/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2021 Intel Corporation * Copyright(c) 2021 Arm Limited */ #include #include #include "power_cppc_cpufreq.h" #include "power_common.h" /* macros used for rounding frequency to nearest 100000 */ #define FREQ_ROUNDING_DELTA 50000 #define ROUND_FREQ_TO_N_100000 100000 /* the unit of highest_perf and nominal_perf differs on different arm platforms. * For highest_perf, it maybe 300 or 3000000, both means 3.0GHz. */ #define UNIT_DIFF 10000 #define POWER_CONVERT_TO_DECIMAL 10 #define POWER_GOVERNOR_USERSPACE "userspace" #define POWER_SYSFILE_SETSPEED \ "/sys/devices/system/cpu/cpu%u/cpufreq/scaling_setspeed" #define POWER_SYSFILE_SCALING_MAX_FREQ \ "/sys/devices/system/cpu/cpu%u/cpufreq/scaling_max_freq" #define POWER_SYSFILE_SCALING_MIN_FREQ \ "/sys/devices/system/cpu/cpu%u/cpufreq/scaling_min_freq" #define POWER_SYSFILE_HIGHEST_PERF \ "/sys/devices/system/cpu/cpu%u/acpi_cppc/highest_perf" #define POWER_SYSFILE_NOMINAL_PERF \ "/sys/devices/system/cpu/cpu%u/acpi_cppc/nominal_perf" #define POWER_SYSFILE_SYS_MAX \ "/sys/devices/system/cpu/cpu%u/cpufreq/cpuinfo_max_freq" #define POWER_CPPC_DRIVER "cppc-cpufreq" #define BUS_FREQ 100000 enum power_state { POWER_IDLE = 0, POWER_ONGOING, POWER_USED, POWER_UNKNOWN }; /** * Power info per lcore. */ struct cppc_power_info { unsigned int lcore_id; /**< Logical core id */ uint32_t state; /**< Power in use state */ FILE *f; /**< FD of scaling_setspeed */ char governor_ori[32]; /**< Original governor name */ uint32_t curr_idx; /**< Freq index in freqs array */ uint32_t highest_perf; /**< system wide max freq */ uint32_t nominal_perf; /**< system wide nominal freq */ uint16_t turbo_available; /**< Turbo Boost available */ uint16_t turbo_enable; /**< Turbo Boost enable/disable */ uint32_t nb_freqs; /**< number of available freqs */ uint32_t freqs[RTE_MAX_LCORE_FREQS]; /**< Frequency array */ } __rte_cache_aligned; static struct cppc_power_info lcore_power_info[RTE_MAX_LCORE]; /** * It is to set specific freq for specific logical core, according to the index * of supported frequencies. */ static int set_freq_internal(struct cppc_power_info *pi, uint32_t idx) { if (idx >= RTE_MAX_LCORE_FREQS || idx >= pi->nb_freqs) { RTE_LOG(ERR, POWER, "Invalid frequency index %u, which " "should be less than %u\n", idx, pi->nb_freqs); return -1; } /* Check if it is the same as current */ if (idx == pi->curr_idx) return 0; POWER_DEBUG_TRACE("Frequency[%u] %u to be set for lcore %u\n", idx, pi->freqs[idx], pi->lcore_id); if (fseek(pi->f, 0, SEEK_SET) < 0) { RTE_LOG(ERR, POWER, "Fail to set file position indicator to 0 " "for setting frequency for lcore %u\n", pi->lcore_id); return -1; } if (fprintf(pi->f, "%u", pi->freqs[idx]) < 0) { RTE_LOG(ERR, POWER, "Fail to write new frequency for " "lcore %u\n", pi->lcore_id); return -1; } fflush(pi->f); pi->curr_idx = idx; return 1; } /** * It is to check the current scaling governor by reading sys file, and then * set it into 'userspace' if it is not by writing the sys file. The original * governor will be saved for rolling back. */ static int power_set_governor_userspace(struct cppc_power_info *pi) { return power_set_governor(pi->lcore_id, POWER_GOVERNOR_USERSPACE, pi->governor_ori, sizeof(pi->governor_ori)); } static int power_check_turbo(struct cppc_power_info *pi) { FILE *f_nom = NULL, *f_max = NULL, *f_cmax = NULL; int ret = -1; uint32_t nominal_perf = 0, highest_perf = 0, cpuinfo_max_freq = 0; open_core_sysfs_file(&f_max, "r", POWER_SYSFILE_HIGHEST_PERF, pi->lcore_id); if (f_max == NULL) { RTE_LOG(ERR, POWER, "failed to open %s\n", POWER_SYSFILE_HIGHEST_PERF); goto err; } open_core_sysfs_file(&f_nom, "r", POWER_SYSFILE_NOMINAL_PERF, pi->lcore_id); if (f_nom == NULL) { RTE_LOG(ERR, POWER, "failed to open %s\n", POWER_SYSFILE_NOMINAL_PERF); goto err; } open_core_sysfs_file(&f_cmax, "r", POWER_SYSFILE_SYS_MAX, pi->lcore_id); if (f_cmax == NULL) { RTE_LOG(ERR, POWER, "failed to open %s\n", POWER_SYSFILE_SYS_MAX); goto err; } ret = read_core_sysfs_u32(f_max, &highest_perf); if (ret < 0) { RTE_LOG(ERR, POWER, "Failed to read %s\n", POWER_SYSFILE_HIGHEST_PERF); goto err; } ret = read_core_sysfs_u32(f_nom, &nominal_perf); if (ret < 0) { RTE_LOG(ERR, POWER, "Failed to read %s\n", POWER_SYSFILE_NOMINAL_PERF); goto err; } ret = read_core_sysfs_u32(f_cmax, &cpuinfo_max_freq); if (ret < 0) { RTE_LOG(ERR, POWER, "Failed to read %s\n", POWER_SYSFILE_SYS_MAX); goto err; } pi->highest_perf = highest_perf; pi->nominal_perf = nominal_perf; if ((highest_perf > nominal_perf) && ((cpuinfo_max_freq == highest_perf) || cpuinfo_max_freq == highest_perf * UNIT_DIFF)) { pi->turbo_available = 1; pi->turbo_enable = 1; ret = 0; POWER_DEBUG_TRACE("Lcore %u can do Turbo Boost! highest perf %u, " "nominal perf %u\n", pi->lcore_id, highest_perf, nominal_perf); } else { pi->turbo_available = 0; pi->turbo_enable = 0; POWER_DEBUG_TRACE("Lcore %u Turbo not available! highest perf %u, " "nominal perf %u\n", pi->lcore_id, highest_perf, nominal_perf); } err: if (f_max != NULL) fclose(f_max); if (f_nom != NULL) fclose(f_nom); if (f_cmax != NULL) fclose(f_cmax); return ret; } /** * It is to get the available frequencies of the specific lcore by reading the * sys file. */ static int power_get_available_freqs(struct cppc_power_info *pi) { FILE *f_min = NULL, *f_max = NULL; int ret = -1; uint32_t scaling_min_freq = 0, scaling_max_freq = 0, nominal_perf = 0; uint32_t i, num_freqs = 0; open_core_sysfs_file(&f_max, "r", POWER_SYSFILE_SCALING_MAX_FREQ, pi->lcore_id); if (f_max == NULL) { RTE_LOG(ERR, POWER, "failed to open %s\n", POWER_SYSFILE_SCALING_MAX_FREQ); goto out; } open_core_sysfs_file(&f_min, "r", POWER_SYSFILE_SCALING_MIN_FREQ, pi->lcore_id); if (f_min == NULL) { RTE_LOG(ERR, POWER, "failed to open %s\n", POWER_SYSFILE_SCALING_MIN_FREQ); goto out; } ret = read_core_sysfs_u32(f_max, &scaling_max_freq); if (ret < 0) { RTE_LOG(ERR, POWER, "Failed to read %s\n", POWER_SYSFILE_SCALING_MAX_FREQ); goto out; } ret = read_core_sysfs_u32(f_min, &scaling_min_freq); if (ret < 0) { RTE_LOG(ERR, POWER, "Failed to read %s\n", POWER_SYSFILE_SCALING_MIN_FREQ); goto out; } power_check_turbo(pi); if (scaling_max_freq < scaling_min_freq) goto out; /* If turbo is available then there is one extra freq bucket * to store the sys max freq which value is scaling_max_freq */ nominal_perf = (pi->nominal_perf < UNIT_DIFF) ? pi->nominal_perf * UNIT_DIFF : pi->nominal_perf; num_freqs = (nominal_perf - scaling_min_freq) / BUS_FREQ + 1 + pi->turbo_available; if (num_freqs >= RTE_MAX_LCORE_FREQS) { RTE_LOG(ERR, POWER, "Too many available frequencies: %d\n", num_freqs); goto out; } /* Generate the freq bucket array. */ for (i = 0, pi->nb_freqs = 0; i < num_freqs; i++) { if ((i == 0) && pi->turbo_available) pi->freqs[pi->nb_freqs++] = scaling_max_freq; else pi->freqs[pi->nb_freqs++] = nominal_perf - (i - pi->turbo_available) * BUS_FREQ; } ret = 0; POWER_DEBUG_TRACE("%d frequency(s) of lcore %u are available\n", num_freqs, pi->lcore_id); out: if (f_min != NULL) fclose(f_min); if (f_max != NULL) fclose(f_max); return ret; } /** * It is to fopen the sys file for the future setting the lcore frequency. */ static int power_init_for_setting_freq(struct cppc_power_info *pi) { FILE *f = NULL; char buf[BUFSIZ]; uint32_t i, freq; int ret; open_core_sysfs_file(&f, "rw+", POWER_SYSFILE_SETSPEED, pi->lcore_id); if (f == NULL) { RTE_LOG(ERR, POWER, "failed to open %s\n", POWER_SYSFILE_SETSPEED); goto err; } ret = read_core_sysfs_s(f, buf, sizeof(buf)); if (ret < 0) { RTE_LOG(ERR, POWER, "Failed to read %s\n", POWER_SYSFILE_SETSPEED); goto err; } freq = strtoul(buf, NULL, POWER_CONVERT_TO_DECIMAL); /* convert the frequency to nearest 100000 value * Ex: if freq=1396789 then freq_conv=1400000 * Ex: if freq=800030 then freq_conv=800000 */ unsigned int freq_conv = 0; freq_conv = (freq + FREQ_ROUNDING_DELTA) / ROUND_FREQ_TO_N_100000; freq_conv = freq_conv * ROUND_FREQ_TO_N_100000; for (i = 0; i < pi->nb_freqs; i++) { if (freq_conv == pi->freqs[i]) { pi->curr_idx = i; pi->f = f; return 0; } } err: if (f != NULL) fclose(f); return -1; } int power_cppc_cpufreq_check_supported(void) { return cpufreq_check_scaling_driver(POWER_CPPC_DRIVER); } int power_cppc_cpufreq_init(unsigned int lcore_id) { struct cppc_power_info *pi; uint32_t exp_state; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Lcore id %u can not exceeds %u\n", lcore_id, RTE_MAX_LCORE - 1U); return -1; } pi = &lcore_power_info[lcore_id]; exp_state = POWER_IDLE; /* The power in use state works as a guard variable between * the CPU frequency control initialization and exit process. * The ACQUIRE memory ordering here pairs with the RELEASE * ordering below as lock to make sure the frequency operations * in the critical section are done under the correct state. */ if (!__atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_ONGOING, 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) { RTE_LOG(INFO, POWER, "Power management of lcore %u is " "in use\n", lcore_id); return -1; } pi->lcore_id = lcore_id; /* Check and set the governor */ if (power_set_governor_userspace(pi) < 0) { RTE_LOG(ERR, POWER, "Cannot set governor of lcore %u to " "userspace\n", lcore_id); goto fail; } /* Get the available frequencies */ if (power_get_available_freqs(pi) < 0) { RTE_LOG(ERR, POWER, "Cannot get available frequencies of " "lcore %u\n", lcore_id); goto fail; } /* Init for setting lcore frequency */ if (power_init_for_setting_freq(pi) < 0) { RTE_LOG(ERR, POWER, "Cannot init for setting frequency for " "lcore %u\n", lcore_id); goto fail; } /* Set freq to max by default */ if (power_cppc_cpufreq_freq_max(lcore_id) < 0) { RTE_LOG(ERR, POWER, "Cannot set frequency of lcore %u " "to max\n", lcore_id); goto fail; } RTE_LOG(INFO, POWER, "Initialized successfully for lcore %u " "power management\n", lcore_id); __atomic_store_n(&(pi->state), POWER_USED, __ATOMIC_RELEASE); return 0; fail: __atomic_store_n(&(pi->state), POWER_UNKNOWN, __ATOMIC_RELEASE); return -1; } /** * It is to check the governor and then set the original governor back if * needed by writing the sys file. */ static int power_set_governor_original(struct cppc_power_info *pi) { return power_set_governor(pi->lcore_id, pi->governor_ori, NULL, 0); } int power_cppc_cpufreq_exit(unsigned int lcore_id) { struct cppc_power_info *pi; uint32_t exp_state; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Lcore id %u can not exceeds %u\n", lcore_id, RTE_MAX_LCORE - 1U); return -1; } pi = &lcore_power_info[lcore_id]; exp_state = POWER_USED; /* The power in use state works as a guard variable between * the CPU frequency control initialization and exit process. * The ACQUIRE memory ordering here pairs with the RELEASE * ordering below as lock to make sure the frequency operations * in the critical section are done under the correct state. */ if (!__atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_ONGOING, 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) { RTE_LOG(INFO, POWER, "Power management of lcore %u is " "not used\n", lcore_id); return -1; } /* Close FD of setting freq */ fclose(pi->f); pi->f = NULL; /* Set the governor back to the original */ if (power_set_governor_original(pi) < 0) { RTE_LOG(ERR, POWER, "Cannot set the governor of %u back " "to the original\n", lcore_id); goto fail; } RTE_LOG(INFO, POWER, "Power management of lcore %u has exited from " "'userspace' mode and been set back to the " "original\n", lcore_id); __atomic_store_n(&(pi->state), POWER_IDLE, __ATOMIC_RELEASE); return 0; fail: __atomic_store_n(&(pi->state), POWER_UNKNOWN, __ATOMIC_RELEASE); return -1; } uint32_t power_cppc_cpufreq_freqs(unsigned int lcore_id, uint32_t *freqs, uint32_t num) { struct cppc_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return 0; } if (freqs == NULL) { RTE_LOG(ERR, POWER, "NULL buffer supplied\n"); return 0; } pi = &lcore_power_info[lcore_id]; if (num < pi->nb_freqs) { RTE_LOG(ERR, POWER, "Buffer size is not enough\n"); return 0; } rte_memcpy(freqs, pi->freqs, pi->nb_freqs * sizeof(uint32_t)); return pi->nb_freqs; } uint32_t power_cppc_cpufreq_get_freq(unsigned int lcore_id) { if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return RTE_POWER_INVALID_FREQ_INDEX; } return lcore_power_info[lcore_id].curr_idx; } int power_cppc_cpufreq_set_freq(unsigned int lcore_id, uint32_t index) { if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } return set_freq_internal(&(lcore_power_info[lcore_id]), index); } int power_cppc_cpufreq_freq_down(unsigned int lcore_id) { struct cppc_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; if (pi->curr_idx + 1 == pi->nb_freqs) return 0; /* Frequencies in the array are from high to low. */ return set_freq_internal(pi, pi->curr_idx + 1); } int power_cppc_cpufreq_freq_up(unsigned int lcore_id) { struct cppc_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; if (pi->curr_idx == 0 || (pi->curr_idx == 1 && pi->turbo_available && !pi->turbo_enable)) return 0; /* Frequencies in the array are from high to low. */ return set_freq_internal(pi, pi->curr_idx - 1); } int power_cppc_cpufreq_freq_max(unsigned int lcore_id) { if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } /* Frequencies in the array are from high to low. */ if (lcore_power_info[lcore_id].turbo_available) { if (lcore_power_info[lcore_id].turbo_enable) /* Set to Turbo */ return set_freq_internal( &lcore_power_info[lcore_id], 0); else /* Set to max non-turbo */ return set_freq_internal( &lcore_power_info[lcore_id], 1); } else return set_freq_internal(&lcore_power_info[lcore_id], 0); } int power_cppc_cpufreq_freq_min(unsigned int lcore_id) { struct cppc_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; /* Frequencies in the array are from high to low. */ return set_freq_internal(pi, pi->nb_freqs - 1); } int power_cppc_turbo_status(unsigned int lcore_id) { struct cppc_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; return pi->turbo_enable; } int power_cppc_enable_turbo(unsigned int lcore_id) { struct cppc_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; if (pi->turbo_available) pi->turbo_enable = 1; else { pi->turbo_enable = 0; RTE_LOG(ERR, POWER, "Failed to enable turbo on lcore %u\n", lcore_id); return -1; } /* TODO: must set to max once enabling Turbo? Considering add condition: * if ((pi->turbo_available) && (pi->curr_idx <= 1)) */ /* Max may have changed, so call to max function */ if (power_cppc_cpufreq_freq_max(lcore_id) < 0) { RTE_LOG(ERR, POWER, "Failed to set frequency of lcore %u to max\n", lcore_id); return -1; } return 0; } int power_cppc_disable_turbo(unsigned int lcore_id) { struct cppc_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; pi->turbo_enable = 0; if ((pi->turbo_available) && (pi->curr_idx <= 1)) { /* Try to set freq to max by default coming out of turbo */ if (power_cppc_cpufreq_freq_max(lcore_id) < 0) { RTE_LOG(ERR, POWER, "Failed to set frequency of lcore %u to max\n", lcore_id); return -1; } } return 0; } int power_cppc_get_capabilities(unsigned int lcore_id, struct rte_power_core_capabilities *caps) { struct cppc_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } if (caps == NULL) { RTE_LOG(ERR, POWER, "Invalid argument\n"); return -1; } pi = &lcore_power_info[lcore_id]; caps->capabilities = 0; caps->turbo = !!(pi->turbo_available); return 0; }