 << 21)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1, OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 6) | (0x1 << 5) | (0x1 << 4) | (0x1 << 3) | (0x1 << 2)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2, OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31)); } } OS_REG_WRITE(ah, 0xa28c, 0x11111); OS_REG_WRITE(ah, 0xa288, 0x111); } else { /* chain zero */ if ((tx_chain_mask & 0x01) == 0x01) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1) | (0x1 << 31) | (0x1 << 27) | (0x3 << 23) | (0x1 << 19) | (0x1 << 15) | (0x3 << 9)) & ~(0x1 << 12)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 7) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 11)& ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3) | (0x1 << 29) | (0x1 << 25) | (0x1 << 23) | (0x1 << 19) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 3)) & ~(0x1 << 28)& ~(0x1 << 24) & ~(0x1 << 22)& ~(0x1 << 7)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1, (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23))& ~(0x1 << 21)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2) | (0x3 << 3) | (0x3 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3, (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3) | (0x3 << 29) | (0x3 << 26) | (0x2 << 23) | (0x2 << 20) | (0x2 << 17))& ~(0x1 << 14)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1, OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 6) | (0x1 << 5) | (0x1 << 4) | (0x1 << 3) | (0x1 << 2)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2, OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31)); if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP, OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2, OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2) | (0x1 << 26) | (0x7 << 24) | (0x3 << 22)); } else { OS_REG_WRITE(ah, AR_HORNET_CH0_TOP, OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2, OS_REG_READ(ah, AR_HORNET_CH0_TOP2) | (0x1 << 26) | (0x7 << 24) | (0x3 << 22)); } if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) { OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3, OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3) | (0x1 << 19) | (0x1 << 3)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1, OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23)); } if (AR_SREV_OSPREY(ah)) { OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3, OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3) | (0x1 << 19) | (0x1 << 3)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1, OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23)); } } if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) { /* chain one */ if ((tx_chain_mask & 0x02) == 0x02 ) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3) | (0x1 << 19) | (0x1 << 3)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1, OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23)); if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP, OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2, OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2) | (0x1 << 26) | (0x7 << 24) | (0x3 << 22)); } else { OS_REG_WRITE(ah, AR_HORNET_CH0_TOP, OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2, OS_REG_READ(ah, AR_HORNET_CH0_TOP2) | (0x1 << 26) | (0x7 << 24) | (0x3 << 22)); } OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1) | (0x1 << 31) | (0x1 << 27) | (0x3 << 23) | (0x1 << 19) | (0x1 << 15) | (0x3 << 9)) & ~(0x1 << 12)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 7) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 11)& ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3) | (0x1 << 29) | (0x1 << 25) | (0x1 << 23) | (0x1 << 19) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 3)) & ~(0x1 << 28)& ~(0x1 << 24) & ~(0x1 << 22)& ~(0x1 << 7)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1, (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23))& ~(0x1 << 21)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2, OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2) | (0x3 << 3) | (0x3 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3, (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3) | (0x3 << 29) | (0x3 << 26) | (0x2 << 23) | (0x2 << 20) | (0x2 << 17))& ~(0x1 << 14)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1, OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 6) | (0x1 << 5) | (0x1 << 4) | (0x1 << 3) | (0x1 << 2)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2, OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31)); if (AR_SREV_OSPREY(ah)) { OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3, OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3) | (0x1 << 19) | (0x1 << 3)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1, OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23)); } } } if (AR_SREV_OSPREY(ah)) { /* chain two */ if ((tx_chain_mask & 0x04) == 0x04 ) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3) | (0x1 << 19) | (0x1 << 3)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1, OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23)); if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP, OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2, OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2) | (0x1 << 26) | (0x7 << 24) | (0x3 << 22)); } else { OS_REG_WRITE(ah, AR_HORNET_CH0_TOP, OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2, OS_REG_READ(ah, AR_HORNET_CH0_TOP2) | (0x1 << 26) | (0x7 << 24) | (0x3 << 22)); } OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3, OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3) | (0x1 << 19) | (0x1 << 3)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1, OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1) | (0x1 << 31) | (0x1 << 27) | (0x3 << 23) | (0x1 << 19) | (0x1 << 15) | (0x3 << 9)) & ~(0x1 << 12)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 7) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 11)& ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3) | (0x1 << 29) | (0x1 << 25) | (0x1 << 23) | (0x1 << 19) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 3)) & ~(0x1 << 28)& ~(0x1 << 24) & ~(0x1 << 22)& ~(0x1 << 7)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1, (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23))& ~(0x1 << 21)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2, OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2) | (0x3 << 3) | (0x3 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3, (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3) | (0x3 << 29) | (0x3 << 26) | (0x2 << 23) | (0x2 << 20) | (0x2 << 17))& ~(0x1 << 14)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1, OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 6) | (0x1 << 5) | (0x1 << 4) | (0x1 << 3) | (0x1 << 2)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2, OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31)); } } OS_REG_WRITE(ah, 0xa28c, 0x22222); OS_REG_WRITE(ah, 0xa288, 0x222); } } void ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data) { u_int32_t val; u_int32_t qnum = (u_int32_t)data; /* Disable AGC to A2 */ OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR)); OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS); OS_REG_WRITE(ah, AR_CR, AR_CR_RXD); /* set receive disable */ /* set CW_MIN and CW_MAX both to 0, AIFS=2 */ OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0); OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */ OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20); /* 200 ok for HT20, 400 ok for HT40 */ OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400); OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff); /* set QCU modes to early termination */ val = OS_REG_READ(ah, AR_QMISC(qnum)); OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ); } void ar9300_tx99_stop(struct ath_hal *ah) { /* this should follow the setting of start */ OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR); OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS); } #endif /* ATH_TX99_DIAG */ #endif /* ATH_SUPPORT_HTC */ HAL_BOOL ar9300Get3StreamSignature(struct ath_hal *ah) { return AH_FALSE; } HAL_BOOL ar9300ForceVCS(struct ath_hal *ah) { return AH_FALSE; } HAL_BOOL ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val) { return AH_FALSE; } HAL_BOOL ar9300_set_ctl_pwr(struct ath_hal *ah, u_int8_t *ctl_array) { struct ath_hal_9300 *ahp = AH9300(ah); ar9300_eeprom_t *p_eep_data = &ahp->ah_eeprom; u_int8_t *ctl_index; u_int32_t offset = 0; if (!ctl_array) return AH_FALSE; /* copy 2G ctl freqbin and power data */ ctl_index = p_eep_data->ctl_index_2g; OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_2G, ctl_array, OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G + /* ctl_freqbin_2G */ OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G)); /* ctl_power_data_2g */ offset = (OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G) + ( OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G)); /* copy 2G ctl freqbin and power data */ ctl_index = p_eep_data->ctl_index_5g; OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_5G, ctl_array + offset, OSPREY_NUM_CTLS_5G * OSPREY_NUM_BAND_EDGES_5G + /* ctl_freqbin_5G */ OSPREY_NUM_CTLS_5G * sizeof(OSP_CAL_CTL_DATA_5G)); /* ctl_power_data_5g */ return AH_FALSE; } void ar9300_set_txchainmaskopt(struct ath_hal *ah, u_int8_t mask) { struct ath_hal_9300 *ahp = AH9300(ah); /* optional txchainmask should be subset of primary txchainmask */ if ((mask & ahp->ah_tx_chainmask) != mask) { ahp->ah_tx_chainmaskopt = 0; ath_hal_printf(ah, "Error: ah_tx_chainmask=%d, mask=%d\n", ahp->ah_tx_chainmask, mask); return; } ahp->ah_tx_chainmaskopt = mask; }