// SPDX-License-Identifier: GPL-2.0 /* * Copyright(c) 2010-2014 Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "compat.h" #include "kni_dev.h" MODULE_VERSION(KNI_VERSION); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Intel Corporation"); MODULE_DESCRIPTION("Kernel Module for managing kni devices"); #define KNI_RX_LOOP_NUM 1000 #define KNI_MAX_DEVICES 32 /* loopback mode */ static char *lo_mode; /* Kernel thread mode */ static char *kthread_mode; static uint32_t multiple_kthread_on; /* Default carrier state for created KNI network interfaces */ static char *carrier; uint32_t kni_dflt_carrier; /* Request processing support for bifurcated drivers. */ static char *enable_bifurcated; uint32_t bifurcated_support; /* KNI thread scheduling interval */ static long min_scheduling_interval = 100; /* us */ static long max_scheduling_interval = 200; /* us */ #define KNI_DEV_IN_USE_BIT_NUM 0 /* Bit number for device in use */ static int kni_net_id; struct kni_net { unsigned long device_in_use; /* device in use flag */ struct mutex kni_kthread_lock; struct task_struct *kni_kthread; struct rw_semaphore kni_list_lock; struct list_head kni_list_head; }; static int __net_init kni_init_net(struct net *net) { #ifdef HAVE_SIMPLIFIED_PERNET_OPERATIONS struct kni_net *knet = net_generic(net, kni_net_id); memset(knet, 0, sizeof(*knet)); #else struct kni_net *knet; int ret; knet = kzalloc(sizeof(struct kni_net), GFP_KERNEL); if (!knet) { ret = -ENOMEM; return ret; } #endif /* Clear the bit of device in use */ clear_bit(KNI_DEV_IN_USE_BIT_NUM, &knet->device_in_use); mutex_init(&knet->kni_kthread_lock); init_rwsem(&knet->kni_list_lock); INIT_LIST_HEAD(&knet->kni_list_head); #ifdef HAVE_SIMPLIFIED_PERNET_OPERATIONS return 0; #else ret = net_assign_generic(net, kni_net_id, knet); if (ret < 0) kfree(knet); return ret; #endif } static void __net_exit kni_exit_net(struct net *net) { struct kni_net *knet __maybe_unused; knet = net_generic(net, kni_net_id); mutex_destroy(&knet->kni_kthread_lock); #ifndef HAVE_SIMPLIFIED_PERNET_OPERATIONS kfree(knet); #endif } static struct pernet_operations kni_net_ops = { .init = kni_init_net, .exit = kni_exit_net, #ifdef HAVE_SIMPLIFIED_PERNET_OPERATIONS .id = &kni_net_id, .size = sizeof(struct kni_net), #endif }; static int kni_thread_single(void *data) { struct kni_net *knet = data; int j; struct kni_dev *dev; while (!kthread_should_stop()) { down_read(&knet->kni_list_lock); for (j = 0; j < KNI_RX_LOOP_NUM; j++) { list_for_each_entry(dev, &knet->kni_list_head, list) { kni_net_rx(dev); kni_net_poll_resp(dev); } } up_read(&knet->kni_list_lock); /* reschedule out for a while */ usleep_range(min_scheduling_interval, max_scheduling_interval); } return 0; } static int kni_thread_multiple(void *param) { int j; struct kni_dev *dev = param; while (!kthread_should_stop()) { for (j = 0; j < KNI_RX_LOOP_NUM; j++) { kni_net_rx(dev); kni_net_poll_resp(dev); } usleep_range(min_scheduling_interval, max_scheduling_interval); } return 0; } static int kni_open(struct inode *inode, struct file *file) { struct net *net = current->nsproxy->net_ns; struct kni_net *knet = net_generic(net, kni_net_id); /* kni device can be opened by one user only per netns */ if (test_and_set_bit(KNI_DEV_IN_USE_BIT_NUM, &knet->device_in_use)) return -EBUSY; file->private_data = get_net(net); pr_debug("/dev/kni opened\n"); return 0; } static int kni_dev_remove(struct kni_dev *dev) { if (!dev) return -ENODEV; /* * The memory of kni device is allocated and released together * with net device. Release mbuf before freeing net device. */ kni_net_release_fifo_phy(dev); if (dev->net_dev) { unregister_netdev(dev->net_dev); free_netdev(dev->net_dev); } return 0; } static int kni_release(struct inode *inode, struct file *file) { struct net *net = file->private_data; struct kni_net *knet = net_generic(net, kni_net_id); struct kni_dev *dev, *n; /* Stop kernel thread for single mode */ if (multiple_kthread_on == 0) { mutex_lock(&knet->kni_kthread_lock); /* Stop kernel thread */ if (knet->kni_kthread != NULL) { kthread_stop(knet->kni_kthread); knet->kni_kthread = NULL; } mutex_unlock(&knet->kni_kthread_lock); } down_write(&knet->kni_list_lock); list_for_each_entry_safe(dev, n, &knet->kni_list_head, list) { /* Stop kernel thread for multiple mode */ if (multiple_kthread_on && dev->pthread != NULL) { kthread_stop(dev->pthread); dev->pthread = NULL; } list_del(&dev->list); kni_dev_remove(dev); } up_write(&knet->kni_list_lock); /* Clear the bit of device in use */ clear_bit(KNI_DEV_IN_USE_BIT_NUM, &knet->device_in_use); put_net(net); pr_debug("/dev/kni closed\n"); return 0; } static int kni_check_param(struct kni_dev *kni, struct rte_kni_device_info *dev) { if (!kni || !dev) return -1; /* Check if network name has been used */ if (!strncmp(kni->name, dev->name, RTE_KNI_NAMESIZE)) { pr_err("KNI name %s duplicated\n", dev->name); return -1; } return 0; } static int kni_run_thread(struct kni_net *knet, struct kni_dev *kni, uint8_t force_bind) { /** * Create a new kernel thread for multiple mode, set its core affinity, * and finally wake it up. */ if (multiple_kthread_on) { kni->pthread = kthread_create(kni_thread_multiple, (void *)kni, "kni_%s", kni->name); if (IS_ERR(kni->pthread)) { kni_dev_remove(kni); return -ECANCELED; } if (force_bind) kthread_bind(kni->pthread, kni->core_id); wake_up_process(kni->pthread); } else { mutex_lock(&knet->kni_kthread_lock); if (knet->kni_kthread == NULL) { knet->kni_kthread = kthread_create(kni_thread_single, (void *)knet, "kni_single"); if (IS_ERR(knet->kni_kthread)) { mutex_unlock(&knet->kni_kthread_lock); kni_dev_remove(kni); return -ECANCELED; } if (force_bind) kthread_bind(knet->kni_kthread, kni->core_id); wake_up_process(knet->kni_kthread); } mutex_unlock(&knet->kni_kthread_lock); } return 0; } static int kni_ioctl_create(struct net *net, uint32_t ioctl_num, unsigned long ioctl_param) { struct kni_net *knet = net_generic(net, kni_net_id); int ret; struct rte_kni_device_info dev_info; struct net_device *net_dev = NULL; struct kni_dev *kni, *dev, *n; pr_info("Creating kni...\n"); /* Check the buffer size, to avoid warning */ if (_IOC_SIZE(ioctl_num) > sizeof(dev_info)) return -EINVAL; /* Copy kni info from user space */ if (copy_from_user(&dev_info, (void *)ioctl_param, sizeof(dev_info))) return -EFAULT; /* Check if name is zero-ended */ if (strnlen(dev_info.name, sizeof(dev_info.name)) == sizeof(dev_info.name)) { pr_err("kni.name not zero-terminated"); return -EINVAL; } /** * Check if the cpu core id is valid for binding. */ if (dev_info.force_bind && !cpu_online(dev_info.core_id)) { pr_err("cpu %u is not online\n", dev_info.core_id); return -EINVAL; } /* Check if it has been created */ down_read(&knet->kni_list_lock); list_for_each_entry_safe(dev, n, &knet->kni_list_head, list) { if (kni_check_param(dev, &dev_info) < 0) { up_read(&knet->kni_list_lock); return -EINVAL; } } up_read(&knet->kni_list_lock); net_dev = alloc_netdev(sizeof(struct kni_dev), dev_info.name, #ifdef NET_NAME_USER NET_NAME_USER, #endif kni_net_init); if (net_dev == NULL) { pr_err("error allocating device \"%s\"\n", dev_info.name); return -EBUSY; } dev_net_set(net_dev, net); kni = netdev_priv(net_dev); kni->net_dev = net_dev; kni->core_id = dev_info.core_id; strncpy(kni->name, dev_info.name, RTE_KNI_NAMESIZE); /* Translate user space info into kernel space info */ if (dev_info.iova_mode) { #ifdef HAVE_IOVA_TO_KVA_MAPPING_SUPPORT kni->tx_q = iova_to_kva(current, dev_info.tx_phys); kni->rx_q = iova_to_kva(current, dev_info.rx_phys); kni->alloc_q = iova_to_kva(current, dev_info.alloc_phys); kni->free_q = iova_to_kva(current, dev_info.free_phys); kni->req_q = iova_to_kva(current, dev_info.req_phys); kni->resp_q = iova_to_kva(current, dev_info.resp_phys); kni->sync_va = dev_info.sync_va; kni->sync_kva = iova_to_kva(current, dev_info.sync_phys); kni->usr_tsk = current; kni->iova_mode = 1; #else pr_err("KNI module does not support IOVA to VA translation\n"); return -EINVAL; #endif } else { kni->tx_q = phys_to_virt(dev_info.tx_phys); kni->rx_q = phys_to_virt(dev_info.rx_phys); kni->alloc_q = phys_to_virt(dev_info.alloc_phys); kni->free_q = phys_to_virt(dev_info.free_phys); kni->req_q = phys_to_virt(dev_info.req_phys); kni->resp_q = phys_to_virt(dev_info.resp_phys); kni->sync_va = dev_info.sync_va; kni->sync_kva = phys_to_virt(dev_info.sync_phys); kni->iova_mode = 0; } kni->mbuf_size = dev_info.mbuf_size; pr_debug("tx_phys: 0x%016llx, tx_q addr: 0x%p\n", (unsigned long long) dev_info.tx_phys, kni->tx_q); pr_debug("rx_phys: 0x%016llx, rx_q addr: 0x%p\n", (unsigned long long) dev_info.rx_phys, kni->rx_q); pr_debug("alloc_phys: 0x%016llx, alloc_q addr: 0x%p\n", (unsigned long long) dev_info.alloc_phys, kni->alloc_q); pr_debug("free_phys: 0x%016llx, free_q addr: 0x%p\n", (unsigned long long) dev_info.free_phys, kni->free_q); pr_debug("req_phys: 0x%016llx, req_q addr: 0x%p\n", (unsigned long long) dev_info.req_phys, kni->req_q); pr_debug("resp_phys: 0x%016llx, resp_q addr: 0x%p\n", (unsigned long long) dev_info.resp_phys, kni->resp_q); pr_debug("mbuf_size: %u\n", kni->mbuf_size); /* if user has provided a valid mac address */ if (is_valid_ether_addr(dev_info.mac_addr)) { #ifdef HAVE_ETH_HW_ADDR_SET eth_hw_addr_set(net_dev, dev_info.mac_addr); #else memcpy(net_dev->dev_addr, dev_info.mac_addr, ETH_ALEN); #endif } else { /* Assign random MAC address. */ eth_hw_addr_random(net_dev); } if (dev_info.mtu) net_dev->mtu = dev_info.mtu; #ifdef HAVE_MAX_MTU_PARAM net_dev->max_mtu = net_dev->mtu; if (dev_info.min_mtu) net_dev->min_mtu = dev_info.min_mtu; if (dev_info.max_mtu) net_dev->max_mtu = dev_info.max_mtu; #endif ret = register_netdev(net_dev); if (ret) { pr_err("error %i registering device \"%s\"\n", ret, dev_info.name); kni->net_dev = NULL; kni_dev_remove(kni); free_netdev(net_dev); return -ENODEV; } netif_carrier_off(net_dev); ret = kni_run_thread(knet, kni, dev_info.force_bind); if (ret != 0) return ret; down_write(&knet->kni_list_lock); list_add(&kni->list, &knet->kni_list_head); up_write(&knet->kni_list_lock); return 0; } static int kni_ioctl_release(struct net *net, uint32_t ioctl_num, unsigned long ioctl_param) { struct kni_net *knet = net_generic(net, kni_net_id); int ret = -EINVAL; struct kni_dev *dev, *n; struct rte_kni_device_info dev_info; if (_IOC_SIZE(ioctl_num) > sizeof(dev_info)) return -EINVAL; if (copy_from_user(&dev_info, (void *)ioctl_param, sizeof(dev_info))) return -EFAULT; /* Release the network device according to its name */ if (strlen(dev_info.name) == 0) return -EINVAL; down_write(&knet->kni_list_lock); list_for_each_entry_safe(dev, n, &knet->kni_list_head, list) { if (strncmp(dev->name, dev_info.name, RTE_KNI_NAMESIZE) != 0) continue; if (multiple_kthread_on && dev->pthread != NULL) { kthread_stop(dev->pthread); dev->pthread = NULL; } list_del(&dev->list); kni_dev_remove(dev); ret = 0; break; } up_write(&knet->kni_list_lock); pr_info("%s release kni named %s\n", (ret == 0 ? "Successfully" : "Unsuccessfully"), dev_info.name); return ret; } static long kni_ioctl(struct file *file, unsigned int ioctl_num, unsigned long ioctl_param) { long ret = -EINVAL; struct net *net = current->nsproxy->net_ns; pr_debug("IOCTL num=0x%0x param=0x%0lx\n", ioctl_num, ioctl_param); /* * Switch according to the ioctl called */ switch (_IOC_NR(ioctl_num)) { case _IOC_NR(RTE_KNI_IOCTL_TEST): /* For test only, not used */ break; case _IOC_NR(RTE_KNI_IOCTL_CREATE): ret = kni_ioctl_create(net, ioctl_num, ioctl_param); break; case _IOC_NR(RTE_KNI_IOCTL_RELEASE): ret = kni_ioctl_release(net, ioctl_num, ioctl_param); break; default: pr_debug("IOCTL default\n"); break; } return ret; } static long kni_compat_ioctl(struct file *file, unsigned int ioctl_num, unsigned long ioctl_param) { /* 32 bits app on 64 bits OS to be supported later */ pr_debug("Not implemented.\n"); return -EINVAL; } static const struct file_operations kni_fops = { .owner = THIS_MODULE, .open = kni_open, .release = kni_release, .unlocked_ioctl = kni_ioctl, .compat_ioctl = kni_compat_ioctl, }; static struct miscdevice kni_misc = { .minor = MISC_DYNAMIC_MINOR, .name = KNI_DEVICE, .fops = &kni_fops, }; static int __init kni_parse_kthread_mode(void) { if (!kthread_mode) return 0; if (strcmp(kthread_mode, "single") == 0) return 0; else if (strcmp(kthread_mode, "multiple") == 0) multiple_kthread_on = 1; else return -1; return 0; } static int __init kni_parse_carrier_state(void) { if (!carrier) { kni_dflt_carrier = 0; return 0; } if (strcmp(carrier, "off") == 0) kni_dflt_carrier = 0; else if (strcmp(carrier, "on") == 0) kni_dflt_carrier = 1; else return -1; return 0; } static int __init kni_parse_bifurcated_support(void) { if (!enable_bifurcated) { bifurcated_support = 0; return 0; } if (strcmp(enable_bifurcated, "on") == 0) bifurcated_support = 1; else return -1; return 0; } static int __init kni_init(void) { int rc; if (kni_parse_kthread_mode() < 0) { pr_err("Invalid parameter for kthread_mode\n"); return -EINVAL; } if (multiple_kthread_on == 0) pr_debug("Single kernel thread for all KNI devices\n"); else pr_debug("Multiple kernel thread mode enabled\n"); if (kni_parse_carrier_state() < 0) { pr_err("Invalid parameter for carrier\n"); return -EINVAL; } if (kni_dflt_carrier == 0) pr_debug("Default carrier state set to off.\n"); else pr_debug("Default carrier state set to on.\n"); if (kni_parse_bifurcated_support() < 0) { pr_err("Invalid parameter for bifurcated support\n"); return -EINVAL; } if (bifurcated_support == 1) pr_debug("bifurcated support is enabled.\n"); if (min_scheduling_interval < 0 || max_scheduling_interval < 0 || min_scheduling_interval > KNI_KTHREAD_MAX_RESCHEDULE_INTERVAL || max_scheduling_interval > KNI_KTHREAD_MAX_RESCHEDULE_INTERVAL || min_scheduling_interval >= max_scheduling_interval) { pr_err("Invalid parameters for scheduling interval\n"); return -EINVAL; } #ifdef HAVE_SIMPLIFIED_PERNET_OPERATIONS rc = register_pernet_subsys(&kni_net_ops); #else rc = register_pernet_gen_subsys(&kni_net_id, &kni_net_ops); #endif if (rc) return -EPERM; rc = misc_register(&kni_misc); if (rc != 0) { pr_err("Misc registration failed\n"); goto out; } /* Configure the lo mode according to the input parameter */ kni_net_config_lo_mode(lo_mode); return 0; out: #ifdef HAVE_SIMPLIFIED_PERNET_OPERATIONS unregister_pernet_subsys(&kni_net_ops); #else unregister_pernet_gen_subsys(kni_net_id, &kni_net_ops); #endif return rc; } static void __exit kni_exit(void) { misc_deregister(&kni_misc); #ifdef HAVE_SIMPLIFIED_PERNET_OPERATIONS unregister_pernet_subsys(&kni_net_ops); #else unregister_pernet_gen_subsys(kni_net_id, &kni_net_ops); #endif } module_init(kni_init); module_exit(kni_exit); module_param(lo_mode, charp, 0644); MODULE_PARM_DESC(lo_mode, "KNI loopback mode (default=lo_mode_none):\n" "\t\tlo_mode_none Kernel loopback disabled\n" "\t\tlo_mode_fifo Enable kernel loopback with fifo\n" "\t\tlo_mode_fifo_skb Enable kernel loopback with fifo and skb buffer\n" "\t\t" ); module_param(kthread_mode, charp, 0644); MODULE_PARM_DESC(kthread_mode, "Kernel thread mode (default=single):\n" "\t\tsingle Single kernel thread mode enabled.\n" "\t\tmultiple Multiple kernel thread mode enabled.\n" "\t\t" ); module_param(carrier, charp, 0644); MODULE_PARM_DESC(carrier, "Default carrier state for KNI interface (default=off):\n" "\t\toff Interfaces will be created with carrier state set to off.\n" "\t\ton Interfaces will be created with carrier state set to on.\n" "\t\t" ); module_param(enable_bifurcated, charp, 0644); MODULE_PARM_DESC(enable_bifurcated, "Enable request processing support for bifurcated drivers, " "which means releasing rtnl_lock before calling userspace callback and " "supporting async requests (default=off):\n" "\t\ton Enable request processing support for bifurcated drivers.\n" "\t\t" ); module_param(min_scheduling_interval, long, 0644); MODULE_PARM_DESC(min_scheduling_interval, "KNI thread min scheduling interval (default=100 microseconds)" ); module_param(max_scheduling_interval, long, 0644); MODULE_PARM_DESC(max_scheduling_interval, "KNI thread max scheduling interval (default=200 microseconds)" );