/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation. * Copyright 2014 6WIND S.A. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * pktmbuf pool constructor, given as a callback function to * rte_mempool_create(), or called directly if using * rte_mempool_create_empty()/rte_mempool_populate() */ void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg) { struct rte_pktmbuf_pool_private *user_mbp_priv, *mbp_priv; struct rte_pktmbuf_pool_private default_mbp_priv; uint16_t roomsz; RTE_ASSERT(mp->private_data_size >= sizeof(struct rte_pktmbuf_pool_private)); RTE_ASSERT(mp->elt_size >= sizeof(struct rte_mbuf)); /* if no structure is provided, assume no mbuf private area */ user_mbp_priv = opaque_arg; if (user_mbp_priv == NULL) { memset(&default_mbp_priv, 0, sizeof(default_mbp_priv)); if (mp->elt_size > sizeof(struct rte_mbuf)) roomsz = mp->elt_size - sizeof(struct rte_mbuf); else roomsz = 0; default_mbp_priv.mbuf_data_room_size = roomsz; user_mbp_priv = &default_mbp_priv; } RTE_ASSERT(mp->elt_size >= sizeof(struct rte_mbuf) + ((user_mbp_priv->flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) ? sizeof(struct rte_mbuf_ext_shared_info) : user_mbp_priv->mbuf_data_room_size) + user_mbp_priv->mbuf_priv_size); RTE_ASSERT((user_mbp_priv->flags & ~RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) == 0); mbp_priv = rte_mempool_get_priv(mp); memcpy(mbp_priv, user_mbp_priv, sizeof(*mbp_priv)); } /* * pktmbuf constructor, given as a callback function to * rte_mempool_obj_iter() or rte_mempool_create(). * Set the fields of a packet mbuf to their default values. */ void rte_pktmbuf_init(struct rte_mempool *mp, __rte_unused void *opaque_arg, void *_m, __rte_unused unsigned i) { struct rte_mbuf *m = _m; uint32_t mbuf_size, buf_len, priv_size; RTE_ASSERT(mp->private_data_size >= sizeof(struct rte_pktmbuf_pool_private)); priv_size = rte_pktmbuf_priv_size(mp); mbuf_size = sizeof(struct rte_mbuf) + priv_size; buf_len = rte_pktmbuf_data_room_size(mp); RTE_ASSERT(RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) == priv_size); RTE_ASSERT(mp->elt_size >= mbuf_size); RTE_ASSERT(buf_len <= UINT16_MAX); memset(m, 0, mbuf_size); /* start of buffer is after mbuf structure and priv data */ m->priv_size = priv_size; m->buf_addr = (char *)m + mbuf_size; m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size; m->buf_len = (uint16_t)buf_len; /* keep some headroom between start of buffer and data */ m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len); /* init some constant fields */ m->pool = mp; m->nb_segs = 1; m->port = RTE_MBUF_PORT_INVALID; rte_mbuf_refcnt_set(m, 1); m->next = NULL; } /* * @internal The callback routine called when reference counter in shinfo * for mbufs with pinned external buffer reaches zero. It means there is * no more reference to buffer backing mbuf and this one should be freed. * This routine is called for the regular (not with pinned external or * indirect buffer) mbufs on detaching from the mbuf with pinned external * buffer. */ static void rte_pktmbuf_free_pinned_extmem(void *addr, void *opaque) { struct rte_mbuf *m = opaque; RTE_SET_USED(addr); RTE_ASSERT(RTE_MBUF_HAS_EXTBUF(m)); RTE_ASSERT(RTE_MBUF_HAS_PINNED_EXTBUF(m)); RTE_ASSERT(m->shinfo->fcb_opaque == m); rte_mbuf_ext_refcnt_set(m->shinfo, 1); m->ol_flags = RTE_MBUF_F_EXTERNAL; if (m->next != NULL) m->next = NULL; if (m->nb_segs != 1) m->nb_segs = 1; rte_mbuf_raw_free(m); } /** The context to initialize the mbufs with pinned external buffers. */ struct rte_pktmbuf_extmem_init_ctx { const struct rte_pktmbuf_extmem *ext_mem; /* descriptor array. */ unsigned int ext_num; /* number of descriptors in array. */ unsigned int ext; /* loop descriptor index. */ size_t off; /* loop buffer offset. */ }; /** * @internal Packet mbuf constructor for pools with pinned external memory. * * This function initializes some fields in the mbuf structure that are * not modified by the user once created (origin pool, buffer start * address, and so on). This function is given as a callback function to * rte_mempool_obj_iter() called from rte_mempool_create_extmem(). * * @param mp * The mempool from which mbufs originate. * @param opaque_arg * A pointer to the rte_pktmbuf_extmem_init_ctx - initialization * context structure * @param m * The mbuf to initialize. * @param i * The index of the mbuf in the pool table. */ static void __rte_pktmbuf_init_extmem(struct rte_mempool *mp, void *opaque_arg, void *_m, __rte_unused unsigned int i) { struct rte_mbuf *m = _m; struct rte_pktmbuf_extmem_init_ctx *ctx = opaque_arg; const struct rte_pktmbuf_extmem *ext_mem; uint32_t mbuf_size, buf_len, priv_size; struct rte_mbuf_ext_shared_info *shinfo; priv_size = rte_pktmbuf_priv_size(mp); mbuf_size = sizeof(struct rte_mbuf) + priv_size; buf_len = rte_pktmbuf_data_room_size(mp); RTE_ASSERT(RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) == priv_size); RTE_ASSERT(mp->elt_size >= mbuf_size); RTE_ASSERT(buf_len <= UINT16_MAX); memset(m, 0, mbuf_size); m->priv_size = priv_size; m->buf_len = (uint16_t)buf_len; /* set the data buffer pointers to external memory */ ext_mem = ctx->ext_mem + ctx->ext; RTE_ASSERT(ctx->ext < ctx->ext_num); RTE_ASSERT(ctx->off + ext_mem->elt_size <= ext_mem->buf_len); m->buf_addr = RTE_PTR_ADD(ext_mem->buf_ptr, ctx->off); m->buf_iova = ext_mem->buf_iova == RTE_BAD_IOVA ? RTE_BAD_IOVA : (ext_mem->buf_iova + ctx->off); ctx->off += ext_mem->elt_size; if (ctx->off + ext_mem->elt_size > ext_mem->buf_len) { ctx->off = 0; ++ctx->ext; } /* keep some headroom between start of buffer and data */ m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len); /* init some constant fields */ m->pool = mp; m->nb_segs = 1; m->port = RTE_MBUF_PORT_INVALID; m->ol_flags = RTE_MBUF_F_EXTERNAL; rte_mbuf_refcnt_set(m, 1); m->next = NULL; /* init external buffer shared info items */ shinfo = RTE_PTR_ADD(m, mbuf_size); m->shinfo = shinfo; shinfo->free_cb = rte_pktmbuf_free_pinned_extmem; shinfo->fcb_opaque = m; rte_mbuf_ext_refcnt_set(shinfo, 1); } /* Helper to create a mbuf pool with given mempool ops name*/ struct rte_mempool * rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n, unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size, int socket_id, const char *ops_name) { struct rte_mempool *mp; struct rte_pktmbuf_pool_private mbp_priv; const char *mp_ops_name = ops_name; unsigned elt_size; int ret; if (RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) != priv_size) { RTE_LOG(ERR, MBUF, "mbuf priv_size=%u is not aligned\n", priv_size); rte_errno = EINVAL; return NULL; } elt_size = sizeof(struct rte_mbuf) + (unsigned)priv_size + (unsigned)data_room_size; memset(&mbp_priv, 0, sizeof(mbp_priv)); mbp_priv.mbuf_data_room_size = data_room_size; mbp_priv.mbuf_priv_size = priv_size; mp = rte_mempool_create_empty(name, n, elt_size, cache_size, sizeof(struct rte_pktmbuf_pool_private), socket_id, 0); if (mp == NULL) return NULL; if (mp_ops_name == NULL) mp_ops_name = rte_mbuf_best_mempool_ops(); ret = rte_mempool_set_ops_byname(mp, mp_ops_name, NULL); if (ret != 0) { RTE_LOG(ERR, MBUF, "error setting mempool handler\n"); rte_mempool_free(mp); rte_errno = -ret; return NULL; } rte_pktmbuf_pool_init(mp, &mbp_priv); ret = rte_mempool_populate_default(mp); if (ret < 0) { rte_mempool_free(mp); rte_errno = -ret; return NULL; } rte_mempool_obj_iter(mp, rte_pktmbuf_init, NULL); return mp; } /* helper to create a mbuf pool */ struct rte_mempool * rte_pktmbuf_pool_create(const char *name, unsigned int n, unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size, int socket_id) { return rte_pktmbuf_pool_create_by_ops(name, n, cache_size, priv_size, data_room_size, socket_id, NULL); } /* Helper to create a mbuf pool with pinned external data buffers. */ struct rte_mempool * rte_pktmbuf_pool_create_extbuf(const char *name, unsigned int n, unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size, int socket_id, const struct rte_pktmbuf_extmem *ext_mem, unsigned int ext_num) { struct rte_mempool *mp; struct rte_pktmbuf_pool_private mbp_priv; struct rte_pktmbuf_extmem_init_ctx init_ctx; const char *mp_ops_name; unsigned int elt_size; unsigned int i, n_elts = 0; int ret; if (RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) != priv_size) { RTE_LOG(ERR, MBUF, "mbuf priv_size=%u is not aligned\n", priv_size); rte_errno = EINVAL; return NULL; } /* Check the external memory descriptors. */ for (i = 0; i < ext_num; i++) { const struct rte_pktmbuf_extmem *extm = ext_mem + i; if (!extm->elt_size || !extm->buf_len || !extm->buf_ptr) { RTE_LOG(ERR, MBUF, "invalid extmem descriptor\n"); rte_errno = EINVAL; return NULL; } if (data_room_size > extm->elt_size) { RTE_LOG(ERR, MBUF, "ext elt_size=%u is too small\n", priv_size); rte_errno = EINVAL; return NULL; } n_elts += extm->buf_len / extm->elt_size; } /* Check whether enough external memory provided. */ if (n_elts < n) { RTE_LOG(ERR, MBUF, "not enough extmem\n"); rte_errno = ENOMEM; return NULL; } elt_size = sizeof(struct rte_mbuf) + (unsigned int)priv_size + sizeof(struct rte_mbuf_ext_shared_info); memset(&mbp_priv, 0, sizeof(mbp_priv)); mbp_priv.mbuf_data_room_size = data_room_size; mbp_priv.mbuf_priv_size = priv_size; mbp_priv.flags = RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF; mp = rte_mempool_create_empty(name, n, elt_size, cache_size, sizeof(struct rte_pktmbuf_pool_private), socket_id, 0); if (mp == NULL) return NULL; mp_ops_name = rte_mbuf_best_mempool_ops(); ret = rte_mempool_set_ops_byname(mp, mp_ops_name, NULL); if (ret != 0) { RTE_LOG(ERR, MBUF, "error setting mempool handler\n"); rte_mempool_free(mp); rte_errno = -ret; return NULL; } rte_pktmbuf_pool_init(mp, &mbp_priv); ret = rte_mempool_populate_default(mp); if (ret < 0) { rte_mempool_free(mp); rte_errno = -ret; return NULL; } init_ctx = (struct rte_pktmbuf_extmem_init_ctx){ .ext_mem = ext_mem, .ext_num = ext_num, .ext = 0, .off = 0, }; rte_mempool_obj_iter(mp, __rte_pktmbuf_init_extmem, &init_ctx); return mp; } /* do some sanity checks on a mbuf: panic if it fails */ void rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header) { const char *reason; if (rte_mbuf_check(m, is_header, &reason)) rte_panic("%s\n", reason); } int rte_mbuf_check(const struct rte_mbuf *m, int is_header, const char **reason) { unsigned int nb_segs, pkt_len; if (m == NULL) { *reason = "mbuf is NULL"; return -1; } /* generic checks */ if (m->pool == NULL) { *reason = "bad mbuf pool"; return -1; } if (m->buf_iova == 0) { *reason = "bad IO addr"; return -1; } if (m->buf_addr == NULL) { *reason = "bad virt addr"; return -1; } uint16_t cnt = rte_mbuf_refcnt_read(m); if ((cnt == 0) || (cnt == UINT16_MAX)) { *reason = "bad ref cnt"; return -1; } /* nothing to check for sub-segments */ if (is_header == 0) return 0; /* data_len is supposed to be not more than pkt_len */ if (m->data_len > m->pkt_len) { *reason = "bad data_len"; return -1; } nb_segs = m->nb_segs; pkt_len = m->pkt_len; do { if (m->data_off > m->buf_len) { *reason = "data offset too big in mbuf segment"; return -1; } if (m->data_off + m->data_len > m->buf_len) { *reason = "data length too big in mbuf segment"; return -1; } nb_segs -= 1; pkt_len -= m->data_len; } while ((m = m->next) != NULL); if (nb_segs) { *reason = "bad nb_segs"; return -1; } if (pkt_len) { *reason = "bad pkt_len"; return -1; } return 0; } /** * @internal helper function for freeing a bulk of packet mbuf segments * via an array holding the packet mbuf segments from the same mempool * pending to be freed. * * @param m * The packet mbuf segment to be freed. * @param pending * Pointer to the array of packet mbuf segments pending to be freed. * @param nb_pending * Pointer to the number of elements held in the array. * @param pending_sz * Number of elements the array can hold. * Note: The compiler should optimize this parameter away when using a * constant value, such as RTE_PKTMBUF_FREE_PENDING_SZ. */ static void __rte_pktmbuf_free_seg_via_array(struct rte_mbuf *m, struct rte_mbuf ** const pending, unsigned int * const nb_pending, const unsigned int pending_sz) { m = rte_pktmbuf_prefree_seg(m); if (likely(m != NULL)) { if (*nb_pending == pending_sz || (*nb_pending > 0 && m->pool != pending[0]->pool)) { rte_mempool_put_bulk(pending[0]->pool, (void **)pending, *nb_pending); *nb_pending = 0; } pending[(*nb_pending)++] = m; } } /** * Size of the array holding mbufs from the same mempool pending to be freed * in bulk. */ #define RTE_PKTMBUF_FREE_PENDING_SZ 64 /* Free a bulk of packet mbufs back into their original mempools. */ void rte_pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int count) { struct rte_mbuf *m, *m_next, *pending[RTE_PKTMBUF_FREE_PENDING_SZ]; unsigned int idx, nb_pending = 0; for (idx = 0; idx < count; idx++) { m = mbufs[idx]; if (unlikely(m == NULL)) continue; __rte_mbuf_sanity_check(m, 1); do { m_next = m->next; __rte_pktmbuf_free_seg_via_array(m, pending, &nb_pending, RTE_PKTMBUF_FREE_PENDING_SZ); m = m_next; } while (m != NULL); } if (nb_pending > 0) rte_mempool_put_bulk(pending[0]->pool, (void **)pending, nb_pending); } /* Creates a shallow copy of mbuf */ struct rte_mbuf * rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp) { struct rte_mbuf *mc, *mi, **prev; uint32_t pktlen; uint16_t nseg; mc = rte_pktmbuf_alloc(mp); if (unlikely(mc == NULL)) return NULL; mi = mc; prev = &mi->next; pktlen = md->pkt_len; nseg = 0; do { nseg++; rte_pktmbuf_attach(mi, md); *prev = mi; prev = &mi->next; } while ((md = md->next) != NULL && (mi = rte_pktmbuf_alloc(mp)) != NULL); *prev = NULL; mc->nb_segs = nseg; mc->pkt_len = pktlen; /* Allocation of new indirect segment failed */ if (unlikely(mi == NULL)) { rte_pktmbuf_free(mc); return NULL; } __rte_mbuf_sanity_check(mc, 1); return mc; } /* convert multi-segment mbuf to single mbuf */ int __rte_pktmbuf_linearize(struct rte_mbuf *mbuf) { size_t seg_len, copy_len; struct rte_mbuf *m; struct rte_mbuf *m_next; char *buffer; /* Extend first segment to the total packet length */ copy_len = rte_pktmbuf_pkt_len(mbuf) - rte_pktmbuf_data_len(mbuf); if (unlikely(copy_len > rte_pktmbuf_tailroom(mbuf))) return -1; buffer = rte_pktmbuf_mtod_offset(mbuf, char *, mbuf->data_len); mbuf->data_len = (uint16_t)(mbuf->pkt_len); /* Append data from next segments to the first one */ m = mbuf->next; while (m != NULL) { m_next = m->next; seg_len = rte_pktmbuf_data_len(m); rte_memcpy(buffer, rte_pktmbuf_mtod(m, char *), seg_len); buffer += seg_len; rte_pktmbuf_free_seg(m); m = m_next; } mbuf->next = NULL; mbuf->nb_segs = 1; return 0; } /* Create a deep copy of mbuf */ struct rte_mbuf * rte_pktmbuf_copy(const struct rte_mbuf *m, struct rte_mempool *mp, uint32_t off, uint32_t len) { const struct rte_mbuf *seg = m; struct rte_mbuf *mc, *m_last, **prev; /* garbage in check */ __rte_mbuf_sanity_check(m, 1); /* check for request to copy at offset past end of mbuf */ if (unlikely(off >= m->pkt_len)) return NULL; mc = rte_pktmbuf_alloc(mp); if (unlikely(mc == NULL)) return NULL; /* truncate requested length to available data */ if (len > m->pkt_len - off) len = m->pkt_len - off; __rte_pktmbuf_copy_hdr(mc, m); /* copied mbuf is not indirect or external */ mc->ol_flags = m->ol_flags & ~(RTE_MBUF_F_INDIRECT|RTE_MBUF_F_EXTERNAL); prev = &mc->next; m_last = mc; while (len > 0) { uint32_t copy_len; /* skip leading mbuf segments */ while (off >= seg->data_len) { off -= seg->data_len; seg = seg->next; } /* current buffer is full, chain a new one */ if (rte_pktmbuf_tailroom(m_last) == 0) { m_last = rte_pktmbuf_alloc(mp); if (unlikely(m_last == NULL)) { rte_pktmbuf_free(mc); return NULL; } ++mc->nb_segs; *prev = m_last; prev = &m_last->next; } /* * copy the min of data in input segment (seg) * vs space available in output (m_last) */ copy_len = RTE_MIN(seg->data_len - off, len); if (copy_len > rte_pktmbuf_tailroom(m_last)) copy_len = rte_pktmbuf_tailroom(m_last); /* append from seg to m_last */ rte_memcpy(rte_pktmbuf_mtod_offset(m_last, char *, m_last->data_len), rte_pktmbuf_mtod_offset(seg, char *, off), copy_len); /* update offsets and lengths */ m_last->data_len += copy_len; mc->pkt_len += copy_len; off += copy_len; len -= copy_len; } /* garbage out check */ __rte_mbuf_sanity_check(mc, 1); return mc; } /* dump a mbuf on console */ void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len) { unsigned int len; unsigned int nb_segs; __rte_mbuf_sanity_check(m, 1); fprintf(f, "dump mbuf at %p, iova=%#"PRIx64", buf_len=%u\n", m, m->buf_iova, m->buf_len); fprintf(f, " pkt_len=%u, ol_flags=%#"PRIx64", nb_segs=%u, port=%u", m->pkt_len, m->ol_flags, m->nb_segs, m->port); if (m->ol_flags & (RTE_MBUF_F_RX_QINQ | RTE_MBUF_F_TX_QINQ)) fprintf(f, ", vlan_tci_outer=%u", m->vlan_tci_outer); if (m->ol_flags & (RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_TX_VLAN)) fprintf(f, ", vlan_tci=%u", m->vlan_tci); fprintf(f, ", ptype=%#"PRIx32"\n", m->packet_type); nb_segs = m->nb_segs; while (m && nb_segs != 0) { __rte_mbuf_sanity_check(m, 0); fprintf(f, " segment at %p, data=%p, len=%u, off=%u, refcnt=%u\n", m, rte_pktmbuf_mtod(m, void *), m->data_len, m->data_off, rte_mbuf_refcnt_read(m)); len = dump_len; if (len > m->data_len) len = m->data_len; if (len != 0) rte_hexdump(f, NULL, rte_pktmbuf_mtod(m, void *), len); dump_len -= len; m = m->next; nb_segs --; } } /* read len data bytes in a mbuf at specified offset (internal) */ const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off, uint32_t len, void *buf) { const struct rte_mbuf *seg = m; uint32_t buf_off = 0, copy_len; if (off + len > rte_pktmbuf_pkt_len(m)) return NULL; while (off >= rte_pktmbuf_data_len(seg)) { off -= rte_pktmbuf_data_len(seg); seg = seg->next; } if (off + len <= rte_pktmbuf_data_len(seg)) return rte_pktmbuf_mtod_offset(seg, char *, off); /* rare case: header is split among several segments */ while (len > 0) { copy_len = rte_pktmbuf_data_len(seg) - off; if (copy_len > len) copy_len = len; rte_memcpy((char *)buf + buf_off, rte_pktmbuf_mtod_offset(seg, char *, off), copy_len); off = 0; buf_off += copy_len; len -= copy_len; seg = seg->next; } return buf; } /* * Get the name of a RX offload flag. Must be kept synchronized with flag * definitions in rte_mbuf.h. */ const char *rte_get_rx_ol_flag_name(uint64_t mask) { switch (mask) { case RTE_MBUF_F_RX_VLAN: return "RTE_MBUF_F_RX_VLAN"; case RTE_MBUF_F_RX_RSS_HASH: return "RTE_MBUF_F_RX_RSS_HASH"; case RTE_MBUF_F_RX_FDIR: return "RTE_MBUF_F_RX_FDIR"; case RTE_MBUF_F_RX_L4_CKSUM_BAD: return "RTE_MBUF_F_RX_L4_CKSUM_BAD"; case RTE_MBUF_F_RX_L4_CKSUM_GOOD: return "RTE_MBUF_F_RX_L4_CKSUM_GOOD"; case RTE_MBUF_F_RX_L4_CKSUM_NONE: return "RTE_MBUF_F_RX_L4_CKSUM_NONE"; case RTE_MBUF_F_RX_IP_CKSUM_BAD: return "RTE_MBUF_F_RX_IP_CKSUM_BAD"; case RTE_MBUF_F_RX_IP_CKSUM_GOOD: return "RTE_MBUF_F_RX_IP_CKSUM_GOOD"; case RTE_MBUF_F_RX_IP_CKSUM_NONE: return "RTE_MBUF_F_RX_IP_CKSUM_NONE"; case RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD: return "RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD"; case RTE_MBUF_F_RX_VLAN_STRIPPED: return "RTE_MBUF_F_RX_VLAN_STRIPPED"; case RTE_MBUF_F_RX_IEEE1588_PTP: return "RTE_MBUF_F_RX_IEEE1588_PTP"; case RTE_MBUF_F_RX_IEEE1588_TMST: return "RTE_MBUF_F_RX_IEEE1588_TMST"; case RTE_MBUF_F_RX_FDIR_ID: return "RTE_MBUF_F_RX_FDIR_ID"; case RTE_MBUF_F_RX_FDIR_FLX: return "RTE_MBUF_F_RX_FDIR_FLX"; case RTE_MBUF_F_RX_QINQ_STRIPPED: return "RTE_MBUF_F_RX_QINQ_STRIPPED"; case RTE_MBUF_F_RX_QINQ: return "RTE_MBUF_F_RX_QINQ"; case RTE_MBUF_F_RX_LRO: return "RTE_MBUF_F_RX_LRO"; case RTE_MBUF_F_RX_SEC_OFFLOAD: return "RTE_MBUF_F_RX_SEC_OFFLOAD"; case RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED: return "RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED"; case RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD: return "RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD"; case RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD: return "RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD"; case RTE_MBUF_F_RX_OUTER_L4_CKSUM_INVALID: return "RTE_MBUF_F_RX_OUTER_L4_CKSUM_INVALID"; default: return NULL; } } struct flag_mask { uint64_t flag; uint64_t mask; const char *default_name; }; /* write the list of rx ol flags in buffer buf */ int rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen) { const struct flag_mask rx_flags[] = { { RTE_MBUF_F_RX_VLAN, RTE_MBUF_F_RX_VLAN, NULL }, { RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, NULL }, { RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_FDIR, NULL }, { RTE_MBUF_F_RX_L4_CKSUM_BAD, RTE_MBUF_F_RX_L4_CKSUM_MASK, NULL }, { RTE_MBUF_F_RX_L4_CKSUM_GOOD, RTE_MBUF_F_RX_L4_CKSUM_MASK, NULL }, { RTE_MBUF_F_RX_L4_CKSUM_NONE, RTE_MBUF_F_RX_L4_CKSUM_MASK, NULL }, { RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN, RTE_MBUF_F_RX_L4_CKSUM_MASK, "RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN" }, { RTE_MBUF_F_RX_IP_CKSUM_BAD, RTE_MBUF_F_RX_IP_CKSUM_MASK, NULL }, { RTE_MBUF_F_RX_IP_CKSUM_GOOD, RTE_MBUF_F_RX_IP_CKSUM_MASK, NULL }, { RTE_MBUF_F_RX_IP_CKSUM_NONE, RTE_MBUF_F_RX_IP_CKSUM_MASK, NULL }, { RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN, RTE_MBUF_F_RX_IP_CKSUM_MASK, "RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN" }, { RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD, RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD, NULL }, { RTE_MBUF_F_RX_VLAN_STRIPPED, RTE_MBUF_F_RX_VLAN_STRIPPED, NULL }, { RTE_MBUF_F_RX_IEEE1588_PTP, RTE_MBUF_F_RX_IEEE1588_PTP, NULL }, { RTE_MBUF_F_RX_IEEE1588_TMST, RTE_MBUF_F_RX_IEEE1588_TMST, NULL }, { RTE_MBUF_F_RX_FDIR_ID, RTE_MBUF_F_RX_FDIR_ID, NULL }, { RTE_MBUF_F_RX_FDIR_FLX, RTE_MBUF_F_RX_FDIR_FLX, NULL }, { RTE_MBUF_F_RX_QINQ_STRIPPED, RTE_MBUF_F_RX_QINQ_STRIPPED, NULL }, { RTE_MBUF_F_RX_LRO, RTE_MBUF_F_RX_LRO, NULL }, { RTE_MBUF_F_RX_SEC_OFFLOAD, RTE_MBUF_F_RX_SEC_OFFLOAD, NULL }, { RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED, RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED, NULL }, { RTE_MBUF_F_RX_QINQ, RTE_MBUF_F_RX_QINQ, NULL }, { RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD, RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK, NULL }, { RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD, RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK, NULL }, { RTE_MBUF_F_RX_OUTER_L4_CKSUM_INVALID, RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK, NULL }, { RTE_MBUF_F_RX_OUTER_L4_CKSUM_UNKNOWN, RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK, "RTE_MBUF_F_RX_OUTER_L4_CKSUM_UNKNOWN" }, }; const char *name; unsigned int i; int ret; if (buflen == 0) return -1; buf[0] = '\0'; for (i = 0; i < RTE_DIM(rx_flags); i++) { if ((mask & rx_flags[i].mask) != rx_flags[i].flag) continue; name = rte_get_rx_ol_flag_name(rx_flags[i].flag); if (name == NULL) name = rx_flags[i].default_name; ret = snprintf(buf, buflen, "%s ", name); if (ret < 0) return -1; if ((size_t)ret >= buflen) return -1; buf += ret; buflen -= ret; } return 0; } /* * Get the name of a TX offload flag. Must be kept synchronized with flag * definitions in rte_mbuf.h. */ const char *rte_get_tx_ol_flag_name(uint64_t mask) { switch (mask) { case RTE_MBUF_F_TX_VLAN: return "RTE_MBUF_F_TX_VLAN"; case RTE_MBUF_F_TX_IP_CKSUM: return "RTE_MBUF_F_TX_IP_CKSUM"; case RTE_MBUF_F_TX_TCP_CKSUM: return "RTE_MBUF_F_TX_TCP_CKSUM"; case RTE_MBUF_F_TX_SCTP_CKSUM: return "RTE_MBUF_F_TX_SCTP_CKSUM"; case RTE_MBUF_F_TX_UDP_CKSUM: return "RTE_MBUF_F_TX_UDP_CKSUM"; case RTE_MBUF_F_TX_IEEE1588_TMST: return "RTE_MBUF_F_TX_IEEE1588_TMST"; case RTE_MBUF_F_TX_TCP_SEG: return "RTE_MBUF_F_TX_TCP_SEG"; case RTE_MBUF_F_TX_IPV4: return "RTE_MBUF_F_TX_IPV4"; case RTE_MBUF_F_TX_IPV6: return "RTE_MBUF_F_TX_IPV6"; case RTE_MBUF_F_TX_OUTER_IP_CKSUM: return "RTE_MBUF_F_TX_OUTER_IP_CKSUM"; case RTE_MBUF_F_TX_OUTER_IPV4: return "RTE_MBUF_F_TX_OUTER_IPV4"; case RTE_MBUF_F_TX_OUTER_IPV6: return "RTE_MBUF_F_TX_OUTER_IPV6"; case RTE_MBUF_F_TX_TUNNEL_VXLAN: return "RTE_MBUF_F_TX_TUNNEL_VXLAN"; case RTE_MBUF_F_TX_TUNNEL_GTP: return "RTE_MBUF_F_TX_TUNNEL_GTP"; case RTE_MBUF_F_TX_TUNNEL_GRE: return "RTE_MBUF_F_TX_TUNNEL_GRE"; case RTE_MBUF_F_TX_TUNNEL_IPIP: return "RTE_MBUF_F_TX_TUNNEL_IPIP"; case RTE_MBUF_F_TX_TUNNEL_GENEVE: return "RTE_MBUF_F_TX_TUNNEL_GENEVE"; case RTE_MBUF_F_TX_TUNNEL_MPLSINUDP: return "RTE_MBUF_F_TX_TUNNEL_MPLSINUDP"; case RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE: return "RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE"; case RTE_MBUF_F_TX_TUNNEL_IP: return "RTE_MBUF_F_TX_TUNNEL_IP"; case RTE_MBUF_F_TX_TUNNEL_UDP: return "RTE_MBUF_F_TX_TUNNEL_UDP"; case RTE_MBUF_F_TX_QINQ: return "RTE_MBUF_F_TX_QINQ"; case RTE_MBUF_F_TX_MACSEC: return "RTE_MBUF_F_TX_MACSEC"; case RTE_MBUF_F_TX_SEC_OFFLOAD: return "RTE_MBUF_F_TX_SEC_OFFLOAD"; case RTE_MBUF_F_TX_UDP_SEG: return "RTE_MBUF_F_TX_UDP_SEG"; case RTE_MBUF_F_TX_OUTER_UDP_CKSUM: return "RTE_MBUF_F_TX_OUTER_UDP_CKSUM"; default: return NULL; } } /* write the list of tx ol flags in buffer buf */ int rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen) { const struct flag_mask tx_flags[] = { { RTE_MBUF_F_TX_VLAN, RTE_MBUF_F_TX_VLAN, NULL }, { RTE_MBUF_F_TX_IP_CKSUM, RTE_MBUF_F_TX_IP_CKSUM, NULL }, { RTE_MBUF_F_TX_TCP_CKSUM, RTE_MBUF_F_TX_L4_MASK, NULL }, { RTE_MBUF_F_TX_SCTP_CKSUM, RTE_MBUF_F_TX_L4_MASK, NULL }, { RTE_MBUF_F_TX_UDP_CKSUM, RTE_MBUF_F_TX_L4_MASK, NULL }, { RTE_MBUF_F_TX_L4_NO_CKSUM, RTE_MBUF_F_TX_L4_MASK, "RTE_MBUF_F_TX_L4_NO_CKSUM" }, { RTE_MBUF_F_TX_IEEE1588_TMST, RTE_MBUF_F_TX_IEEE1588_TMST, NULL }, { RTE_MBUF_F_TX_TCP_SEG, RTE_MBUF_F_TX_TCP_SEG, NULL }, { RTE_MBUF_F_TX_IPV4, RTE_MBUF_F_TX_IPV4, NULL }, { RTE_MBUF_F_TX_IPV6, RTE_MBUF_F_TX_IPV6, NULL }, { RTE_MBUF_F_TX_OUTER_IP_CKSUM, RTE_MBUF_F_TX_OUTER_IP_CKSUM, NULL }, { RTE_MBUF_F_TX_OUTER_IPV4, RTE_MBUF_F_TX_OUTER_IPV4, NULL }, { RTE_MBUF_F_TX_OUTER_IPV6, RTE_MBUF_F_TX_OUTER_IPV6, NULL }, { RTE_MBUF_F_TX_TUNNEL_VXLAN, RTE_MBUF_F_TX_TUNNEL_MASK, NULL }, { RTE_MBUF_F_TX_TUNNEL_GTP, RTE_MBUF_F_TX_TUNNEL_MASK, NULL }, { RTE_MBUF_F_TX_TUNNEL_GRE, RTE_MBUF_F_TX_TUNNEL_MASK, NULL }, { RTE_MBUF_F_TX_TUNNEL_IPIP, RTE_MBUF_F_TX_TUNNEL_MASK, NULL }, { RTE_MBUF_F_TX_TUNNEL_GENEVE, RTE_MBUF_F_TX_TUNNEL_MASK, NULL }, { RTE_MBUF_F_TX_TUNNEL_MPLSINUDP, RTE_MBUF_F_TX_TUNNEL_MASK, NULL }, { RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE, RTE_MBUF_F_TX_TUNNEL_MASK, NULL }, { RTE_MBUF_F_TX_TUNNEL_IP, RTE_MBUF_F_TX_TUNNEL_MASK, NULL }, { RTE_MBUF_F_TX_TUNNEL_UDP, RTE_MBUF_F_TX_TUNNEL_MASK, NULL }, { RTE_MBUF_F_TX_QINQ, RTE_MBUF_F_TX_QINQ, NULL }, { RTE_MBUF_F_TX_MACSEC, RTE_MBUF_F_TX_MACSEC, NULL }, { RTE_MBUF_F_TX_SEC_OFFLOAD, RTE_MBUF_F_TX_SEC_OFFLOAD, NULL }, { RTE_MBUF_F_TX_UDP_SEG, RTE_MBUF_F_TX_UDP_SEG, NULL }, { RTE_MBUF_F_TX_OUTER_UDP_CKSUM, RTE_MBUF_F_TX_OUTER_UDP_CKSUM, NULL }, }; const char *name; unsigned int i; int ret; if (buflen == 0) return -1; buf[0] = '\0'; for (i = 0; i < RTE_DIM(tx_flags); i++) { if ((mask & tx_flags[i].mask) != tx_flags[i].flag) continue; name = rte_get_tx_ol_flag_name(tx_flags[i].flag); if (name == NULL) name = tx_flags[i].default_name; ret = snprintf(buf, buflen, "%s ", name); if (ret < 0) return -1; if ((size_t)ret >= buflen) return -1; buf += ret; buflen -= ret; } return 0; }