/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016-2017 Intel Corporation */ /* * Security Associations */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ipsec.h" #include "esp.h" #include "parser.h" #define IPDEFTTL 64 #define IP4_FULL_MASK (sizeof(((struct ip_addr *)NULL)->ip.ip4) * CHAR_BIT) #define IP6_FULL_MASK (sizeof(((struct ip_addr *)NULL)->ip.ip6.ip6) * CHAR_BIT) struct supported_cipher_algo { const char *keyword; enum rte_crypto_cipher_algorithm algo; uint16_t iv_len; uint16_t block_size; uint16_t key_len; }; struct supported_auth_algo { const char *keyword; enum rte_crypto_auth_algorithm algo; uint16_t digest_len; uint16_t key_len; uint8_t key_not_req; }; struct supported_aead_algo { const char *keyword; enum rte_crypto_aead_algorithm algo; uint16_t iv_len; uint16_t block_size; uint16_t digest_len; uint16_t key_len; uint8_t aad_len; }; const struct supported_cipher_algo cipher_algos[] = { { .keyword = "null", .algo = RTE_CRYPTO_CIPHER_NULL, .iv_len = 0, .block_size = 4, .key_len = 0 }, { .keyword = "aes-128-cbc", .algo = RTE_CRYPTO_CIPHER_AES_CBC, .iv_len = 16, .block_size = 16, .key_len = 16 }, { .keyword = "aes-256-cbc", .algo = RTE_CRYPTO_CIPHER_AES_CBC, .iv_len = 16, .block_size = 16, .key_len = 32 }, { .keyword = "aes-128-ctr", .algo = RTE_CRYPTO_CIPHER_AES_CTR, .iv_len = 8, .block_size = 4, .key_len = 20 }, { .keyword = "3des-cbc", .algo = RTE_CRYPTO_CIPHER_3DES_CBC, .iv_len = 8, .block_size = 8, .key_len = 24 } }; const struct supported_auth_algo auth_algos[] = { { .keyword = "null", .algo = RTE_CRYPTO_AUTH_NULL, .digest_len = 0, .key_len = 0, .key_not_req = 1 }, { .keyword = "sha1-hmac", .algo = RTE_CRYPTO_AUTH_SHA1_HMAC, .digest_len = 12, .key_len = 20 }, { .keyword = "sha256-hmac", .algo = RTE_CRYPTO_AUTH_SHA256_HMAC, .digest_len = 12, .key_len = 32 } }; const struct supported_aead_algo aead_algos[] = { { .keyword = "aes-128-gcm", .algo = RTE_CRYPTO_AEAD_AES_GCM, .iv_len = 8, .block_size = 4, .key_len = 20, .digest_len = 16, .aad_len = 8, } }; static struct ipsec_sa sa_out[IPSEC_SA_MAX_ENTRIES]; static uint32_t nb_sa_out; static struct ipsec_sa sa_in[IPSEC_SA_MAX_ENTRIES]; static uint32_t nb_sa_in; static const struct supported_cipher_algo * find_match_cipher_algo(const char *cipher_keyword) { size_t i; for (i = 0; i < RTE_DIM(cipher_algos); i++) { const struct supported_cipher_algo *algo = &cipher_algos[i]; if (strcmp(cipher_keyword, algo->keyword) == 0) return algo; } return NULL; } static const struct supported_auth_algo * find_match_auth_algo(const char *auth_keyword) { size_t i; for (i = 0; i < RTE_DIM(auth_algos); i++) { const struct supported_auth_algo *algo = &auth_algos[i]; if (strcmp(auth_keyword, algo->keyword) == 0) return algo; } return NULL; } static const struct supported_aead_algo * find_match_aead_algo(const char *aead_keyword) { size_t i; for (i = 0; i < RTE_DIM(aead_algos); i++) { const struct supported_aead_algo *algo = &aead_algos[i]; if (strcmp(aead_keyword, algo->keyword) == 0) return algo; } return NULL; } /** parse_key_string * parse x:x:x:x.... hex number key string into uint8_t *key * return: * > 0: number of bytes parsed * 0: failed */ static uint32_t parse_key_string(const char *key_str, uint8_t *key) { const char *pt_start = key_str, *pt_end = key_str; uint32_t nb_bytes = 0; while (pt_end != NULL) { char sub_str[3] = {0}; pt_end = strchr(pt_start, ':'); if (pt_end == NULL) { if (strlen(pt_start) > 2) return 0; strncpy(sub_str, pt_start, 2); } else { if (pt_end - pt_start > 2) return 0; strncpy(sub_str, pt_start, pt_end - pt_start); pt_start = pt_end + 1; } key[nb_bytes++] = strtol(sub_str, NULL, 16); } return nb_bytes; } void parse_sa_tokens(char **tokens, uint32_t n_tokens, struct parse_status *status) { struct ipsec_sa *rule = NULL; uint32_t ti; /*token index*/ uint32_t *ri /*rule index*/; uint32_t cipher_algo_p = 0; uint32_t auth_algo_p = 0; uint32_t aead_algo_p = 0; uint32_t src_p = 0; uint32_t dst_p = 0; uint32_t mode_p = 0; uint32_t type_p = 0; uint32_t portid_p = 0; if (strcmp(tokens[0], "in") == 0) { ri = &nb_sa_in; APP_CHECK(*ri <= IPSEC_SA_MAX_ENTRIES - 1, status, "too many sa rules, abort insertion\n"); if (status->status < 0) return; rule = &sa_in[*ri]; } else { ri = &nb_sa_out; APP_CHECK(*ri <= IPSEC_SA_MAX_ENTRIES - 1, status, "too many sa rules, abort insertion\n"); if (status->status < 0) return; rule = &sa_out[*ri]; } /* spi number */ APP_CHECK_TOKEN_IS_NUM(tokens, 1, status); if (status->status < 0) return; if (atoi(tokens[1]) == INVALID_SPI) return; rule->spi = atoi(tokens[1]); for (ti = 2; ti < n_tokens; ti++) { if (strcmp(tokens[ti], "mode") == 0) { APP_CHECK_PRESENCE(mode_p, tokens[ti], status); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; if (strcmp(tokens[ti], "ipv4-tunnel") == 0) rule->flags = IP4_TUNNEL; else if (strcmp(tokens[ti], "ipv6-tunnel") == 0) rule->flags = IP6_TUNNEL; else if (strcmp(tokens[ti], "transport") == 0) rule->flags = TRANSPORT; else { APP_CHECK(0, status, "unrecognized " "input \"%s\"", tokens[ti]); return; } mode_p = 1; continue; } if (strcmp(tokens[ti], "cipher_algo") == 0) { const struct supported_cipher_algo *algo; uint32_t key_len; APP_CHECK_PRESENCE(cipher_algo_p, tokens[ti], status); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; algo = find_match_cipher_algo(tokens[ti]); APP_CHECK(algo != NULL, status, "unrecognized " "input \"%s\"", tokens[ti]); rule->cipher_algo = algo->algo; rule->block_size = algo->block_size; rule->iv_len = algo->iv_len; rule->cipher_key_len = algo->key_len; /* for NULL algorithm, no cipher key required */ if (rule->cipher_algo == RTE_CRYPTO_CIPHER_NULL) { cipher_algo_p = 1; continue; } INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; APP_CHECK(strcmp(tokens[ti], "cipher_key") == 0, status, "unrecognized input \"%s\", " "expect \"cipher_key\"", tokens[ti]); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; key_len = parse_key_string(tokens[ti], rule->cipher_key); APP_CHECK(key_len == rule->cipher_key_len, status, "unrecognized input \"%s\"", tokens[ti]); if (status->status < 0) return; if (algo->algo == RTE_CRYPTO_CIPHER_AES_CBC || algo->algo == RTE_CRYPTO_CIPHER_3DES_CBC) rule->salt = (uint32_t)rte_rand(); if (algo->algo == RTE_CRYPTO_CIPHER_AES_CTR) { key_len -= 4; rule->cipher_key_len = key_len; memcpy(&rule->salt, &rule->cipher_key[key_len], 4); } cipher_algo_p = 1; continue; } if (strcmp(tokens[ti], "auth_algo") == 0) { const struct supported_auth_algo *algo; uint32_t key_len; APP_CHECK_PRESENCE(auth_algo_p, tokens[ti], status); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; algo = find_match_auth_algo(tokens[ti]); APP_CHECK(algo != NULL, status, "unrecognized " "input \"%s\"", tokens[ti]); rule->auth_algo = algo->algo; rule->auth_key_len = algo->key_len; rule->digest_len = algo->digest_len; /* NULL algorithm and combined algos do not * require auth key */ if (algo->key_not_req) { auth_algo_p = 1; continue; } INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; APP_CHECK(strcmp(tokens[ti], "auth_key") == 0, status, "unrecognized input \"%s\", " "expect \"auth_key\"", tokens[ti]); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; key_len = parse_key_string(tokens[ti], rule->auth_key); APP_CHECK(key_len == rule->auth_key_len, status, "unrecognized input \"%s\"", tokens[ti]); if (status->status < 0) return; auth_algo_p = 1; continue; } if (strcmp(tokens[ti], "aead_algo") == 0) { const struct supported_aead_algo *algo; uint32_t key_len; APP_CHECK_PRESENCE(aead_algo_p, tokens[ti], status); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; algo = find_match_aead_algo(tokens[ti]); APP_CHECK(algo != NULL, status, "unrecognized " "input \"%s\"", tokens[ti]); rule->aead_algo = algo->algo; rule->cipher_key_len = algo->key_len; rule->digest_len = algo->digest_len; rule->aad_len = algo->aad_len; rule->block_size = algo->block_size; rule->iv_len = algo->iv_len; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; APP_CHECK(strcmp(tokens[ti], "aead_key") == 0, status, "unrecognized input \"%s\", " "expect \"aead_key\"", tokens[ti]); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; key_len = parse_key_string(tokens[ti], rule->cipher_key); APP_CHECK(key_len == rule->cipher_key_len, status, "unrecognized input \"%s\"", tokens[ti]); if (status->status < 0) return; key_len -= 4; rule->cipher_key_len = key_len; memcpy(&rule->salt, &rule->cipher_key[key_len], 4); aead_algo_p = 1; continue; } if (strcmp(tokens[ti], "src") == 0) { APP_CHECK_PRESENCE(src_p, tokens[ti], status); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; if (IS_IP4_TUNNEL(rule->flags)) { struct in_addr ip; APP_CHECK(parse_ipv4_addr(tokens[ti], &ip, NULL) == 0, status, "unrecognized input \"%s\", " "expect valid ipv4 addr", tokens[ti]); if (status->status < 0) return; rule->src.ip.ip4 = rte_bswap32( (uint32_t)ip.s_addr); } else if (IS_IP6_TUNNEL(rule->flags)) { struct in6_addr ip; APP_CHECK(parse_ipv6_addr(tokens[ti], &ip, NULL) == 0, status, "unrecognized input \"%s\", " "expect valid ipv6 addr", tokens[ti]); if (status->status < 0) return; memcpy(rule->src.ip.ip6.ip6_b, ip.s6_addr, 16); } else if (IS_TRANSPORT(rule->flags)) { APP_CHECK(0, status, "unrecognized input " "\"%s\"", tokens[ti]); return; } src_p = 1; continue; } if (strcmp(tokens[ti], "dst") == 0) { APP_CHECK_PRESENCE(dst_p, tokens[ti], status); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; if (IS_IP4_TUNNEL(rule->flags)) { struct in_addr ip; APP_CHECK(parse_ipv4_addr(tokens[ti], &ip, NULL) == 0, status, "unrecognized input \"%s\", " "expect valid ipv4 addr", tokens[ti]); if (status->status < 0) return; rule->dst.ip.ip4 = rte_bswap32( (uint32_t)ip.s_addr); } else if (IS_IP6_TUNNEL(rule->flags)) { struct in6_addr ip; APP_CHECK(parse_ipv6_addr(tokens[ti], &ip, NULL) == 0, status, "unrecognized input \"%s\", " "expect valid ipv6 addr", tokens[ti]); if (status->status < 0) return; memcpy(rule->dst.ip.ip6.ip6_b, ip.s6_addr, 16); } else if (IS_TRANSPORT(rule->flags)) { APP_CHECK(0, status, "unrecognized " "input \"%s\"", tokens[ti]); return; } dst_p = 1; continue; } if (strcmp(tokens[ti], "type") == 0) { APP_CHECK_PRESENCE(type_p, tokens[ti], status); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; if (strcmp(tokens[ti], "inline-crypto-offload") == 0) rule->type = RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO; else if (strcmp(tokens[ti], "inline-protocol-offload") == 0) rule->type = RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL; else if (strcmp(tokens[ti], "lookaside-protocol-offload") == 0) rule->type = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL; else if (strcmp(tokens[ti], "no-offload") == 0) rule->type = RTE_SECURITY_ACTION_TYPE_NONE; else { APP_CHECK(0, status, "Invalid input \"%s\"", tokens[ti]); return; } type_p = 1; continue; } if (strcmp(tokens[ti], "port_id") == 0) { APP_CHECK_PRESENCE(portid_p, tokens[ti], status); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; rule->portid = atoi(tokens[ti]); if (status->status < 0) return; portid_p = 1; continue; } /* unrecognizeable input */ APP_CHECK(0, status, "unrecognized input \"%s\"", tokens[ti]); return; } if (aead_algo_p) { APP_CHECK(cipher_algo_p == 0, status, "AEAD used, no need for cipher options"); if (status->status < 0) return; APP_CHECK(auth_algo_p == 0, status, "AEAD used, no need for auth options"); if (status->status < 0) return; } else { APP_CHECK(cipher_algo_p == 1, status, "missing cipher or AEAD options"); if (status->status < 0) return; APP_CHECK(auth_algo_p == 1, status, "missing auth or AEAD options"); if (status->status < 0) return; } APP_CHECK(mode_p == 1, status, "missing mode option"); if (status->status < 0) return; if ((rule->type != RTE_SECURITY_ACTION_TYPE_NONE) && (portid_p == 0)) printf("Missing portid option, falling back to non-offload\n"); if (!type_p || !portid_p) { rule->type = RTE_SECURITY_ACTION_TYPE_NONE; rule->portid = -1; } *ri = *ri + 1; } static void print_one_sa_rule(const struct ipsec_sa *sa, int inbound) { uint32_t i; uint8_t a, b, c, d; printf("\tspi_%s(%3u):", inbound?"in":"out", sa->spi); for (i = 0; i < RTE_DIM(cipher_algos); i++) { if (cipher_algos[i].algo == sa->cipher_algo && cipher_algos[i].key_len == sa->cipher_key_len) { printf("%s ", cipher_algos[i].keyword); break; } } for (i = 0; i < RTE_DIM(auth_algos); i++) { if (auth_algos[i].algo == sa->auth_algo) { printf("%s ", auth_algos[i].keyword); break; } } for (i = 0; i < RTE_DIM(aead_algos); i++) { if (aead_algos[i].algo == sa->aead_algo) { printf("%s ", aead_algos[i].keyword); break; } } printf("mode:"); switch (WITHOUT_TRANSPORT_VERSION(sa->flags)) { case IP4_TUNNEL: printf("IP4Tunnel "); uint32_t_to_char(sa->src.ip.ip4, &a, &b, &c, &d); printf("%hhu.%hhu.%hhu.%hhu ", d, c, b, a); uint32_t_to_char(sa->dst.ip.ip4, &a, &b, &c, &d); printf("%hhu.%hhu.%hhu.%hhu", d, c, b, a); break; case IP6_TUNNEL: printf("IP6Tunnel "); for (i = 0; i < 16; i++) { if (i % 2 && i != 15) printf("%.2x:", sa->src.ip.ip6.ip6_b[i]); else printf("%.2x", sa->src.ip.ip6.ip6_b[i]); } printf(" "); for (i = 0; i < 16; i++) { if (i % 2 && i != 15) printf("%.2x:", sa->dst.ip.ip6.ip6_b[i]); else printf("%.2x", sa->dst.ip.ip6.ip6_b[i]); } break; case TRANSPORT: printf("Transport "); break; } printf(" type:"); switch (sa->type) { case RTE_SECURITY_ACTION_TYPE_NONE: printf("no-offload "); break; case RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO: printf("inline-crypto-offload "); break; case RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL: printf("inline-protocol-offload "); break; case RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL: printf("lookaside-protocol-offload "); break; } printf("\n"); } struct sa_ctx { struct ipsec_sa sa[IPSEC_SA_MAX_ENTRIES]; union { struct { struct rte_crypto_sym_xform a; struct rte_crypto_sym_xform b; }; } xf[IPSEC_SA_MAX_ENTRIES]; }; static struct sa_ctx * sa_create(const char *name, int32_t socket_id) { char s[PATH_MAX]; struct sa_ctx *sa_ctx; uint32_t mz_size; const struct rte_memzone *mz; snprintf(s, sizeof(s), "%s_%u", name, socket_id); /* Create SA array table */ printf("Creating SA context with %u maximum entries on socket %d\n", IPSEC_SA_MAX_ENTRIES, socket_id); mz_size = sizeof(struct sa_ctx); mz = rte_memzone_reserve(s, mz_size, socket_id, RTE_MEMZONE_1GB | RTE_MEMZONE_SIZE_HINT_ONLY); if (mz == NULL) { printf("Failed to allocate SA DB memory\n"); rte_errno = ENOMEM; return NULL; } sa_ctx = (struct sa_ctx *)mz->addr; return sa_ctx; } static int check_eth_dev_caps(uint16_t portid, uint32_t inbound) { struct rte_eth_dev_info dev_info; rte_eth_dev_info_get(portid, &dev_info); if (inbound) { if ((dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SECURITY) == 0) { RTE_LOG(WARNING, PORT, "hardware RX IPSec offload is not supported\n"); return -EINVAL; } } else { /* outbound */ if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SECURITY) == 0) { RTE_LOG(WARNING, PORT, "hardware TX IPSec offload is not supported\n"); return -EINVAL; } } return 0; } /* * Helper function, tries to determine next_proto for SPI * by searching though SP rules. */ static int get_spi_proto(uint32_t spi, enum rte_security_ipsec_sa_direction dir, struct ip_addr ip_addr[2], uint32_t mask[2]) { int32_t rc4, rc6; rc4 = sp4_spi_present(spi, dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS, ip_addr, mask); rc6 = sp6_spi_present(spi, dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS, ip_addr, mask); if (rc4 >= 0) { if (rc6 >= 0) { RTE_LOG(ERR, IPSEC, "%s: SPI %u used simultaeously by " "IPv4(%d) and IPv6 (%d) SP rules\n", __func__, spi, rc4, rc6); return -EINVAL; } else return IPPROTO_IPIP; } else if (rc6 < 0) { RTE_LOG(ERR, IPSEC, "%s: SPI %u is not used by any SP rule\n", __func__, spi); return -EINVAL; } else return IPPROTO_IPV6; } /* * Helper function for getting source and destination IP addresses * from SP. Needed for inline crypto transport mode, as addresses are not * provided in config file for that mode. It checks if SP for current SA exists, * and based on what type of protocol is returned, it stores appropriate * addresses got from SP into SA. */ static int sa_add_address_inline_crypto(struct ipsec_sa *sa) { int protocol; struct ip_addr ip_addr[2]; uint32_t mask[2]; protocol = get_spi_proto(sa->spi, sa->direction, ip_addr, mask); if (protocol < 0) return protocol; else if (protocol == IPPROTO_IPIP) { sa->flags |= IP4_TRANSPORT; if (mask[0] == IP4_FULL_MASK && mask[1] == IP4_FULL_MASK && ip_addr[0].ip.ip4 != 0 && ip_addr[1].ip.ip4 != 0) { sa->src.ip.ip4 = ip_addr[0].ip.ip4; sa->dst.ip.ip4 = ip_addr[1].ip.ip4; } else { RTE_LOG(ERR, IPSEC, "%s: No valid address or mask entry in" " IPv4 SP rule for SPI %u\n", __func__, sa->spi); return -EINVAL; } } else if (protocol == IPPROTO_IPV6) { sa->flags |= IP6_TRANSPORT; if (mask[0] == IP6_FULL_MASK && mask[1] == IP6_FULL_MASK && (ip_addr[0].ip.ip6.ip6[0] != 0 || ip_addr[0].ip.ip6.ip6[1] != 0) && (ip_addr[1].ip.ip6.ip6[0] != 0 || ip_addr[1].ip.ip6.ip6[1] != 0)) { sa->src.ip.ip6 = ip_addr[0].ip.ip6; sa->dst.ip.ip6 = ip_addr[1].ip.ip6; } else { RTE_LOG(ERR, IPSEC, "%s: No valid address or mask entry in" " IPv6 SP rule for SPI %u\n", __func__, sa->spi); return -EINVAL; } } return 0; } static int sa_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[], uint32_t nb_entries, uint32_t inbound) { struct ipsec_sa *sa; uint32_t i, idx; uint16_t iv_length; int inline_status; for (i = 0; i < nb_entries; i++) { idx = SPI2IDX(entries[i].spi); sa = &sa_ctx->sa[idx]; if (sa->spi != 0) { printf("Index %u already in use by SPI %u\n", idx, sa->spi); return -EINVAL; } *sa = entries[i]; sa->seq = 0; if (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL || sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) { if (check_eth_dev_caps(sa->portid, inbound)) return -EINVAL; } sa->direction = (inbound == 1) ? RTE_SECURITY_IPSEC_SA_DIR_INGRESS : RTE_SECURITY_IPSEC_SA_DIR_EGRESS; switch (WITHOUT_TRANSPORT_VERSION(sa->flags)) { case IP4_TUNNEL: sa->src.ip.ip4 = rte_cpu_to_be_32(sa->src.ip.ip4); sa->dst.ip.ip4 = rte_cpu_to_be_32(sa->dst.ip.ip4); break; case TRANSPORT: if (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) { inline_status = sa_add_address_inline_crypto(sa); if (inline_status < 0) return inline_status; } break; } if (sa->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) { iv_length = 16; sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_AEAD; sa_ctx->xf[idx].a.aead.algo = sa->aead_algo; sa_ctx->xf[idx].a.aead.key.data = sa->cipher_key; sa_ctx->xf[idx].a.aead.key.length = sa->cipher_key_len; sa_ctx->xf[idx].a.aead.op = (inbound == 1) ? RTE_CRYPTO_AEAD_OP_DECRYPT : RTE_CRYPTO_AEAD_OP_ENCRYPT; sa_ctx->xf[idx].a.next = NULL; sa_ctx->xf[idx].a.aead.iv.offset = IV_OFFSET; sa_ctx->xf[idx].a.aead.iv.length = iv_length; sa_ctx->xf[idx].a.aead.aad_length = sa->aad_len; sa_ctx->xf[idx].a.aead.digest_length = sa->digest_len; sa->xforms = &sa_ctx->xf[idx].a; print_one_sa_rule(sa, inbound); } else { switch (sa->cipher_algo) { case RTE_CRYPTO_CIPHER_NULL: case RTE_CRYPTO_CIPHER_3DES_CBC: case RTE_CRYPTO_CIPHER_AES_CBC: iv_length = sa->iv_len; break; case RTE_CRYPTO_CIPHER_AES_CTR: iv_length = 16; break; default: RTE_LOG(ERR, IPSEC_ESP, "unsupported cipher algorithm %u\n", sa->cipher_algo); return -EINVAL; } if (inbound) { sa_ctx->xf[idx].b.type = RTE_CRYPTO_SYM_XFORM_CIPHER; sa_ctx->xf[idx].b.cipher.algo = sa->cipher_algo; sa_ctx->xf[idx].b.cipher.key.data = sa->cipher_key; sa_ctx->xf[idx].b.cipher.key.length = sa->cipher_key_len; sa_ctx->xf[idx].b.cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT; sa_ctx->xf[idx].b.next = NULL; sa_ctx->xf[idx].b.cipher.iv.offset = IV_OFFSET; sa_ctx->xf[idx].b.cipher.iv.length = iv_length; sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_AUTH; sa_ctx->xf[idx].a.auth.algo = sa->auth_algo; sa_ctx->xf[idx].a.auth.key.data = sa->auth_key; sa_ctx->xf[idx].a.auth.key.length = sa->auth_key_len; sa_ctx->xf[idx].a.auth.digest_length = sa->digest_len; sa_ctx->xf[idx].a.auth.op = RTE_CRYPTO_AUTH_OP_VERIFY; } else { /* outbound */ sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_CIPHER; sa_ctx->xf[idx].a.cipher.algo = sa->cipher_algo; sa_ctx->xf[idx].a.cipher.key.data = sa->cipher_key; sa_ctx->xf[idx].a.cipher.key.length = sa->cipher_key_len; sa_ctx->xf[idx].a.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; sa_ctx->xf[idx].a.next = NULL; sa_ctx->xf[idx].a.cipher.iv.offset = IV_OFFSET; sa_ctx->xf[idx].a.cipher.iv.length = iv_length; sa_ctx->xf[idx].b.type = RTE_CRYPTO_SYM_XFORM_AUTH; sa_ctx->xf[idx].b.auth.algo = sa->auth_algo; sa_ctx->xf[idx].b.auth.key.data = sa->auth_key; sa_ctx->xf[idx].b.auth.key.length = sa->auth_key_len; sa_ctx->xf[idx].b.auth.digest_length = sa->digest_len; sa_ctx->xf[idx].b.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; } sa_ctx->xf[idx].a.next = &sa_ctx->xf[idx].b; sa_ctx->xf[idx].b.next = NULL; sa->xforms = &sa_ctx->xf[idx].a; print_one_sa_rule(sa, inbound); } } return 0; } static inline int sa_out_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[], uint32_t nb_entries) { return sa_add_rules(sa_ctx, entries, nb_entries, 0); } static inline int sa_in_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[], uint32_t nb_entries) { return sa_add_rules(sa_ctx, entries, nb_entries, 1); } /* * Walk through all SA rules to find an SA with given SPI */ int sa_spi_present(uint32_t spi, int inbound) { uint32_t i, num; const struct ipsec_sa *sar; if (inbound != 0) { sar = sa_in; num = nb_sa_in; } else { sar = sa_out; num = nb_sa_out; } for (i = 0; i != num; i++) { if (sar[i].spi == spi) return i; } return -ENOENT; } void sa_init(struct socket_ctx *ctx, int32_t socket_id) { const char *name; if (ctx == NULL) rte_exit(EXIT_FAILURE, "NULL context.\n"); if (ctx->sa_in != NULL) rte_exit(EXIT_FAILURE, "Inbound SA DB for socket %u already " "initialized\n", socket_id); if (ctx->sa_out != NULL) rte_exit(EXIT_FAILURE, "Outbound SA DB for socket %u already " "initialized\n", socket_id); if (nb_sa_in > 0) { name = "sa_in"; ctx->sa_in = sa_create(name, socket_id); if (ctx->sa_in == NULL) rte_exit(EXIT_FAILURE, "Error [%d] creating SA " "context %s in socket %d\n", rte_errno, name, socket_id); sa_in_add_rules(ctx->sa_in, sa_in, nb_sa_in); } else RTE_LOG(WARNING, IPSEC, "No SA Inbound rule specified\n"); if (nb_sa_out > 0) { name = "sa_out"; ctx->sa_out = sa_create(name, socket_id); if (ctx->sa_out == NULL) rte_exit(EXIT_FAILURE, "Error [%d] creating SA " "context %s in socket %d\n", rte_errno, name, socket_id); sa_out_add_rules(ctx->sa_out, sa_out, nb_sa_out); } else RTE_LOG(WARNING, IPSEC, "No SA Outbound rule " "specified\n"); } int inbound_sa_check(struct sa_ctx *sa_ctx, struct rte_mbuf *m, uint32_t sa_idx) { struct ipsec_mbuf_metadata *priv; struct ipsec_sa *sa; priv = get_priv(m); sa = priv->sa; if (sa != NULL) return (sa_ctx->sa[sa_idx].spi == sa->spi); RTE_LOG(ERR, IPSEC, "SA not saved in private data\n"); return 0; } static inline void single_inbound_lookup(struct ipsec_sa *sadb, struct rte_mbuf *pkt, struct ipsec_sa **sa_ret) { struct esp_hdr *esp; struct ip *ip; uint32_t *src4_addr; uint8_t *src6_addr; struct ipsec_sa *sa; *sa_ret = NULL; ip = rte_pktmbuf_mtod(pkt, struct ip *); if (ip->ip_v == IPVERSION) esp = (struct esp_hdr *)(ip + 1); else esp = (struct esp_hdr *)(((struct ip6_hdr *)ip) + 1); if (esp->spi == INVALID_SPI) return; sa = &sadb[SPI2IDX(rte_be_to_cpu_32(esp->spi))]; if (rte_be_to_cpu_32(esp->spi) != sa->spi) return; switch (WITHOUT_TRANSPORT_VERSION(sa->flags)) { case IP4_TUNNEL: src4_addr = RTE_PTR_ADD(ip, offsetof(struct ip, ip_src)); if ((ip->ip_v == IPVERSION) && (sa->src.ip.ip4 == *src4_addr) && (sa->dst.ip.ip4 == *(src4_addr + 1))) *sa_ret = sa; break; case IP6_TUNNEL: src6_addr = RTE_PTR_ADD(ip, offsetof(struct ip6_hdr, ip6_src)); if ((ip->ip_v == IP6_VERSION) && !memcmp(&sa->src.ip.ip6.ip6, src6_addr, 16) && !memcmp(&sa->dst.ip.ip6.ip6, src6_addr + 16, 16)) *sa_ret = sa; break; case TRANSPORT: *sa_ret = sa; } } void inbound_sa_lookup(struct sa_ctx *sa_ctx, struct rte_mbuf *pkts[], struct ipsec_sa *sa[], uint16_t nb_pkts) { uint32_t i; for (i = 0; i < nb_pkts; i++) single_inbound_lookup(sa_ctx->sa, pkts[i], &sa[i]); } void outbound_sa_lookup(struct sa_ctx *sa_ctx, uint32_t sa_idx[], struct ipsec_sa *sa[], uint16_t nb_pkts) { uint32_t i; for (i = 0; i < nb_pkts; i++) sa[i] = &sa_ctx->sa[sa_idx[i]]; }