/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2017,2019-2020 NXP * Copyright(c) 2017-2020 Intel Corporation. */ #ifndef _RTE_SECURITY_H_ #define _RTE_SECURITY_H_ /** * @file rte_security.h * * RTE Security Common Definitions * */ #ifdef __cplusplus extern "C" { #endif #include #include #include #include #include #include #include #include #include /** IPSec protocol mode */ enum rte_security_ipsec_sa_mode { RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT = 1, /**< IPSec Transport mode */ RTE_SECURITY_IPSEC_SA_MODE_TUNNEL, /**< IPSec Tunnel mode */ }; /** IPSec Protocol */ enum rte_security_ipsec_sa_protocol { RTE_SECURITY_IPSEC_SA_PROTO_AH = 1, /**< AH protocol */ RTE_SECURITY_IPSEC_SA_PROTO_ESP, /**< ESP protocol */ }; /** IPSEC tunnel type */ enum rte_security_ipsec_tunnel_type { RTE_SECURITY_IPSEC_TUNNEL_IPV4 = 1, /**< Outer header is IPv4 */ RTE_SECURITY_IPSEC_TUNNEL_IPV6, /**< Outer header is IPv6 */ }; /** * IPSEC tunnel header verification mode * * Controls how outer IP header is verified in inbound. */ #define RTE_SECURITY_IPSEC_TUNNEL_VERIFY_DST_ADDR 0x1 #define RTE_SECURITY_IPSEC_TUNNEL_VERIFY_SRC_DST_ADDR 0x2 /** * Security context for crypto/eth devices * * Security instance for each driver to register security operations. * The application can get the security context from the crypto/eth device id * using the APIs rte_cryptodev_get_sec_ctx()/rte_eth_dev_get_sec_ctx() * This structure is used to identify the device(crypto/eth) for which the * security operations need to be performed. */ struct rte_security_ctx { void *device; /**< Crypto/ethernet device attached */ const struct rte_security_ops *ops; /**< Pointer to security ops for the device */ uint16_t sess_cnt; /**< Number of sessions attached to this context */ uint32_t flags; /**< Flags for security context */ }; #define RTE_SEC_CTX_F_FAST_SET_MDATA 0x00000001 /**< Driver uses fast metadata update without using driver specific callback */ #define RTE_SEC_CTX_F_FAST_GET_UDATA 0x00000002 /**< Driver provides udata using fast method without using driver specific * callback. For fast mdata and udata, mbuf dynamic field would be registered * by driver via rte_security_dynfield_register(). */ /** * IPSEC tunnel parameters * * These parameters are used to build outbound tunnel headers. */ struct rte_security_ipsec_tunnel_param { enum rte_security_ipsec_tunnel_type type; /**< Tunnel type: IPv4 or IPv6 */ RTE_STD_C11 union { struct { struct in_addr src_ip; /**< IPv4 source address */ struct in_addr dst_ip; /**< IPv4 destination address */ uint8_t dscp; /**< IPv4 Differentiated Services Code Point */ uint8_t df; /**< IPv4 Don't Fragment bit */ uint8_t ttl; /**< IPv4 Time To Live */ } ipv4; /**< IPv4 header parameters */ struct { struct in6_addr src_addr; /**< IPv6 source address */ struct in6_addr dst_addr; /**< IPv6 destination address */ uint8_t dscp; /**< IPv6 Differentiated Services Code Point */ uint32_t flabel; /**< IPv6 flow label */ uint8_t hlimit; /**< IPv6 hop limit */ } ipv6; /**< IPv6 header parameters */ }; }; struct rte_security_ipsec_udp_param { uint16_t sport; uint16_t dport; }; /** * IPsec Security Association option flags */ struct rte_security_ipsec_sa_options { /** Extended Sequence Numbers (ESN) * * * 1: Use extended (64 bit) sequence numbers * * 0: Use normal sequence numbers */ uint32_t esn : 1; /** UDP encapsulation * * * 1: Do UDP encapsulation/decapsulation so that IPSEC packets can * traverse through NAT boxes. * * 0: No UDP encapsulation */ uint32_t udp_encap : 1; /** Copy DSCP bits * * * 1: Copy IPv4 or IPv6 DSCP bits from inner IP header to * the outer IP header in encapsulation, and vice versa in * decapsulation. * * 0: Do not change DSCP field. */ uint32_t copy_dscp : 1; /** Copy IPv6 Flow Label * * * 1: Copy IPv6 flow label from inner IPv6 header to the * outer IPv6 header. * * 0: Outer header is not modified. */ uint32_t copy_flabel : 1; /** Copy IPv4 Don't Fragment bit * * * 1: Copy the DF bit from the inner IPv4 header to the outer * IPv4 header. * * 0: Outer header is not modified. */ uint32_t copy_df : 1; /** Decrement inner packet Time To Live (TTL) field * * * 1: In tunnel mode, decrement inner packet IPv4 TTL or * IPv6 Hop Limit after tunnel decapsulation, or before tunnel * encapsulation. * * 0: Inner packet is not modified. */ uint32_t dec_ttl : 1; /** Explicit Congestion Notification (ECN) * * * 1: In tunnel mode, enable outer header ECN Field copied from * inner header in tunnel encapsulation, or inner header ECN * field construction in decapsulation. * * 0: Inner/outer header are not modified. */ uint32_t ecn : 1; /** Security statistics * * * 1: Enable per session security statistics collection for * this SA, if supported by the driver. * * 0: Disable per session security statistics collection for this SA. */ uint32_t stats : 1; /** Disable IV generation in PMD * * * 1: Disable IV generation in PMD. When disabled, IV provided in * rte_crypto_op will be used by the PMD. * * * 0: Enable IV generation in PMD. When enabled, PMD generated random * value would be used and application is not required to provide * IV. * * Note: For inline cases, IV generation would always need to be handled * by the PMD. */ uint32_t iv_gen_disable : 1; /** Verify tunnel header in inbound * * ``RTE_SECURITY_IPSEC_TUNNEL_VERIFY_DST_ADDR``: Verify destination * IP address. * * * ``RTE_SECURITY_IPSEC_TUNNEL_VERIFY_SRC_DST_ADDR``: Verify both * source and destination IP addresses. */ uint32_t tunnel_hdr_verify : 2; /** Verify UDP encapsulation ports in inbound * * * 1: Match UDP source and destination ports * * 0: Do not match UDP ports */ uint32_t udp_ports_verify : 1; /** Compute/verify inner packet IPv4 header checksum in tunnel mode * * * 1: For outbound, compute inner packet IPv4 header checksum * before tunnel encapsulation and for inbound, verify after * tunnel decapsulation. * * 0: Inner packet IP header checksum is not computed/verified. * * The checksum verification status would be set in mbuf using * RTE_MBUF_F_RX_IP_CKSUM_xxx flags. * * Inner IP checksum computation can also be enabled(per operation) * by setting the flag RTE_MBUF_F_TX_IP_CKSUM in mbuf. */ uint32_t ip_csum_enable : 1; /** Compute/verify inner packet L4 checksum in tunnel mode * * * 1: For outbound, compute inner packet L4 checksum before * tunnel encapsulation and for inbound, verify after * tunnel decapsulation. * * 0: Inner packet L4 checksum is not computed/verified. * * The checksum verification status would be set in mbuf using * RTE_MBUF_F_RX_L4_CKSUM_xxx flags. * * Inner L4 checksum computation can also be enabled(per operation) * by setting the flags RTE_MBUF_F_TX_TCP_CKSUM or RTE_MBUF_F_TX_SCTP_CKSUM or * RTE_MBUF_F_TX_UDP_CKSUM or RTE_MBUF_F_TX_L4_MASK in mbuf. */ uint32_t l4_csum_enable : 1; /** Reserved bit fields for future extension * * User should ensure reserved_opts is cleared as it may change in * subsequent releases to support new options. * * Note: Reduce number of bits in reserved_opts for every new option. */ uint32_t reserved_opts : 18; }; /** IPSec security association direction */ enum rte_security_ipsec_sa_direction { RTE_SECURITY_IPSEC_SA_DIR_EGRESS, /**< Encrypt and generate digest */ RTE_SECURITY_IPSEC_SA_DIR_INGRESS, /**< Verify digest and decrypt */ }; /** * Configure soft and hard lifetime of an IPsec SA * * Lifetime of an IPsec SA would specify the maximum number of packets or bytes * that can be processed. IPsec operations would start failing once any hard * limit is reached. * * Soft limits can be specified to generate notification when the SA is * approaching hard limits for lifetime. For inline operations, reaching soft * expiry limit would result in raising an eth event for the same. For lookaside * operations, this would result in a warning returned in * ``rte_crypto_op.aux_flags``. */ struct rte_security_ipsec_lifetime { uint64_t packets_soft_limit; /**< Soft expiry limit in number of packets */ uint64_t bytes_soft_limit; /**< Soft expiry limit in bytes */ uint64_t packets_hard_limit; /**< Hard expiry limit in number of packets */ uint64_t bytes_hard_limit; /**< Hard expiry limit in bytes */ }; /** * IPsec security association configuration data. * * This structure contains data required to create an IPsec SA security session. */ struct rte_security_ipsec_xform { uint32_t spi; /**< SA security parameter index */ uint32_t salt; /**< SA salt */ struct rte_security_ipsec_sa_options options; /**< various SA options */ enum rte_security_ipsec_sa_direction direction; /**< IPSec SA Direction - Egress/Ingress */ enum rte_security_ipsec_sa_protocol proto; /**< IPsec SA Protocol - AH/ESP */ enum rte_security_ipsec_sa_mode mode; /**< IPsec SA Mode - transport/tunnel */ struct rte_security_ipsec_tunnel_param tunnel; /**< Tunnel parameters, NULL for transport mode */ struct rte_security_ipsec_lifetime life; /**< IPsec SA lifetime */ uint32_t replay_win_sz; /**< Anti replay window size to enable sequence replay attack handling. * replay checking is disabled if the window size is 0. */ union { uint64_t value; struct { uint32_t low; uint32_t hi; }; } esn; /**< Extended Sequence Number */ struct rte_security_ipsec_udp_param udp; /**< UDP parameters, ignored when udp_encap option not specified */ }; /** * MACsec security session configuration */ struct rte_security_macsec_xform { /** To be Filled */ int dummy; }; /** * PDCP Mode of session */ enum rte_security_pdcp_domain { RTE_SECURITY_PDCP_MODE_CONTROL, /**< PDCP control plane */ RTE_SECURITY_PDCP_MODE_DATA, /**< PDCP data plane */ RTE_SECURITY_PDCP_MODE_SHORT_MAC, /**< PDCP short mac */ }; /** PDCP Frame direction */ enum rte_security_pdcp_direction { RTE_SECURITY_PDCP_UPLINK, /**< Uplink */ RTE_SECURITY_PDCP_DOWNLINK, /**< Downlink */ }; /** PDCP Sequence Number Size selectors */ enum rte_security_pdcp_sn_size { /** PDCP_SN_SIZE_5: 5bit sequence number */ RTE_SECURITY_PDCP_SN_SIZE_5 = 5, /** PDCP_SN_SIZE_7: 7bit sequence number */ RTE_SECURITY_PDCP_SN_SIZE_7 = 7, /** PDCP_SN_SIZE_12: 12bit sequence number */ RTE_SECURITY_PDCP_SN_SIZE_12 = 12, /** PDCP_SN_SIZE_15: 15bit sequence number */ RTE_SECURITY_PDCP_SN_SIZE_15 = 15, /** PDCP_SN_SIZE_18: 18bit sequence number */ RTE_SECURITY_PDCP_SN_SIZE_18 = 18 }; /** * PDCP security association configuration data. * * This structure contains data required to create a PDCP security session. */ struct rte_security_pdcp_xform { int8_t bearer; /**< PDCP bearer ID */ /** Enable in order delivery, this field shall be set only if * driver/HW is capable. See RTE_SECURITY_PDCP_ORDERING_CAP. */ uint8_t en_ordering; /** Notify driver/HW to detect and remove duplicate packets. * This field should be set only when driver/hw is capable. * See RTE_SECURITY_PDCP_DUP_DETECT_CAP. */ uint8_t remove_duplicates; /** PDCP mode of operation: Control or data */ enum rte_security_pdcp_domain domain; /** PDCP Frame Direction 0:UL 1:DL */ enum rte_security_pdcp_direction pkt_dir; /** Sequence number size, 5/7/12/15/18 */ enum rte_security_pdcp_sn_size sn_size; /** Starting Hyper Frame Number to be used together with the SN * from the PDCP frames */ uint32_t hfn; /** HFN Threshold for key renegotiation */ uint32_t hfn_threshold; /** HFN can be given as a per packet value also. * As we do not have IV in case of PDCP, and HFN is * used to generate IV. IV field can be used to get the * per packet HFN while enq/deq. * If hfn_ovrd field is set, user is expected to set the * per packet HFN in place of IV. PMDs will extract the HFN * and perform operations accordingly. */ uint8_t hfn_ovrd; /** In case of 5G NR, a new protocol (SDAP) header may be set * inside PDCP payload which should be authenticated but not * encrypted. Hence, driver should be notified if SDAP is * enabled or not, so that SDAP header is not encrypted. */ uint8_t sdap_enabled; /** Reserved for future */ uint16_t reserved; }; /** DOCSIS direction */ enum rte_security_docsis_direction { RTE_SECURITY_DOCSIS_UPLINK, /**< Uplink * - Decryption, followed by CRC Verification */ RTE_SECURITY_DOCSIS_DOWNLINK, /**< Downlink * - CRC Generation, followed by Encryption */ }; /** * DOCSIS security session configuration. * * This structure contains data required to create a DOCSIS security session. */ struct rte_security_docsis_xform { enum rte_security_docsis_direction direction; /**< DOCSIS direction */ }; /** * Security session action type. */ enum rte_security_session_action_type { RTE_SECURITY_ACTION_TYPE_NONE, /**< No security actions */ RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO, /**< Crypto processing for security protocol is processed inline * during transmission */ RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL, /**< All security protocol processing is performed inline during * transmission */ RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL, /**< All security protocol processing including crypto is performed * on a lookaside accelerator */ RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO /**< Similar to ACTION_TYPE_NONE but crypto processing for security * protocol is processed synchronously by a CPU. */ }; /** Security session protocol definition */ enum rte_security_session_protocol { RTE_SECURITY_PROTOCOL_IPSEC = 1, /**< IPsec Protocol */ RTE_SECURITY_PROTOCOL_MACSEC, /**< MACSec Protocol */ RTE_SECURITY_PROTOCOL_PDCP, /**< PDCP Protocol */ RTE_SECURITY_PROTOCOL_DOCSIS, /**< DOCSIS Protocol */ }; /** * Security session configuration */ struct rte_security_session_conf { enum rte_security_session_action_type action_type; /**< Type of action to be performed on the session */ enum rte_security_session_protocol protocol; /**< Security protocol to be configured */ RTE_STD_C11 union { struct rte_security_ipsec_xform ipsec; struct rte_security_macsec_xform macsec; struct rte_security_pdcp_xform pdcp; struct rte_security_docsis_xform docsis; }; /**< Configuration parameters for security session */ struct rte_crypto_sym_xform *crypto_xform; /**< Security Session Crypto Transformations */ void *userdata; /**< Application specific userdata to be saved with session */ }; struct rte_security_session { void *sess_private_data; /**< Private session material */ uint64_t opaque_data; /**< Opaque user defined data */ }; /** * Create security session as specified by the session configuration * * @param instance security instance * @param conf session configuration parameters * @param mp mempool to allocate session objects from * @param priv_mp mempool to allocate session private data objects from * @return * - On success, pointer to session * - On failure, NULL */ struct rte_security_session * rte_security_session_create(struct rte_security_ctx *instance, struct rte_security_session_conf *conf, struct rte_mempool *mp, struct rte_mempool *priv_mp); /** * Update security session as specified by the session configuration * * @param instance security instance * @param sess session to update parameters * @param conf update configuration parameters * @return * - On success returns 0 * - On failure returns a negative errno value. */ __rte_experimental int rte_security_session_update(struct rte_security_ctx *instance, struct rte_security_session *sess, struct rte_security_session_conf *conf); /** * Get the size of the security session data for a device. * * @param instance security instance. * * @return * - Size of the private data, if successful * - 0 if device is invalid or does not support the operation. */ unsigned int rte_security_session_get_size(struct rte_security_ctx *instance); /** * Free security session header and the session private data and * return it to its original mempool. * * @param instance security instance * @param sess security session to be freed * * @return * - 0 if successful. * - -EINVAL if session or context instance is NULL. * - -EBUSY if not all device private data has been freed. * - -ENOTSUP if destroying private data is not supported. * - other negative values in case of freeing private data errors. */ int rte_security_session_destroy(struct rte_security_ctx *instance, struct rte_security_session *sess); /** Device-specific metadata field type */ typedef uint64_t rte_security_dynfield_t; /** Dynamic mbuf field for device-specific metadata */ extern int rte_security_dynfield_offset; /** * @warning * @b EXPERIMENTAL: this API may change without prior notice * * Get pointer to mbuf field for device-specific metadata. * * For performance reason, no check is done, * the dynamic field may not be registered. * @see rte_security_dynfield_is_registered * * @param mbuf packet to access * @return pointer to mbuf field */ __rte_experimental static inline rte_security_dynfield_t * rte_security_dynfield(struct rte_mbuf *mbuf) { return RTE_MBUF_DYNFIELD(mbuf, rte_security_dynfield_offset, rte_security_dynfield_t *); } /** * @warning * @b EXPERIMENTAL: this API may change without prior notice * * Check whether the dynamic field is registered. * * @return true if rte_security_dynfield_register() has been called. */ __rte_experimental static inline bool rte_security_dynfield_is_registered(void) { return rte_security_dynfield_offset >= 0; } /** Function to call PMD specific function pointer set_pkt_metadata() */ __rte_experimental extern int __rte_security_set_pkt_metadata(struct rte_security_ctx *instance, struct rte_security_session *sess, struct rte_mbuf *m, void *params); /** * Updates the buffer with device-specific defined metadata * * @param instance security instance * @param sess security session * @param mb packet mbuf to set metadata on. * @param params device-specific defined parameters * required for metadata * * @return * - On success, zero. * - On failure, a negative value. */ static inline int rte_security_set_pkt_metadata(struct rte_security_ctx *instance, struct rte_security_session *sess, struct rte_mbuf *mb, void *params) { /* Fast Path */ if (instance->flags & RTE_SEC_CTX_F_FAST_SET_MDATA) { *rte_security_dynfield(mb) = (rte_security_dynfield_t)(sess->sess_private_data); return 0; } /* Jump to PMD specific function pointer */ return __rte_security_set_pkt_metadata(instance, sess, mb, params); } /** Function to call PMD specific function pointer get_userdata() */ __rte_experimental extern void *__rte_security_get_userdata(struct rte_security_ctx *instance, uint64_t md); /** * Get userdata associated with the security session. Device specific metadata * provided would be used to uniquely identify the security session being * referred to. This userdata would be registered while creating the session, * and application can use this to identify the SA etc. * * Device specific metadata would be set in mbuf for inline processed inbound * packets. In addition, the same metadata would be set for IPsec events * reported by rte_eth_event framework. * * @param instance security instance * @param md device-specific metadata * * @return * - On success, userdata * - On failure, NULL */ __rte_experimental static inline void * rte_security_get_userdata(struct rte_security_ctx *instance, uint64_t md) { /* Fast Path */ if (instance->flags & RTE_SEC_CTX_F_FAST_GET_UDATA) return (void *)(uintptr_t)md; /* Jump to PMD specific function pointer */ return __rte_security_get_userdata(instance, md); } /** * Attach a session to a symmetric crypto operation * * @param sym_op crypto operation * @param sess security session */ static inline int __rte_security_attach_session(struct rte_crypto_sym_op *sym_op, struct rte_security_session *sess) { sym_op->sec_session = sess; return 0; } static inline void * get_sec_session_private_data(const struct rte_security_session *sess) { return sess->sess_private_data; } static inline void set_sec_session_private_data(struct rte_security_session *sess, void *private_data) { sess->sess_private_data = private_data; } /** * Attach a session to a crypto operation. * This API is needed only in case of RTE_SECURITY_SESS_CRYPTO_PROTO_OFFLOAD * For other rte_security_session_action_type, ol_flags in rte_mbuf may be * defined to perform security operations. * * @param op crypto operation * @param sess security session */ static inline int rte_security_attach_session(struct rte_crypto_op *op, struct rte_security_session *sess) { if (unlikely(op->type != RTE_CRYPTO_OP_TYPE_SYMMETRIC)) return -EINVAL; op->sess_type = RTE_CRYPTO_OP_SECURITY_SESSION; return __rte_security_attach_session(op->sym, sess); } struct rte_security_macsec_stats { uint64_t reserved; }; struct rte_security_ipsec_stats { uint64_t ipackets; /**< Successfully received IPsec packets. */ uint64_t opackets; /**< Successfully transmitted IPsec packets.*/ uint64_t ibytes; /**< Successfully received IPsec bytes. */ uint64_t obytes; /**< Successfully transmitted IPsec bytes. */ uint64_t ierrors; /**< IPsec packets receive/decrypt errors. */ uint64_t oerrors; /**< IPsec packets transmit/encrypt errors. */ uint64_t reserved1; /**< Reserved for future use. */ uint64_t reserved2; /**< Reserved for future use. */ }; struct rte_security_pdcp_stats { uint64_t reserved; }; struct rte_security_docsis_stats { uint64_t reserved; }; struct rte_security_stats { enum rte_security_session_protocol protocol; /**< Security protocol to be configured */ RTE_STD_C11 union { struct rte_security_macsec_stats macsec; struct rte_security_ipsec_stats ipsec; struct rte_security_pdcp_stats pdcp; struct rte_security_docsis_stats docsis; }; }; /** * Get security session statistics * * @param instance security instance * @param sess security session * If security session is NULL then global (per security instance) statistics * will be retrieved, if supported. Global statistics collection is not * dependent on the per session statistics configuration. * @param stats statistics * @return * - On success, return 0 * - On failure, a negative value */ __rte_experimental int rte_security_session_stats_get(struct rte_security_ctx *instance, struct rte_security_session *sess, struct rte_security_stats *stats); /** * Security capability definition */ struct rte_security_capability { enum rte_security_session_action_type action; /**< Security action type*/ enum rte_security_session_protocol protocol; /**< Security protocol */ RTE_STD_C11 union { struct { enum rte_security_ipsec_sa_protocol proto; /**< IPsec SA protocol */ enum rte_security_ipsec_sa_mode mode; /**< IPsec SA mode */ enum rte_security_ipsec_sa_direction direction; /**< IPsec SA direction */ struct rte_security_ipsec_sa_options options; /**< IPsec SA supported options */ uint32_t replay_win_sz_max; /**< IPsec Anti Replay Window Size. A '0' value * indicates that Anti Replay is not supported. */ } ipsec; /**< IPsec capability */ struct { /* To be Filled */ int dummy; } macsec; /**< MACsec capability */ struct { enum rte_security_pdcp_domain domain; /**< PDCP mode of operation: Control or data */ uint32_t capa_flags; /**< Capability flags, see RTE_SECURITY_PDCP_* */ } pdcp; /**< PDCP capability */ struct { enum rte_security_docsis_direction direction; /**< DOCSIS direction */ } docsis; /**< DOCSIS capability */ }; const struct rte_cryptodev_capabilities *crypto_capabilities; /**< Corresponding crypto capabilities for security capability */ uint32_t ol_flags; /**< Device offload flags */ }; /** Underlying Hardware/driver which support PDCP may or may not support * packet ordering. Set RTE_SECURITY_PDCP_ORDERING_CAP if it support. * If it is not set, driver/HW assumes packets received are in order * and it will be application's responsibility to maintain ordering. */ #define RTE_SECURITY_PDCP_ORDERING_CAP 0x00000001 /** Underlying Hardware/driver which support PDCP may or may not detect * duplicate packet. Set RTE_SECURITY_PDCP_DUP_DETECT_CAP if it support. * If it is not set, driver/HW assumes there is no duplicate packet received. */ #define RTE_SECURITY_PDCP_DUP_DETECT_CAP 0x00000002 #define RTE_SECURITY_TX_OLOAD_NEED_MDATA 0x00000001 /**< HW needs metadata update, see rte_security_set_pkt_metadata(). */ #define RTE_SECURITY_TX_HW_TRAILER_OFFLOAD 0x00000002 /**< HW constructs trailer of packets * Transmitted packets will have the trailer added to them * by hardware. The next protocol field will be based on * the mbuf->inner_esp_next_proto field. */ #define RTE_SECURITY_RX_HW_TRAILER_OFFLOAD 0x00010000 /**< HW removes trailer of packets * Received packets have no trailer, the next protocol field * is supplied in the mbuf->inner_esp_next_proto field. * Inner packet is not modified. */ /** * Security capability index used to query a security instance for a specific * security capability */ struct rte_security_capability_idx { enum rte_security_session_action_type action; enum rte_security_session_protocol protocol; RTE_STD_C11 union { struct { enum rte_security_ipsec_sa_protocol proto; enum rte_security_ipsec_sa_mode mode; enum rte_security_ipsec_sa_direction direction; } ipsec; struct { enum rte_security_pdcp_domain domain; uint32_t capa_flags; } pdcp; struct { enum rte_security_docsis_direction direction; } docsis; }; }; /** * Returns array of security instance capabilities * * @param instance Security instance. * * @return * - Returns array of security capabilities. * - Return NULL if no capabilities available. */ const struct rte_security_capability * rte_security_capabilities_get(struct rte_security_ctx *instance); /** * Query if a specific capability is available on security instance * * @param instance security instance. * @param idx security capability index to match against * * @return * - Returns pointer to security capability on match of capability * index criteria. * - Return NULL if the capability not matched on security instance. */ const struct rte_security_capability * rte_security_capability_get(struct rte_security_ctx *instance, struct rte_security_capability_idx *idx); #ifdef __cplusplus } #endif #endif /* _RTE_SECURITY_H_ */