/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "event_helper.h" #include "flow.h" #include "ipsec.h" #include "ipsec_worker.h" #include "parser.h" #include "sad.h" volatile bool force_quit; #define MAX_JUMBO_PKT_LEN 9600 #define MEMPOOL_CACHE_SIZE 256 #define CDEV_QUEUE_DESC 2048 #define CDEV_MAP_ENTRIES 16384 #define CDEV_MP_CACHE_SZ 64 #define CDEV_MP_CACHE_MULTIPLIER 1.5 /* from rte_mempool.c */ #define MAX_QUEUE_PAIRS 1 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ /* Configure how many packets ahead to prefetch, when reading packets */ #define PREFETCH_OFFSET 3 #define MAX_RX_QUEUE_PER_LCORE 16 #define MAX_LCORE_PARAMS 1024 /* * Configurable number of RX/TX ring descriptors */ #define IPSEC_SECGW_RX_DESC_DEFAULT 1024 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT; static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT; #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \ (addr)->addr_bytes[0], (addr)->addr_bytes[1], \ (addr)->addr_bytes[2], (addr)->addr_bytes[3], \ (addr)->addr_bytes[4], (addr)->addr_bytes[5], \ 0, 0) #define FRAG_TBL_BUCKET_ENTRIES 4 #define MAX_FRAG_TTL_NS (10LL * NS_PER_S) #define MTU_TO_FRAMELEN(x) ((x) + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN) struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = { { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) }, { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) }, { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) }, { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) } }; struct flow_info flow_info_tbl[RTE_MAX_ETHPORTS]; #define CMD_LINE_OPT_CONFIG "config" #define CMD_LINE_OPT_SINGLE_SA "single-sa" #define CMD_LINE_OPT_CRYPTODEV_MASK "cryptodev_mask" #define CMD_LINE_OPT_TRANSFER_MODE "transfer-mode" #define CMD_LINE_OPT_SCHEDULE_TYPE "event-schedule-type" #define CMD_LINE_OPT_RX_OFFLOAD "rxoffload" #define CMD_LINE_OPT_TX_OFFLOAD "txoffload" #define CMD_LINE_OPT_REASSEMBLE "reassemble" #define CMD_LINE_OPT_MTU "mtu" #define CMD_LINE_OPT_FRAG_TTL "frag-ttl" #define CMD_LINE_OPT_EVENT_VECTOR "event-vector" #define CMD_LINE_OPT_VECTOR_SIZE "vector-size" #define CMD_LINE_OPT_VECTOR_TIMEOUT "vector-tmo" #define CMD_LINE_ARG_EVENT "event" #define CMD_LINE_ARG_POLL "poll" #define CMD_LINE_ARG_ORDERED "ordered" #define CMD_LINE_ARG_ATOMIC "atomic" #define CMD_LINE_ARG_PARALLEL "parallel" enum { /* long options mapped to a short option */ /* first long only option value must be >= 256, so that we won't * conflict with short options */ CMD_LINE_OPT_MIN_NUM = 256, CMD_LINE_OPT_CONFIG_NUM, CMD_LINE_OPT_SINGLE_SA_NUM, CMD_LINE_OPT_CRYPTODEV_MASK_NUM, CMD_LINE_OPT_TRANSFER_MODE_NUM, CMD_LINE_OPT_SCHEDULE_TYPE_NUM, CMD_LINE_OPT_RX_OFFLOAD_NUM, CMD_LINE_OPT_TX_OFFLOAD_NUM, CMD_LINE_OPT_REASSEMBLE_NUM, CMD_LINE_OPT_MTU_NUM, CMD_LINE_OPT_FRAG_TTL_NUM, CMD_LINE_OPT_EVENT_VECTOR_NUM, CMD_LINE_OPT_VECTOR_SIZE_NUM, CMD_LINE_OPT_VECTOR_TIMEOUT_NUM, }; static const struct option lgopts[] = { {CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM}, {CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM}, {CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM}, {CMD_LINE_OPT_TRANSFER_MODE, 1, 0, CMD_LINE_OPT_TRANSFER_MODE_NUM}, {CMD_LINE_OPT_SCHEDULE_TYPE, 1, 0, CMD_LINE_OPT_SCHEDULE_TYPE_NUM}, {CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM}, {CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM}, {CMD_LINE_OPT_REASSEMBLE, 1, 0, CMD_LINE_OPT_REASSEMBLE_NUM}, {CMD_LINE_OPT_MTU, 1, 0, CMD_LINE_OPT_MTU_NUM}, {CMD_LINE_OPT_FRAG_TTL, 1, 0, CMD_LINE_OPT_FRAG_TTL_NUM}, {CMD_LINE_OPT_EVENT_VECTOR, 0, 0, CMD_LINE_OPT_EVENT_VECTOR_NUM}, {CMD_LINE_OPT_VECTOR_SIZE, 1, 0, CMD_LINE_OPT_VECTOR_SIZE_NUM}, {CMD_LINE_OPT_VECTOR_TIMEOUT, 1, 0, CMD_LINE_OPT_VECTOR_TIMEOUT_NUM}, {NULL, 0, 0, 0} }; uint32_t unprotected_port_mask; uint32_t single_sa_idx; /* mask of enabled ports */ static uint32_t enabled_port_mask; static uint64_t enabled_cryptodev_mask = UINT64_MAX; static int32_t promiscuous_on; static int32_t numa_on = 1; /**< NUMA is enabled by default. */ static uint32_t nb_lcores; static uint32_t single_sa; uint32_t nb_bufs_in_pool; /* * RX/TX HW offload capabilities to enable/use on ethernet ports. * By default all capabilities are enabled. */ static uint64_t dev_rx_offload = UINT64_MAX; static uint64_t dev_tx_offload = UINT64_MAX; /* * global values that determine multi-seg policy */ static uint32_t frag_tbl_sz; static uint32_t frame_buf_size = RTE_MBUF_DEFAULT_BUF_SIZE; static uint32_t mtu_size = RTE_ETHER_MTU; static uint64_t frag_ttl_ns = MAX_FRAG_TTL_NS; static uint32_t stats_interval; /* application wide librte_ipsec/SA parameters */ struct app_sa_prm app_sa_prm = { .enable = 0, .cache_sz = SA_CACHE_SZ, .udp_encap = 0 }; static const char *cfgfile; struct lcore_rx_queue { uint16_t port_id; uint8_t queue_id; } __rte_cache_aligned; struct lcore_params { uint16_t port_id; uint8_t queue_id; uint8_t lcore_id; } __rte_cache_aligned; static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS]; static struct lcore_params *lcore_params; static uint16_t nb_lcore_params; static struct rte_hash *cdev_map_in; static struct rte_hash *cdev_map_out; struct buffer { uint16_t len; struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *)); }; struct lcore_conf { uint16_t nb_rx_queue; struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; struct buffer tx_mbufs[RTE_MAX_ETHPORTS]; struct ipsec_ctx inbound; struct ipsec_ctx outbound; struct rt_ctx *rt4_ctx; struct rt_ctx *rt6_ctx; struct { struct rte_ip_frag_tbl *tbl; struct rte_mempool *pool_dir; struct rte_mempool *pool_indir; struct rte_ip_frag_death_row dr; } frag; } __rte_cache_aligned; static struct lcore_conf lcore_conf[RTE_MAX_LCORE]; static struct rte_eth_conf port_conf = { .rxmode = { .mq_mode = RTE_ETH_MQ_RX_RSS, .split_hdr_size = 0, .offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM, }, .rx_adv_conf = { .rss_conf = { .rss_key = NULL, .rss_hf = RTE_ETH_RSS_IP | RTE_ETH_RSS_UDP | RTE_ETH_RSS_TCP | RTE_ETH_RSS_SCTP, }, }, .txmode = { .mq_mode = RTE_ETH_MQ_TX_NONE, }, }; struct socket_ctx socket_ctx[NB_SOCKETS]; /* * Determine is multi-segment support required: * - either frame buffer size is smaller then mtu * - or reassemble support is requested */ static int multi_seg_required(void) { return (MTU_TO_FRAMELEN(mtu_size) + RTE_PKTMBUF_HEADROOM > frame_buf_size || frag_tbl_sz != 0); } static inline void adjust_ipv4_pktlen(struct rte_mbuf *m, const struct rte_ipv4_hdr *iph, uint32_t l2_len) { uint32_t plen, trim; plen = rte_be_to_cpu_16(iph->total_length) + l2_len; if (plen < m->pkt_len) { trim = m->pkt_len - plen; rte_pktmbuf_trim(m, trim); } } static inline void adjust_ipv6_pktlen(struct rte_mbuf *m, const struct rte_ipv6_hdr *iph, uint32_t l2_len) { uint32_t plen, trim; plen = rte_be_to_cpu_16(iph->payload_len) + sizeof(*iph) + l2_len; if (plen < m->pkt_len) { trim = m->pkt_len - plen; rte_pktmbuf_trim(m, trim); } } struct ipsec_core_statistics core_statistics[RTE_MAX_LCORE]; /* Print out statistics on packet distribution */ static void print_stats_cb(__rte_unused void *param) { uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; float burst_percent, rx_per_call, tx_per_call; unsigned int coreid; total_packets_dropped = 0; total_packets_tx = 0; total_packets_rx = 0; const char clr[] = { 27, '[', '2', 'J', '\0' }; const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; /* Clear screen and move to top left */ printf("%s%s", clr, topLeft); printf("\nCore statistics ===================================="); for (coreid = 0; coreid < RTE_MAX_LCORE; coreid++) { /* skip disabled cores */ if (rte_lcore_is_enabled(coreid) == 0) continue; burst_percent = (float)(core_statistics[coreid].burst_rx * 100)/ core_statistics[coreid].rx; rx_per_call = (float)(core_statistics[coreid].rx)/ core_statistics[coreid].rx_call; tx_per_call = (float)(core_statistics[coreid].tx)/ core_statistics[coreid].tx_call; printf("\nStatistics for core %u ------------------------------" "\nPackets received: %20"PRIu64 "\nPackets sent: %24"PRIu64 "\nPackets dropped: %21"PRIu64 "\nBurst percent: %23.2f" "\nPackets per Rx call: %17.2f" "\nPackets per Tx call: %17.2f", coreid, core_statistics[coreid].rx, core_statistics[coreid].tx, core_statistics[coreid].dropped, burst_percent, rx_per_call, tx_per_call); total_packets_dropped += core_statistics[coreid].dropped; total_packets_tx += core_statistics[coreid].tx; total_packets_rx += core_statistics[coreid].rx; } printf("\nAggregate statistics ===============================" "\nTotal packets received: %14"PRIu64 "\nTotal packets sent: %18"PRIu64 "\nTotal packets dropped: %15"PRIu64, total_packets_rx, total_packets_tx, total_packets_dropped); printf("\n====================================================\n"); rte_eal_alarm_set(stats_interval * US_PER_S, print_stats_cb, NULL); } static inline void prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t) { const struct rte_ether_hdr *eth; const struct rte_ipv4_hdr *iph4; const struct rte_ipv6_hdr *iph6; const struct rte_udp_hdr *udp; uint16_t ip4_hdr_len; uint16_t nat_port; eth = rte_pktmbuf_mtod(pkt, const struct rte_ether_hdr *); if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) { iph4 = (const struct rte_ipv4_hdr *)rte_pktmbuf_adj(pkt, RTE_ETHER_HDR_LEN); adjust_ipv4_pktlen(pkt, iph4, 0); switch (iph4->next_proto_id) { case IPPROTO_ESP: t->ipsec.pkts[(t->ipsec.num)++] = pkt; break; case IPPROTO_UDP: if (app_sa_prm.udp_encap == 1) { ip4_hdr_len = ((iph4->version_ihl & RTE_IPV4_HDR_IHL_MASK) * RTE_IPV4_IHL_MULTIPLIER); udp = rte_pktmbuf_mtod_offset(pkt, struct rte_udp_hdr *, ip4_hdr_len); nat_port = rte_cpu_to_be_16(IPSEC_NAT_T_PORT); if (udp->src_port == nat_port || udp->dst_port == nat_port){ t->ipsec.pkts[(t->ipsec.num)++] = pkt; pkt->packet_type |= MBUF_PTYPE_TUNNEL_ESP_IN_UDP; break; } } /* Fall through */ default: t->ip4.data[t->ip4.num] = &iph4->next_proto_id; t->ip4.pkts[(t->ip4.num)++] = pkt; } pkt->l2_len = 0; pkt->l3_len = sizeof(*iph4); pkt->packet_type |= RTE_PTYPE_L3_IPV4; if (pkt->packet_type & RTE_PTYPE_L4_TCP) pkt->l4_len = sizeof(struct rte_tcp_hdr); else if (pkt->packet_type & RTE_PTYPE_L4_UDP) pkt->l4_len = sizeof(struct rte_udp_hdr); } else if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) { int next_proto; size_t l3len, ext_len; uint8_t *p; /* get protocol type */ iph6 = (const struct rte_ipv6_hdr *)rte_pktmbuf_adj(pkt, RTE_ETHER_HDR_LEN); adjust_ipv6_pktlen(pkt, iph6, 0); next_proto = iph6->proto; /* determine l3 header size up to ESP extension */ l3len = sizeof(struct ip6_hdr); p = rte_pktmbuf_mtod(pkt, uint8_t *); while (next_proto != IPPROTO_ESP && l3len < pkt->data_len && (next_proto = rte_ipv6_get_next_ext(p + l3len, next_proto, &ext_len)) >= 0) l3len += ext_len; /* drop packet when IPv6 header exceeds first segment length */ if (unlikely(l3len > pkt->data_len)) { free_pkts(&pkt, 1); return; } switch (next_proto) { case IPPROTO_ESP: t->ipsec.pkts[(t->ipsec.num)++] = pkt; break; case IPPROTO_UDP: if (app_sa_prm.udp_encap == 1) { udp = rte_pktmbuf_mtod_offset(pkt, struct rte_udp_hdr *, l3len); nat_port = rte_cpu_to_be_16(IPSEC_NAT_T_PORT); if (udp->src_port == nat_port || udp->dst_port == nat_port){ t->ipsec.pkts[(t->ipsec.num)++] = pkt; pkt->packet_type |= MBUF_PTYPE_TUNNEL_ESP_IN_UDP; break; } } /* Fall through */ default: t->ip6.data[t->ip6.num] = &iph6->proto; t->ip6.pkts[(t->ip6.num)++] = pkt; } pkt->l2_len = 0; pkt->l3_len = l3len; pkt->packet_type |= RTE_PTYPE_L3_IPV6; } else { /* Unknown/Unsupported type, drop the packet */ RTE_LOG(ERR, IPSEC, "Unsupported packet type 0x%x\n", rte_be_to_cpu_16(eth->ether_type)); free_pkts(&pkt, 1); return; } /* Check if the packet has been processed inline. For inline protocol * processed packets, the metadata in the mbuf can be used to identify * the security processing done on the packet. The metadata will be * used to retrieve the application registered userdata associated * with the security session. */ if (pkt->ol_flags & RTE_MBUF_F_RX_SEC_OFFLOAD && rte_security_dynfield_is_registered()) { struct ipsec_sa *sa; struct ipsec_mbuf_metadata *priv; struct rte_security_ctx *ctx = (struct rte_security_ctx *) rte_eth_dev_get_sec_ctx( pkt->port); /* Retrieve the userdata registered. Here, the userdata * registered is the SA pointer. */ sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, *rte_security_dynfield(pkt)); if (sa == NULL) { /* userdata could not be retrieved */ return; } /* Save SA as priv member in mbuf. This will be used in the * IPsec selector(SP-SA) check. */ priv = get_priv(pkt); priv->sa = sa; } } static inline void prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t, uint16_t nb_pkts) { int32_t i; t->ipsec.num = 0; t->ip4.num = 0; t->ip6.num = 0; for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) { rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET], void *)); prepare_one_packet(pkts[i], t); } /* Process left packets */ for (; i < nb_pkts; i++) prepare_one_packet(pkts[i], t); } static inline void prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port, const struct lcore_conf *qconf) { struct ip *ip; struct rte_ether_hdr *ethhdr; ip = rte_pktmbuf_mtod(pkt, struct ip *); ethhdr = (struct rte_ether_hdr *) rte_pktmbuf_prepend(pkt, RTE_ETHER_HDR_LEN); if (ip->ip_v == IPVERSION) { pkt->ol_flags |= qconf->outbound.ipv4_offloads; pkt->l3_len = sizeof(struct ip); pkt->l2_len = RTE_ETHER_HDR_LEN; ip->ip_sum = 0; /* calculate IPv4 cksum in SW */ if ((pkt->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) == 0) ip->ip_sum = rte_ipv4_cksum((struct rte_ipv4_hdr *)ip); ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4); } else { pkt->ol_flags |= qconf->outbound.ipv6_offloads; pkt->l3_len = sizeof(struct ip6_hdr); pkt->l2_len = RTE_ETHER_HDR_LEN; ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6); } memcpy(ðhdr->src_addr, ðaddr_tbl[port].src, sizeof(struct rte_ether_addr)); memcpy(ðhdr->dst_addr, ðaddr_tbl[port].dst, sizeof(struct rte_ether_addr)); } static inline void prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port, const struct lcore_conf *qconf) { int32_t i; const int32_t prefetch_offset = 2; for (i = 0; i < (nb_pkts - prefetch_offset); i++) { rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]); prepare_tx_pkt(pkts[i], port, qconf); } /* Process left packets */ for (; i < nb_pkts; i++) prepare_tx_pkt(pkts[i], port, qconf); } /* Send burst of packets on an output interface */ static inline int32_t send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port) { struct rte_mbuf **m_table; int32_t ret; uint16_t queueid; queueid = qconf->tx_queue_id[port]; m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; prepare_tx_burst(m_table, n, port, qconf); ret = rte_eth_tx_burst(port, queueid, m_table, n); core_stats_update_tx(ret); if (unlikely(ret < n)) { do { free_pkts(&m_table[ret], 1); } while (++ret < n); } return 0; } /* * Helper function to fragment and queue for TX one packet. */ static inline uint32_t send_fragment_packet(struct lcore_conf *qconf, struct rte_mbuf *m, uint16_t port, uint8_t proto) { struct buffer *tbl; uint32_t len, n; int32_t rc; tbl = qconf->tx_mbufs + port; len = tbl->len; /* free space for new fragments */ if (len + RTE_LIBRTE_IP_FRAG_MAX_FRAG >= RTE_DIM(tbl->m_table)) { send_burst(qconf, len, port); len = 0; } n = RTE_DIM(tbl->m_table) - len; if (proto == IPPROTO_IP) rc = rte_ipv4_fragment_packet(m, tbl->m_table + len, n, mtu_size, qconf->frag.pool_dir, qconf->frag.pool_indir); else rc = rte_ipv6_fragment_packet(m, tbl->m_table + len, n, mtu_size, qconf->frag.pool_dir, qconf->frag.pool_indir); if (rc >= 0) len += rc; else RTE_LOG(ERR, IPSEC, "%s: failed to fragment packet with size %u, " "error code: %d\n", __func__, m->pkt_len, rte_errno); free_pkts(&m, 1); return len; } /* Enqueue a single packet, and send burst if queue is filled */ static inline int32_t send_single_packet(struct rte_mbuf *m, uint16_t port, uint8_t proto) { uint32_t lcore_id; uint16_t len; struct lcore_conf *qconf; lcore_id = rte_lcore_id(); qconf = &lcore_conf[lcore_id]; len = qconf->tx_mbufs[port].len; if (m->pkt_len <= mtu_size) { qconf->tx_mbufs[port].m_table[len] = m; len++; /* need to fragment the packet */ } else if (frag_tbl_sz > 0) len = send_fragment_packet(qconf, m, port, proto); else free_pkts(&m, 1); /* enough pkts to be sent */ if (unlikely(len == MAX_PKT_BURST)) { send_burst(qconf, MAX_PKT_BURST, port); len = 0; } qconf->tx_mbufs[port].len = len; return 0; } static inline void inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip, uint16_t lim, struct ipsec_spd_stats *stats) { struct rte_mbuf *m; uint32_t i, j, res, sa_idx; if (ip->num == 0 || sp == NULL) return; rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res, ip->num, DEFAULT_MAX_CATEGORIES); j = 0; for (i = 0; i < ip->num; i++) { m = ip->pkts[i]; res = ip->res[i]; if (res == BYPASS) { ip->pkts[j++] = m; stats->bypass++; continue; } if (res == DISCARD) { free_pkts(&m, 1); stats->discard++; continue; } /* Only check SPI match for processed IPSec packets */ if (i < lim && ((m->ol_flags & RTE_MBUF_F_RX_SEC_OFFLOAD) == 0)) { stats->discard++; free_pkts(&m, 1); continue; } sa_idx = res - 1; if (!inbound_sa_check(sa, m, sa_idx)) { stats->discard++; free_pkts(&m, 1); continue; } ip->pkts[j++] = m; stats->protect++; } ip->num = j; } static void split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num) { uint32_t i, n4, n6; struct ip *ip; struct rte_mbuf *m; n4 = trf->ip4.num; n6 = trf->ip6.num; for (i = 0; i < num; i++) { m = mb[i]; ip = rte_pktmbuf_mtod(m, struct ip *); if (ip->ip_v == IPVERSION) { trf->ip4.pkts[n4] = m; trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m, uint8_t *, offsetof(struct ip, ip_p)); n4++; } else if (ip->ip_v == IP6_VERSION) { trf->ip6.pkts[n6] = m; trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m, uint8_t *, offsetof(struct ip6_hdr, ip6_nxt)); n6++; } else free_pkts(&m, 1); } trf->ip4.num = n4; trf->ip6.num = n6; } static inline void process_pkts_inbound(struct ipsec_ctx *ipsec_ctx, struct ipsec_traffic *traffic) { unsigned int lcoreid = rte_lcore_id(); uint16_t nb_pkts_in, n_ip4, n_ip6; n_ip4 = traffic->ip4.num; n_ip6 = traffic->ip6.num; if (app_sa_prm.enable == 0) { nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts, traffic->ipsec.num, MAX_PKT_BURST); split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in); } else { inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts, traffic->ipsec.saptr, traffic->ipsec.num); ipsec_process(ipsec_ctx, traffic); } inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4, n_ip4, &core_statistics[lcoreid].inbound.spd4); inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6, n_ip6, &core_statistics[lcoreid].inbound.spd6); } static inline void outbound_spd_lookup(struct sp_ctx *sp, struct traffic_type *ip, struct traffic_type *ipsec, struct ipsec_spd_stats *stats) { struct rte_mbuf *m; uint32_t i, j, sa_idx; if (ip->num == 0 || sp == NULL) return; rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res, ip->num, DEFAULT_MAX_CATEGORIES); for (i = 0, j = 0; i < ip->num; i++) { m = ip->pkts[i]; sa_idx = ip->res[i] - 1; if (unlikely(ip->res[i] == DISCARD)) { free_pkts(&m, 1); stats->discard++; } else if (unlikely(ip->res[i] == BYPASS)) { ip->pkts[j++] = m; stats->bypass++; } else { ipsec->res[ipsec->num] = sa_idx; ipsec->pkts[ipsec->num++] = m; stats->protect++; } } ip->num = j; } static inline void process_pkts_outbound(struct ipsec_ctx *ipsec_ctx, struct ipsec_traffic *traffic) { struct rte_mbuf *m; uint16_t idx, nb_pkts_out, i; unsigned int lcoreid = rte_lcore_id(); /* Drop any IPsec traffic from protected ports */ free_pkts(traffic->ipsec.pkts, traffic->ipsec.num); traffic->ipsec.num = 0; outbound_spd_lookup(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec, &core_statistics[lcoreid].outbound.spd4); outbound_spd_lookup(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec, &core_statistics[lcoreid].outbound.spd6); if (app_sa_prm.enable == 0) { nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts, traffic->ipsec.res, traffic->ipsec.num, MAX_PKT_BURST); for (i = 0; i < nb_pkts_out; i++) { m = traffic->ipsec.pkts[i]; struct ip *ip = rte_pktmbuf_mtod(m, struct ip *); if (ip->ip_v == IPVERSION) { idx = traffic->ip4.num++; traffic->ip4.pkts[idx] = m; } else { idx = traffic->ip6.num++; traffic->ip6.pkts[idx] = m; } } } else { outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res, traffic->ipsec.saptr, traffic->ipsec.num); ipsec_process(ipsec_ctx, traffic); } } static inline void process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx, struct ipsec_traffic *traffic) { struct rte_mbuf *m; uint32_t nb_pkts_in, i, idx; if (app_sa_prm.enable == 0) { nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts, traffic->ipsec.num, MAX_PKT_BURST); for (i = 0; i < nb_pkts_in; i++) { m = traffic->ipsec.pkts[i]; struct ip *ip = rte_pktmbuf_mtod(m, struct ip *); if (ip->ip_v == IPVERSION) { idx = traffic->ip4.num++; traffic->ip4.pkts[idx] = m; } else { idx = traffic->ip6.num++; traffic->ip6.pkts[idx] = m; } } } else { inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts, traffic->ipsec.saptr, traffic->ipsec.num); ipsec_process(ipsec_ctx, traffic); } } static inline void process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx, struct ipsec_traffic *traffic) { struct rte_mbuf *m; uint32_t nb_pkts_out, i, n; struct ip *ip; /* Drop any IPsec traffic from protected ports */ free_pkts(traffic->ipsec.pkts, traffic->ipsec.num); n = 0; for (i = 0; i < traffic->ip4.num; i++) { traffic->ipsec.pkts[n] = traffic->ip4.pkts[i]; traffic->ipsec.res[n++] = single_sa_idx; } for (i = 0; i < traffic->ip6.num; i++) { traffic->ipsec.pkts[n] = traffic->ip6.pkts[i]; traffic->ipsec.res[n++] = single_sa_idx; } traffic->ip4.num = 0; traffic->ip6.num = 0; traffic->ipsec.num = n; if (app_sa_prm.enable == 0) { nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts, traffic->ipsec.res, traffic->ipsec.num, MAX_PKT_BURST); /* They all sue the same SA (ip4 or ip6 tunnel) */ m = traffic->ipsec.pkts[0]; ip = rte_pktmbuf_mtod(m, struct ip *); if (ip->ip_v == IPVERSION) { traffic->ip4.num = nb_pkts_out; for (i = 0; i < nb_pkts_out; i++) traffic->ip4.pkts[i] = traffic->ipsec.pkts[i]; } else { traffic->ip6.num = nb_pkts_out; for (i = 0; i < nb_pkts_out; i++) traffic->ip6.pkts[i] = traffic->ipsec.pkts[i]; } } else { outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res, traffic->ipsec.saptr, traffic->ipsec.num); ipsec_process(ipsec_ctx, traffic); } } static inline int32_t get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6) { struct ipsec_mbuf_metadata *priv; struct ipsec_sa *sa; priv = get_priv(pkt); sa = priv->sa; if (unlikely(sa == NULL)) { RTE_LOG(ERR, IPSEC, "SA not saved in private data\n"); goto fail; } if (is_ipv6) return sa->portid; /* else */ return (sa->portid | RTE_LPM_LOOKUP_SUCCESS); fail: if (is_ipv6) return -1; /* else */ return 0; } static inline void route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts) { uint32_t hop[MAX_PKT_BURST * 2]; uint32_t dst_ip[MAX_PKT_BURST * 2]; int32_t pkt_hop = 0; uint16_t i, offset; uint16_t lpm_pkts = 0; unsigned int lcoreid = rte_lcore_id(); if (nb_pkts == 0) return; /* Need to do an LPM lookup for non-inline packets. Inline packets will * have port ID in the SA */ for (i = 0; i < nb_pkts; i++) { if (!(pkts[i]->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)) { /* Security offload not enabled. So an LPM lookup is * required to get the hop */ offset = offsetof(struct ip, ip_dst); dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i], uint32_t *, offset); dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]); lpm_pkts++; } } rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts); lpm_pkts = 0; for (i = 0; i < nb_pkts; i++) { if (pkts[i]->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) { /* Read hop from the SA */ pkt_hop = get_hop_for_offload_pkt(pkts[i], 0); } else { /* Need to use hop returned by lookup */ pkt_hop = hop[lpm_pkts++]; } if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) { core_statistics[lcoreid].lpm4.miss++; free_pkts(&pkts[i], 1); continue; } send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IP); } } static inline void route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts) { int32_t hop[MAX_PKT_BURST * 2]; uint8_t dst_ip[MAX_PKT_BURST * 2][16]; uint8_t *ip6_dst; int32_t pkt_hop = 0; uint16_t i, offset; uint16_t lpm_pkts = 0; unsigned int lcoreid = rte_lcore_id(); if (nb_pkts == 0) return; /* Need to do an LPM lookup for non-inline packets. Inline packets will * have port ID in the SA */ for (i = 0; i < nb_pkts; i++) { if (!(pkts[i]->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)) { /* Security offload not enabled. So an LPM lookup is * required to get the hop */ offset = offsetof(struct ip6_hdr, ip6_dst); ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *, offset); memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16); lpm_pkts++; } } rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop, lpm_pkts); lpm_pkts = 0; for (i = 0; i < nb_pkts; i++) { if (pkts[i]->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) { /* Read hop from the SA */ pkt_hop = get_hop_for_offload_pkt(pkts[i], 1); } else { /* Need to use hop returned by lookup */ pkt_hop = hop[lpm_pkts++]; } if (pkt_hop == -1) { core_statistics[lcoreid].lpm6.miss++; free_pkts(&pkts[i], 1); continue; } send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IPV6); } } static inline void process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts, uint8_t nb_pkts, uint16_t portid) { struct ipsec_traffic traffic; prepare_traffic(pkts, &traffic, nb_pkts); if (unlikely(single_sa)) { if (is_unprotected_port(portid)) process_pkts_inbound_nosp(&qconf->inbound, &traffic); else process_pkts_outbound_nosp(&qconf->outbound, &traffic); } else { if (is_unprotected_port(portid)) process_pkts_inbound(&qconf->inbound, &traffic); else process_pkts_outbound(&qconf->outbound, &traffic); } route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num); route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num); } static inline void drain_tx_buffers(struct lcore_conf *qconf) { struct buffer *buf; uint32_t portid; for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { buf = &qconf->tx_mbufs[portid]; if (buf->len == 0) continue; send_burst(qconf, buf->len, portid); buf->len = 0; } } static inline void drain_crypto_buffers(struct lcore_conf *qconf) { uint32_t i; struct ipsec_ctx *ctx; /* drain inbound buffers*/ ctx = &qconf->inbound; for (i = 0; i != ctx->nb_qps; i++) { if (ctx->tbl[i].len != 0) enqueue_cop_burst(ctx->tbl + i); } /* drain outbound buffers*/ ctx = &qconf->outbound; for (i = 0; i != ctx->nb_qps; i++) { if (ctx->tbl[i].len != 0) enqueue_cop_burst(ctx->tbl + i); } } static void drain_inbound_crypto_queues(const struct lcore_conf *qconf, struct ipsec_ctx *ctx) { uint32_t n; struct ipsec_traffic trf; unsigned int lcoreid = rte_lcore_id(); if (app_sa_prm.enable == 0) { /* dequeue packets from crypto-queue */ n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts, RTE_DIM(trf.ipsec.pkts)); trf.ip4.num = 0; trf.ip6.num = 0; /* split traffic by ipv4-ipv6 */ split46_traffic(&trf, trf.ipsec.pkts, n); } else ipsec_cqp_process(ctx, &trf); /* process ipv4 packets */ if (trf.ip4.num != 0) { inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0, &core_statistics[lcoreid].inbound.spd4); route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num); } /* process ipv6 packets */ if (trf.ip6.num != 0) { inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0, &core_statistics[lcoreid].inbound.spd6); route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num); } } static void drain_outbound_crypto_queues(const struct lcore_conf *qconf, struct ipsec_ctx *ctx) { uint32_t n; struct ipsec_traffic trf; if (app_sa_prm.enable == 0) { /* dequeue packets from crypto-queue */ n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts, RTE_DIM(trf.ipsec.pkts)); trf.ip4.num = 0; trf.ip6.num = 0; /* split traffic by ipv4-ipv6 */ split46_traffic(&trf, trf.ipsec.pkts, n); } else ipsec_cqp_process(ctx, &trf); /* process ipv4 packets */ if (trf.ip4.num != 0) route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num); /* process ipv6 packets */ if (trf.ip6.num != 0) route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num); } /* main processing loop */ void ipsec_poll_mode_worker(void) { struct rte_mbuf *pkts[MAX_PKT_BURST]; uint32_t lcore_id; uint64_t prev_tsc, diff_tsc, cur_tsc; int32_t i, nb_rx; uint16_t portid; uint8_t queueid; struct lcore_conf *qconf; int32_t rc, socket_id; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; struct lcore_rx_queue *rxql; prev_tsc = 0; lcore_id = rte_lcore_id(); qconf = &lcore_conf[lcore_id]; rxql = qconf->rx_queue_list; socket_id = rte_lcore_to_socket_id(lcore_id); qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4; qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6; qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in; qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in; qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in; qconf->inbound.cdev_map = cdev_map_in; qconf->inbound.session_pool = socket_ctx[socket_id].session_pool; qconf->inbound.session_priv_pool = socket_ctx[socket_id].session_priv_pool; qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out; qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out; qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out; qconf->outbound.cdev_map = cdev_map_out; qconf->outbound.session_pool = socket_ctx[socket_id].session_pool; qconf->outbound.session_priv_pool = socket_ctx[socket_id].session_priv_pool; qconf->frag.pool_dir = socket_ctx[socket_id].mbuf_pool; qconf->frag.pool_indir = socket_ctx[socket_id].mbuf_pool_indir; rc = ipsec_sad_lcore_cache_init(app_sa_prm.cache_sz); if (rc != 0) { RTE_LOG(ERR, IPSEC, "SAD cache init on lcore %u, failed with code: %d\n", lcore_id, rc); return; } if (qconf->nb_rx_queue == 0) { RTE_LOG(DEBUG, IPSEC, "lcore %u has nothing to do\n", lcore_id); return; } RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id); for (i = 0; i < qconf->nb_rx_queue; i++) { portid = rxql[i].port_id; queueid = rxql[i].queue_id; RTE_LOG(INFO, IPSEC, " -- lcoreid=%u portid=%u rxqueueid=%hhu\n", lcore_id, portid, queueid); } while (!force_quit) { cur_tsc = rte_rdtsc(); /* TX queue buffer drain */ diff_tsc = cur_tsc - prev_tsc; if (unlikely(diff_tsc > drain_tsc)) { drain_tx_buffers(qconf); drain_crypto_buffers(qconf); prev_tsc = cur_tsc; } for (i = 0; i < qconf->nb_rx_queue; ++i) { /* Read packets from RX queues */ portid = rxql[i].port_id; queueid = rxql[i].queue_id; nb_rx = rte_eth_rx_burst(portid, queueid, pkts, MAX_PKT_BURST); if (nb_rx > 0) { core_stats_update_rx(nb_rx); process_pkts(qconf, pkts, nb_rx, portid); } /* dequeue and process completed crypto-ops */ if (is_unprotected_port(portid)) drain_inbound_crypto_queues(qconf, &qconf->inbound); else drain_outbound_crypto_queues(qconf, &qconf->outbound); } } } int check_flow_params(uint16_t fdir_portid, uint8_t fdir_qid) { uint16_t i; uint16_t portid; uint8_t queueid; for (i = 0; i < nb_lcore_params; ++i) { portid = lcore_params_array[i].port_id; if (portid == fdir_portid) { queueid = lcore_params_array[i].queue_id; if (queueid == fdir_qid) break; } if (i == nb_lcore_params - 1) return -1; } return 1; } static int32_t check_poll_mode_params(struct eh_conf *eh_conf) { uint8_t lcore; uint16_t portid; uint16_t i; int32_t socket_id; if (!eh_conf) return -EINVAL; if (eh_conf->mode != EH_PKT_TRANSFER_MODE_POLL) return 0; if (lcore_params == NULL) { printf("Error: No port/queue/core mappings\n"); return -1; } for (i = 0; i < nb_lcore_params; ++i) { lcore = lcore_params[i].lcore_id; if (!rte_lcore_is_enabled(lcore)) { printf("error: lcore %hhu is not enabled in " "lcore mask\n", lcore); return -1; } socket_id = rte_lcore_to_socket_id(lcore); if (socket_id != 0 && numa_on == 0) { printf("warning: lcore %hhu is on socket %d " "with numa off\n", lcore, socket_id); } portid = lcore_params[i].port_id; if ((enabled_port_mask & (1 << portid)) == 0) { printf("port %u is not enabled in port mask\n", portid); return -1; } if (!rte_eth_dev_is_valid_port(portid)) { printf("port %u is not present on the board\n", portid); return -1; } } return 0; } static uint8_t get_port_nb_rx_queues(const uint16_t port) { int32_t queue = -1; uint16_t i; for (i = 0; i < nb_lcore_params; ++i) { if (lcore_params[i].port_id == port && lcore_params[i].queue_id > queue) queue = lcore_params[i].queue_id; } return (uint8_t)(++queue); } static int32_t init_lcore_rx_queues(void) { uint16_t i, nb_rx_queue; uint8_t lcore; for (i = 0; i < nb_lcore_params; ++i) { lcore = lcore_params[i].lcore_id; nb_rx_queue = lcore_conf[lcore].nb_rx_queue; if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) { printf("error: too many queues (%u) for lcore: %u\n", nb_rx_queue + 1, lcore); return -1; } lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id = lcore_params[i].port_id; lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id = lcore_params[i].queue_id; lcore_conf[lcore].nb_rx_queue++; } return 0; } /* display usage */ static void print_usage(const char *prgname) { fprintf(stderr, "%s [EAL options] --" " -p PORTMASK" " [-P]" " [-u PORTMASK]" " [-j FRAMESIZE]" " [-l]" " [-w REPLAY_WINDOW_SIZE]" " [-e]" " [-a]" " [-c]" " [-t STATS_INTERVAL]" " [-s NUMBER_OF_MBUFS_IN_PKT_POOL]" " -f CONFIG_FILE" " --config (port,queue,lcore)[,(port,queue,lcore)]" " [--single-sa SAIDX]" " [--cryptodev_mask MASK]" " [--transfer-mode MODE]" " [--event-schedule-type TYPE]" " [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]" " [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]" " [--" CMD_LINE_OPT_REASSEMBLE " REASSEMBLE_TABLE_SIZE]" " [--" CMD_LINE_OPT_MTU " MTU]" " [--event-vector]" " [--vector-size SIZE]" " [--vector-tmo TIMEOUT in ns]" "\n\n" " -p PORTMASK: Hexadecimal bitmask of ports to configure\n" " -P : Enable promiscuous mode\n" " -u PORTMASK: Hexadecimal bitmask of unprotected ports\n" " -j FRAMESIZE: Data buffer size, minimum (and default)\n" " value: RTE_MBUF_DEFAULT_BUF_SIZE\n" " -l enables code-path that uses librte_ipsec\n" " -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n" " size for each SA\n" " -e enables ESN\n" " -a enables SA SQN atomic behaviour\n" " -c specifies inbound SAD cache size,\n" " zero value disables the cache (default value: 128)\n" " -t specifies statistics screen update interval,\n" " zero disables statistics screen (default value: 0)\n" " -s number of mbufs in packet pool, if not specified number\n" " of mbufs will be calculated based on number of cores,\n" " ports and crypto queues\n" " -f CONFIG_FILE: Configuration file\n" " --config (port,queue,lcore): Rx queue configuration. In poll\n" " mode determines which queues from\n" " which ports are mapped to which cores.\n" " In event mode this option is not used\n" " as packets are dynamically scheduled\n" " to cores by HW.\n" " --single-sa SAIDX: In poll mode use single SA index for\n" " outbound traffic, bypassing the SP\n" " In event mode selects driver submode,\n" " SA index value is ignored\n" " --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n" " devices to configure\n" " --transfer-mode MODE\n" " \"poll\" : Packet transfer via polling (default)\n" " \"event\" : Packet transfer via event device\n" " --event-schedule-type TYPE queue schedule type, used only when\n" " transfer mode is set to event\n" " \"ordered\" : Ordered (default)\n" " \"atomic\" : Atomic\n" " \"parallel\" : Parallel\n" " --" CMD_LINE_OPT_RX_OFFLOAD ": bitmask of the RX HW offload capabilities to enable/use\n" " (RTE_ETH_RX_OFFLOAD_*)\n" " --" CMD_LINE_OPT_TX_OFFLOAD ": bitmask of the TX HW offload capabilities to enable/use\n" " (RTE_ETH_TX_OFFLOAD_*)\n" " --" CMD_LINE_OPT_REASSEMBLE " NUM" ": max number of entries in reassemble(fragment) table\n" " (zero (default value) disables reassembly)\n" " --" CMD_LINE_OPT_MTU " MTU" ": MTU value on all ports (default value: 1500)\n" " outgoing packets with bigger size will be fragmented\n" " incoming packets with bigger size will be discarded\n" " --" CMD_LINE_OPT_FRAG_TTL " FRAG_TTL_NS" ": fragments lifetime in nanoseconds, default\n" " and maximum value is 10.000.000.000 ns (10 s)\n" " --event-vector enables event vectorization\n" " --vector-size Max vector size (default value: 16)\n" " --vector-tmo Max vector timeout in nanoseconds" " (default value: 102400)\n" "\n", prgname); } static int parse_mask(const char *str, uint64_t *val) { char *end; unsigned long t; errno = 0; t = strtoul(str, &end, 0); if (errno != 0 || end[0] != 0) return -EINVAL; *val = t; return 0; } static int32_t parse_portmask(const char *portmask) { char *end = NULL; unsigned long pm; errno = 0; /* parse hexadecimal string */ pm = strtoul(portmask, &end, 16); if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if ((pm == 0) && errno) return -1; return pm; } static int64_t parse_decimal(const char *str) { char *end = NULL; uint64_t num; num = strtoull(str, &end, 10); if ((str[0] == '\0') || (end == NULL) || (*end != '\0') || num > INT64_MAX) return -1; return num; } static int32_t parse_config(const char *q_arg) { char s[256]; const char *p, *p0 = q_arg; char *end; enum fieldnames { FLD_PORT = 0, FLD_QUEUE, FLD_LCORE, _NUM_FLD }; unsigned long int_fld[_NUM_FLD]; char *str_fld[_NUM_FLD]; int32_t i; uint32_t size; nb_lcore_params = 0; while ((p = strchr(p0, '(')) != NULL) { ++p; p0 = strchr(p, ')'); if (p0 == NULL) return -1; size = p0 - p; if (size >= sizeof(s)) return -1; snprintf(s, sizeof(s), "%.*s", size, p); if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD) return -1; for (i = 0; i < _NUM_FLD; i++) { errno = 0; int_fld[i] = strtoul(str_fld[i], &end, 0); if (errno != 0 || end == str_fld[i] || int_fld[i] > 255) return -1; } if (nb_lcore_params >= MAX_LCORE_PARAMS) { printf("exceeded max number of lcore params: %hu\n", nb_lcore_params); return -1; } lcore_params_array[nb_lcore_params].port_id = (uint8_t)int_fld[FLD_PORT]; lcore_params_array[nb_lcore_params].queue_id = (uint8_t)int_fld[FLD_QUEUE]; lcore_params_array[nb_lcore_params].lcore_id = (uint8_t)int_fld[FLD_LCORE]; ++nb_lcore_params; } lcore_params = lcore_params_array; return 0; } static void print_app_sa_prm(const struct app_sa_prm *prm) { printf("librte_ipsec usage: %s\n", (prm->enable == 0) ? "disabled" : "enabled"); printf("replay window size: %u\n", prm->window_size); printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled"); printf("SA flags: %#" PRIx64 "\n", prm->flags); printf("Frag TTL: %" PRIu64 " ns\n", frag_ttl_ns); } static int parse_transfer_mode(struct eh_conf *conf, const char *optarg) { if (!strcmp(CMD_LINE_ARG_POLL, optarg)) conf->mode = EH_PKT_TRANSFER_MODE_POLL; else if (!strcmp(CMD_LINE_ARG_EVENT, optarg)) conf->mode = EH_PKT_TRANSFER_MODE_EVENT; else { printf("Unsupported packet transfer mode\n"); return -EINVAL; } return 0; } static int parse_schedule_type(struct eh_conf *conf, const char *optarg) { struct eventmode_conf *em_conf = NULL; /* Get eventmode conf */ em_conf = conf->mode_params; if (!strcmp(CMD_LINE_ARG_ORDERED, optarg)) em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED; else if (!strcmp(CMD_LINE_ARG_ATOMIC, optarg)) em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ATOMIC; else if (!strcmp(CMD_LINE_ARG_PARALLEL, optarg)) em_conf->ext_params.sched_type = RTE_SCHED_TYPE_PARALLEL; else { printf("Unsupported queue schedule type\n"); return -EINVAL; } return 0; } static int32_t parse_args(int32_t argc, char **argv, struct eh_conf *eh_conf) { int opt; int64_t ret; char **argvopt; int32_t option_index; char *prgname = argv[0]; int32_t f_present = 0; struct eventmode_conf *em_conf = NULL; argvopt = argv; while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:c:t:s:", lgopts, &option_index)) != EOF) { switch (opt) { case 'p': enabled_port_mask = parse_portmask(optarg); if (enabled_port_mask == 0) { printf("invalid portmask\n"); print_usage(prgname); return -1; } break; case 'P': printf("Promiscuous mode selected\n"); promiscuous_on = 1; break; case 'u': unprotected_port_mask = parse_portmask(optarg); if (unprotected_port_mask == 0) { printf("invalid unprotected portmask\n"); print_usage(prgname); return -1; } break; case 'f': if (f_present == 1) { printf("\"-f\" option present more than " "once!\n"); print_usage(prgname); return -1; } cfgfile = optarg; f_present = 1; break; case 's': ret = parse_decimal(optarg); if (ret < 0) { printf("Invalid number of buffers in a pool: " "%s\n", optarg); print_usage(prgname); return -1; } nb_bufs_in_pool = ret; break; case 'j': ret = parse_decimal(optarg); if (ret < RTE_MBUF_DEFAULT_BUF_SIZE || ret > UINT16_MAX) { printf("Invalid frame buffer size value: %s\n", optarg); print_usage(prgname); return -1; } frame_buf_size = ret; printf("Custom frame buffer size %u\n", frame_buf_size); break; case 'l': app_sa_prm.enable = 1; break; case 'w': app_sa_prm.window_size = parse_decimal(optarg); break; case 'e': app_sa_prm.enable_esn = 1; break; case 'a': app_sa_prm.enable = 1; app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM; break; case 'c': ret = parse_decimal(optarg); if (ret < 0) { printf("Invalid SA cache size: %s\n", optarg); print_usage(prgname); return -1; } app_sa_prm.cache_sz = ret; break; case 't': ret = parse_decimal(optarg); if (ret < 0) { printf("Invalid interval value: %s\n", optarg); print_usage(prgname); return -1; } stats_interval = ret; break; case CMD_LINE_OPT_CONFIG_NUM: ret = parse_config(optarg); if (ret) { printf("Invalid config\n"); print_usage(prgname); return -1; } break; case CMD_LINE_OPT_SINGLE_SA_NUM: ret = parse_decimal(optarg); if (ret == -1 || ret > UINT32_MAX) { printf("Invalid argument[sa_idx]\n"); print_usage(prgname); return -1; } /* else */ single_sa = 1; single_sa_idx = ret; eh_conf->ipsec_mode = EH_IPSEC_MODE_TYPE_DRIVER; printf("Configured with single SA index %u\n", single_sa_idx); break; case CMD_LINE_OPT_CRYPTODEV_MASK_NUM: ret = parse_portmask(optarg); if (ret == -1) { printf("Invalid argument[portmask]\n"); print_usage(prgname); return -1; } /* else */ enabled_cryptodev_mask = ret; break; case CMD_LINE_OPT_TRANSFER_MODE_NUM: ret = parse_transfer_mode(eh_conf, optarg); if (ret < 0) { printf("Invalid packet transfer mode\n"); print_usage(prgname); return -1; } break; case CMD_LINE_OPT_SCHEDULE_TYPE_NUM: ret = parse_schedule_type(eh_conf, optarg); if (ret < 0) { printf("Invalid queue schedule type\n"); print_usage(prgname); return -1; } break; case CMD_LINE_OPT_RX_OFFLOAD_NUM: ret = parse_mask(optarg, &dev_rx_offload); if (ret != 0) { printf("Invalid argument for \'%s\': %s\n", CMD_LINE_OPT_RX_OFFLOAD, optarg); print_usage(prgname); return -1; } break; case CMD_LINE_OPT_TX_OFFLOAD_NUM: ret = parse_mask(optarg, &dev_tx_offload); if (ret != 0) { printf("Invalid argument for \'%s\': %s\n", CMD_LINE_OPT_TX_OFFLOAD, optarg); print_usage(prgname); return -1; } break; case CMD_LINE_OPT_REASSEMBLE_NUM: ret = parse_decimal(optarg); if (ret < 0 || ret > UINT32_MAX) { printf("Invalid argument for \'%s\': %s\n", CMD_LINE_OPT_REASSEMBLE, optarg); print_usage(prgname); return -1; } frag_tbl_sz = ret; break; case CMD_LINE_OPT_MTU_NUM: ret = parse_decimal(optarg); if (ret < 0 || ret > RTE_IPV4_MAX_PKT_LEN) { printf("Invalid argument for \'%s\': %s\n", CMD_LINE_OPT_MTU, optarg); print_usage(prgname); return -1; } mtu_size = ret; break; case CMD_LINE_OPT_FRAG_TTL_NUM: ret = parse_decimal(optarg); if (ret < 0 || ret > MAX_FRAG_TTL_NS) { printf("Invalid argument for \'%s\': %s\n", CMD_LINE_OPT_MTU, optarg); print_usage(prgname); return -1; } frag_ttl_ns = ret; break; case CMD_LINE_OPT_EVENT_VECTOR_NUM: em_conf = eh_conf->mode_params; em_conf->ext_params.event_vector = 1; break; case CMD_LINE_OPT_VECTOR_SIZE_NUM: ret = parse_decimal(optarg); if (ret > MAX_PKT_BURST) { printf("Invalid argument for \'%s\': %s\n", CMD_LINE_OPT_VECTOR_SIZE, optarg); print_usage(prgname); return -1; } em_conf = eh_conf->mode_params; em_conf->ext_params.vector_size = ret; break; case CMD_LINE_OPT_VECTOR_TIMEOUT_NUM: ret = parse_decimal(optarg); em_conf = eh_conf->mode_params; em_conf->vector_tmo_ns = ret; break; default: print_usage(prgname); return -1; } } if (f_present == 0) { printf("Mandatory option \"-f\" not present\n"); return -1; } /* check do we need to enable multi-seg support */ if (multi_seg_required()) { /* legacy mode doesn't support multi-seg */ app_sa_prm.enable = 1; printf("frame buf size: %u, mtu: %u, " "number of reassemble entries: %u\n" "multi-segment support is required\n", frame_buf_size, mtu_size, frag_tbl_sz); } print_app_sa_prm(&app_sa_prm); if (optind >= 0) argv[optind-1] = prgname; ret = optind-1; optind = 1; /* reset getopt lib */ return ret; } static void print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr) { char buf[RTE_ETHER_ADDR_FMT_SIZE]; rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); printf("%s%s", name, buf); } /* * Update destination ethaddr for the port. */ int add_dst_ethaddr(uint16_t port, const struct rte_ether_addr *addr) { if (port >= RTE_DIM(ethaddr_tbl)) return -EINVAL; ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr); return 0; } /* Check the link status of all ports in up to 9s, and print them finally */ static void check_all_ports_link_status(uint32_t port_mask) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ uint16_t portid; uint8_t count, all_ports_up, print_flag = 0; struct rte_eth_link link; int ret; char link_status_text[RTE_ETH_LINK_MAX_STR_LEN]; printf("\nChecking link status"); fflush(stdout); for (count = 0; count <= MAX_CHECK_TIME; count++) { all_ports_up = 1; RTE_ETH_FOREACH_DEV(portid) { if ((port_mask & (1 << portid)) == 0) continue; memset(&link, 0, sizeof(link)); ret = rte_eth_link_get_nowait(portid, &link); if (ret < 0) { all_ports_up = 0; if (print_flag == 1) printf("Port %u link get failed: %s\n", portid, rte_strerror(-ret)); continue; } /* print link status if flag set */ if (print_flag == 1) { rte_eth_link_to_str(link_status_text, sizeof(link_status_text), &link); printf("Port %d %s\n", portid, link_status_text); continue; } /* clear all_ports_up flag if any link down */ if (link.link_status == RTE_ETH_LINK_DOWN) { all_ports_up = 0; break; } } /* after finally printing all link status, get out */ if (print_flag == 1) break; if (all_ports_up == 0) { printf("."); fflush(stdout); rte_delay_ms(CHECK_INTERVAL); } /* set the print_flag if all ports up or timeout */ if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { print_flag = 1; printf("done\n"); } } } static int32_t add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id, uint16_t qp, struct lcore_params *params, struct ipsec_ctx *ipsec_ctx, const struct rte_cryptodev_capabilities *cipher, const struct rte_cryptodev_capabilities *auth, const struct rte_cryptodev_capabilities *aead) { int32_t ret = 0; unsigned long i; struct cdev_key key = { 0 }; key.lcore_id = params->lcore_id; if (cipher) key.cipher_algo = cipher->sym.cipher.algo; if (auth) key.auth_algo = auth->sym.auth.algo; if (aead) key.aead_algo = aead->sym.aead.algo; ret = rte_hash_lookup(map, &key); if (ret != -ENOENT) return 0; for (i = 0; i < ipsec_ctx->nb_qps; i++) if (ipsec_ctx->tbl[i].id == cdev_id) break; if (i == ipsec_ctx->nb_qps) { if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) { printf("Maximum number of crypto devices assigned to " "a core, increase MAX_QP_PER_LCORE value\n"); return 0; } ipsec_ctx->tbl[i].id = cdev_id; ipsec_ctx->tbl[i].qp = qp; ipsec_ctx->nb_qps++; printf("%s cdev mapping: lcore %u using cdev %u qp %u " "(cdev_id_qp %lu)\n", str, key.lcore_id, cdev_id, qp, i); } ret = rte_hash_add_key_data(map, &key, (void *)i); if (ret < 0) { printf("Failed to insert cdev mapping for (lcore %u, " "cdev %u, qp %u), errno %d\n", key.lcore_id, ipsec_ctx->tbl[i].id, ipsec_ctx->tbl[i].qp, ret); return 0; } return 1; } static int32_t add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id, uint16_t qp, struct lcore_params *params) { int32_t ret = 0; const struct rte_cryptodev_capabilities *i, *j; struct rte_hash *map; struct lcore_conf *qconf; struct ipsec_ctx *ipsec_ctx; const char *str; qconf = &lcore_conf[params->lcore_id]; if ((unprotected_port_mask & (1 << params->port_id)) == 0) { map = cdev_map_out; ipsec_ctx = &qconf->outbound; str = "Outbound"; } else { map = cdev_map_in; ipsec_ctx = &qconf->inbound; str = "Inbound"; } /* Required cryptodevs with operation chaining */ if (!(dev_info->feature_flags & RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING)) return ret; for (i = dev_info->capabilities; i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) { if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC) continue; if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) { ret |= add_mapping(map, str, cdev_id, qp, params, ipsec_ctx, NULL, NULL, i); continue; } if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER) continue; for (j = dev_info->capabilities; j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) { if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC) continue; if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH) continue; ret |= add_mapping(map, str, cdev_id, qp, params, ipsec_ctx, i, j, NULL); } } return ret; } /* Check if the device is enabled by cryptodev_mask */ static int check_cryptodev_mask(uint8_t cdev_id) { if (enabled_cryptodev_mask & (1 << cdev_id)) return 0; return -1; } static uint16_t cryptodevs_init(uint16_t req_queue_num) { struct rte_cryptodev_config dev_conf; struct rte_cryptodev_qp_conf qp_conf; uint16_t idx, max_nb_qps, qp, total_nb_qps, i; int16_t cdev_id; struct rte_hash_parameters params = { 0 }; const uint64_t mseg_flag = multi_seg_required() ? RTE_CRYPTODEV_FF_IN_PLACE_SGL : 0; params.entries = CDEV_MAP_ENTRIES; params.key_len = sizeof(struct cdev_key); params.hash_func = rte_jhash; params.hash_func_init_val = 0; params.socket_id = rte_socket_id(); params.name = "cdev_map_in"; cdev_map_in = rte_hash_create(¶ms); if (cdev_map_in == NULL) rte_panic("Failed to create cdev_map hash table, errno = %d\n", rte_errno); params.name = "cdev_map_out"; cdev_map_out = rte_hash_create(¶ms); if (cdev_map_out == NULL) rte_panic("Failed to create cdev_map hash table, errno = %d\n", rte_errno); printf("lcore/cryptodev/qp mappings:\n"); idx = 0; total_nb_qps = 0; for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) { struct rte_cryptodev_info cdev_info; if (check_cryptodev_mask((uint8_t)cdev_id)) continue; rte_cryptodev_info_get(cdev_id, &cdev_info); if ((mseg_flag & cdev_info.feature_flags) != mseg_flag) rte_exit(EXIT_FAILURE, "Device %hd does not support \'%s\' feature\n", cdev_id, rte_cryptodev_get_feature_name(mseg_flag)); if (nb_lcore_params > cdev_info.max_nb_queue_pairs) max_nb_qps = cdev_info.max_nb_queue_pairs; else max_nb_qps = nb_lcore_params; qp = 0; i = 0; while (qp < max_nb_qps && i < nb_lcore_params) { if (add_cdev_mapping(&cdev_info, cdev_id, qp, &lcore_params[idx])) qp++; idx++; idx = idx % nb_lcore_params; i++; } qp = RTE_MIN(max_nb_qps, RTE_MAX(req_queue_num, qp)); if (qp == 0) continue; total_nb_qps += qp; dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id); dev_conf.nb_queue_pairs = qp; dev_conf.ff_disable = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO; uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions; if (dev_max_sess != 0 && dev_max_sess < get_nb_crypto_sessions()) rte_exit(EXIT_FAILURE, "Device does not support at least %u " "sessions", get_nb_crypto_sessions()); if (rte_cryptodev_configure(cdev_id, &dev_conf)) rte_panic("Failed to initialize cryptodev %u\n", cdev_id); qp_conf.nb_descriptors = CDEV_QUEUE_DESC; qp_conf.mp_session = socket_ctx[dev_conf.socket_id].session_pool; qp_conf.mp_session_private = socket_ctx[dev_conf.socket_id].session_priv_pool; for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++) if (rte_cryptodev_queue_pair_setup(cdev_id, qp, &qp_conf, dev_conf.socket_id)) rte_panic("Failed to setup queue %u for " "cdev_id %u\n", 0, cdev_id); if (rte_cryptodev_start(cdev_id)) rte_panic("Failed to start cryptodev %u\n", cdev_id); } printf("\n"); return total_nb_qps; } static void port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads) { struct rte_eth_dev_info dev_info; struct rte_eth_txconf *txconf; uint16_t nb_tx_queue, nb_rx_queue; uint16_t tx_queueid, rx_queueid, queue, lcore_id; int32_t ret, socket_id; struct lcore_conf *qconf; struct rte_ether_addr ethaddr; struct rte_eth_conf local_port_conf = port_conf; ret = rte_eth_dev_info_get(portid, &dev_info); if (ret != 0) rte_exit(EXIT_FAILURE, "Error during getting device (port %u) info: %s\n", portid, strerror(-ret)); /* limit allowed HW offloads, as user requested */ dev_info.rx_offload_capa &= dev_rx_offload; dev_info.tx_offload_capa &= dev_tx_offload; printf("Configuring device port %u:\n", portid); ret = rte_eth_macaddr_get(portid, ðaddr); if (ret != 0) rte_exit(EXIT_FAILURE, "Error getting MAC address (port %u): %s\n", portid, rte_strerror(-ret)); ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ðaddr); print_ethaddr("Address: ", ðaddr); printf("\n"); nb_rx_queue = get_port_nb_rx_queues(portid); nb_tx_queue = nb_lcores; if (nb_rx_queue > dev_info.max_rx_queues) rte_exit(EXIT_FAILURE, "Error: queue %u not available " "(max rx queue is %u)\n", nb_rx_queue, dev_info.max_rx_queues); if (nb_tx_queue > dev_info.max_tx_queues) rte_exit(EXIT_FAILURE, "Error: queue %u not available " "(max tx queue is %u)\n", nb_tx_queue, dev_info.max_tx_queues); printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n", nb_rx_queue, nb_tx_queue); local_port_conf.rxmode.mtu = mtu_size; if (multi_seg_required()) { local_port_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_SCATTER; local_port_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS; } local_port_conf.rxmode.offloads |= req_rx_offloads; local_port_conf.txmode.offloads |= req_tx_offloads; /* Check that all required capabilities are supported */ if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) != local_port_conf.rxmode.offloads) rte_exit(EXIT_FAILURE, "Error: port %u required RX offloads: 0x%" PRIx64 ", available RX offloads: 0x%" PRIx64 "\n", portid, local_port_conf.rxmode.offloads, dev_info.rx_offload_capa); if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) != local_port_conf.txmode.offloads) rte_exit(EXIT_FAILURE, "Error: port %u required TX offloads: 0x%" PRIx64 ", available TX offloads: 0x%" PRIx64 "\n", portid, local_port_conf.txmode.offloads, dev_info.tx_offload_capa); if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) local_port_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE; if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) local_port_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM; printf("port %u configuring rx_offloads=0x%" PRIx64 ", tx_offloads=0x%" PRIx64 "\n", portid, local_port_conf.rxmode.offloads, local_port_conf.txmode.offloads); local_port_conf.rx_adv_conf.rss_conf.rss_hf &= dev_info.flow_type_rss_offloads; if (local_port_conf.rx_adv_conf.rss_conf.rss_hf != port_conf.rx_adv_conf.rss_conf.rss_hf) { printf("Port %u modified RSS hash function based on hardware support," "requested:%#"PRIx64" configured:%#"PRIx64"\n", portid, port_conf.rx_adv_conf.rss_conf.rss_hf, local_port_conf.rx_adv_conf.rss_conf.rss_hf); } ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue, &local_port_conf); if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot configure device: " "err=%d, port=%d\n", ret, portid); ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd); if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: " "err=%d, port=%d\n", ret, portid); /* init one TX queue per lcore */ tx_queueid = 0; for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; if (numa_on) socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id); else socket_id = 0; /* init TX queue */ printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id); txconf = &dev_info.default_txconf; txconf->offloads = local_port_conf.txmode.offloads; ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd, socket_id, txconf); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " "err=%d, port=%d\n", ret, portid); qconf = &lcore_conf[lcore_id]; qconf->tx_queue_id[portid] = tx_queueid; tx_queueid++; /* init RX queues */ for (queue = 0; queue < qconf->nb_rx_queue; ++queue) { struct rte_eth_rxconf rxq_conf; if (portid != qconf->rx_queue_list[queue].port_id) continue; rx_queueid = qconf->rx_queue_list[queue].queue_id; printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid, socket_id); rxq_conf = dev_info.default_rxconf; rxq_conf.offloads = local_port_conf.rxmode.offloads; ret = rte_eth_rx_queue_setup(portid, rx_queueid, nb_rxd, socket_id, &rxq_conf, socket_ctx[socket_id].mbuf_pool); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, " "port=%d\n", ret, portid); } } printf("\n"); } static size_t max_session_size(void) { size_t max_sz, sz; void *sec_ctx; int16_t cdev_id, port_id, n; max_sz = 0; n = rte_cryptodev_count(); for (cdev_id = 0; cdev_id != n; cdev_id++) { sz = rte_cryptodev_sym_get_private_session_size(cdev_id); if (sz > max_sz) max_sz = sz; /* * If crypto device is security capable, need to check the * size of security session as well. */ /* Get security context of the crypto device */ sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id); if (sec_ctx == NULL) continue; /* Get size of security session */ sz = rte_security_session_get_size(sec_ctx); if (sz > max_sz) max_sz = sz; } RTE_ETH_FOREACH_DEV(port_id) { if ((enabled_port_mask & (1 << port_id)) == 0) continue; sec_ctx = rte_eth_dev_get_sec_ctx(port_id); if (sec_ctx == NULL) continue; sz = rte_security_session_get_size(sec_ctx); if (sz > max_sz) max_sz = sz; } return max_sz; } static void session_pool_init(struct socket_ctx *ctx, int32_t socket_id, size_t sess_sz) { char mp_name[RTE_MEMPOOL_NAMESIZE]; struct rte_mempool *sess_mp; uint32_t nb_sess; snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, "sess_mp_%u", socket_id); nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ * rte_lcore_count()); nb_sess = RTE_MAX(nb_sess, CDEV_MP_CACHE_SZ * CDEV_MP_CACHE_MULTIPLIER); sess_mp = rte_cryptodev_sym_session_pool_create( mp_name, nb_sess, sess_sz, CDEV_MP_CACHE_SZ, 0, socket_id); ctx->session_pool = sess_mp; if (ctx->session_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot init session pool on socket %d\n", socket_id); else printf("Allocated session pool on socket %d\n", socket_id); } static void session_priv_pool_init(struct socket_ctx *ctx, int32_t socket_id, size_t sess_sz) { char mp_name[RTE_MEMPOOL_NAMESIZE]; struct rte_mempool *sess_mp; uint32_t nb_sess; snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, "sess_mp_priv_%u", socket_id); nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ * rte_lcore_count()); nb_sess = RTE_MAX(nb_sess, CDEV_MP_CACHE_SZ * CDEV_MP_CACHE_MULTIPLIER); sess_mp = rte_mempool_create(mp_name, nb_sess, sess_sz, CDEV_MP_CACHE_SZ, 0, NULL, NULL, NULL, NULL, socket_id, 0); ctx->session_priv_pool = sess_mp; if (ctx->session_priv_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot init session priv pool on socket %d\n", socket_id); else printf("Allocated session priv pool on socket %d\n", socket_id); } static void pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf) { char s[64]; int32_t ms; snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id); ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf, MEMPOOL_CACHE_SIZE, ipsec_metadata_size(), frame_buf_size, socket_id); /* * if multi-segment support is enabled, then create a pool * for indirect mbufs. */ ms = multi_seg_required(); if (ms != 0) { snprintf(s, sizeof(s), "mbuf_pool_indir_%d", socket_id); ctx->mbuf_pool_indir = rte_pktmbuf_pool_create(s, nb_mbuf, MEMPOOL_CACHE_SIZE, 0, 0, socket_id); } if (ctx->mbuf_pool == NULL || (ms != 0 && ctx->mbuf_pool_indir == NULL)) rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n", socket_id); else printf("Allocated mbuf pool on socket %d\n", socket_id); } static inline int inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md) { struct ipsec_sa *sa; /* For inline protocol processing, the metadata in the event will * uniquely identify the security session which raised the event. * Application would then need the userdata it had registered with the * security session to process the event. */ sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md); if (sa == NULL) { /* userdata could not be retrieved */ return -1; } /* Sequence number over flow. SA need to be re-established */ RTE_SET_USED(sa); return 0; } static int inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type, void *param, void *ret_param) { uint64_t md; struct rte_eth_event_ipsec_desc *event_desc = NULL; struct rte_security_ctx *ctx = (struct rte_security_ctx *) rte_eth_dev_get_sec_ctx(port_id); RTE_SET_USED(param); if (type != RTE_ETH_EVENT_IPSEC) return -1; event_desc = ret_param; if (event_desc == NULL) { printf("Event descriptor not set\n"); return -1; } md = event_desc->metadata; if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW) return inline_ipsec_event_esn_overflow(ctx, md); else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) { printf("Invalid IPsec event reported\n"); return -1; } return -1; } static int ethdev_reset_event_callback(uint16_t port_id, enum rte_eth_event_type type, void *param __rte_unused, void *ret_param __rte_unused) { printf("Reset Event on port id %d type %d\n", port_id, type); printf("Force quit application"); force_quit = true; return 0; } static uint16_t rx_callback(__rte_unused uint16_t port, __rte_unused uint16_t queue, struct rte_mbuf *pkt[], uint16_t nb_pkts, __rte_unused uint16_t max_pkts, void *user_param) { uint64_t tm; uint32_t i, k; struct lcore_conf *lc; struct rte_mbuf *mb; struct rte_ether_hdr *eth; lc = user_param; k = 0; tm = 0; for (i = 0; i != nb_pkts; i++) { mb = pkt[i]; eth = rte_pktmbuf_mtod(mb, struct rte_ether_hdr *); if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) { struct rte_ipv4_hdr *iph; iph = (struct rte_ipv4_hdr *)(eth + 1); if (rte_ipv4_frag_pkt_is_fragmented(iph)) { mb->l2_len = sizeof(*eth); mb->l3_len = sizeof(*iph); tm = (tm != 0) ? tm : rte_rdtsc(); mb = rte_ipv4_frag_reassemble_packet( lc->frag.tbl, &lc->frag.dr, mb, tm, iph); if (mb != NULL) { /* fix ip cksum after reassemble. */ iph = rte_pktmbuf_mtod_offset(mb, struct rte_ipv4_hdr *, mb->l2_len); iph->hdr_checksum = 0; iph->hdr_checksum = rte_ipv4_cksum(iph); } } } else if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) { struct rte_ipv6_hdr *iph; struct rte_ipv6_fragment_ext *fh; iph = (struct rte_ipv6_hdr *)(eth + 1); fh = rte_ipv6_frag_get_ipv6_fragment_header(iph); if (fh != NULL) { mb->l2_len = sizeof(*eth); mb->l3_len = (uintptr_t)fh - (uintptr_t)iph + sizeof(*fh); tm = (tm != 0) ? tm : rte_rdtsc(); mb = rte_ipv6_frag_reassemble_packet( lc->frag.tbl, &lc->frag.dr, mb, tm, iph, fh); if (mb != NULL) /* fix l3_len after reassemble. */ mb->l3_len = mb->l3_len - sizeof(*fh); } } pkt[k] = mb; k += (mb != NULL); } /* some fragments were encountered, drain death row */ if (tm != 0) rte_ip_frag_free_death_row(&lc->frag.dr, 0); return k; } static int reassemble_lcore_init(struct lcore_conf *lc, uint32_t cid) { int32_t sid; uint32_t i; uint64_t frag_cycles; const struct lcore_rx_queue *rxq; const struct rte_eth_rxtx_callback *cb; /* create fragment table */ sid = rte_lcore_to_socket_id(cid); frag_cycles = (rte_get_tsc_hz() + NS_PER_S - 1) / NS_PER_S * frag_ttl_ns; lc->frag.tbl = rte_ip_frag_table_create(frag_tbl_sz, FRAG_TBL_BUCKET_ENTRIES, frag_tbl_sz, frag_cycles, sid); if (lc->frag.tbl == NULL) { printf("%s(%u): failed to create fragment table of size: %u, " "error code: %d\n", __func__, cid, frag_tbl_sz, rte_errno); return -ENOMEM; } /* setup reassemble RX callbacks for all queues */ for (i = 0; i != lc->nb_rx_queue; i++) { rxq = lc->rx_queue_list + i; cb = rte_eth_add_rx_callback(rxq->port_id, rxq->queue_id, rx_callback, lc); if (cb == NULL) { printf("%s(%u): failed to install RX callback for " "portid=%u, queueid=%u, error code: %d\n", __func__, cid, rxq->port_id, rxq->queue_id, rte_errno); return -ENOMEM; } } return 0; } static int reassemble_init(void) { int32_t rc; uint32_t i, lc; rc = 0; for (i = 0; i != nb_lcore_params; i++) { lc = lcore_params[i].lcore_id; rc = reassemble_lcore_init(lcore_conf + lc, lc); if (rc != 0) break; } return rc; } static void create_default_ipsec_flow(uint16_t port_id, uint64_t rx_offloads) { struct rte_flow_action action[2]; struct rte_flow_item pattern[2]; struct rte_flow_attr attr = {0}; struct rte_flow_error err; struct rte_flow *flow; int ret; if (!(rx_offloads & RTE_ETH_RX_OFFLOAD_SECURITY)) return; /* Add the default rte_flow to enable SECURITY for all ESP packets */ pattern[0].type = RTE_FLOW_ITEM_TYPE_ESP; pattern[0].spec = NULL; pattern[0].mask = NULL; pattern[0].last = NULL; pattern[1].type = RTE_FLOW_ITEM_TYPE_END; action[0].type = RTE_FLOW_ACTION_TYPE_SECURITY; action[0].conf = NULL; action[1].type = RTE_FLOW_ACTION_TYPE_END; action[1].conf = NULL; attr.ingress = 1; ret = rte_flow_validate(port_id, &attr, pattern, action, &err); if (ret) return; flow = rte_flow_create(port_id, &attr, pattern, action, &err); if (flow == NULL) return; flow_info_tbl[port_id].rx_def_flow = flow; RTE_LOG(INFO, IPSEC, "Created default flow enabling SECURITY for all ESP traffic on port %d\n", port_id); } static void signal_handler(int signum) { if (signum == SIGINT || signum == SIGTERM) { printf("\n\nSignal %d received, preparing to exit...\n", signum); force_quit = true; } } static void ev_mode_sess_verify(struct ipsec_sa *sa, int nb_sa) { struct rte_ipsec_session *ips; int32_t i; if (!sa || !nb_sa) return; for (i = 0; i < nb_sa; i++) { ips = ipsec_get_primary_session(&sa[i]); if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL) rte_exit(EXIT_FAILURE, "Event mode supports only " "inline protocol sessions\n"); } } static int32_t check_event_mode_params(struct eh_conf *eh_conf) { struct eventmode_conf *em_conf = NULL; struct lcore_params *params; uint16_t portid; if (!eh_conf || !eh_conf->mode_params) return -EINVAL; /* Get eventmode conf */ em_conf = eh_conf->mode_params; if (eh_conf->mode == EH_PKT_TRANSFER_MODE_POLL && em_conf->ext_params.sched_type != SCHED_TYPE_NOT_SET) { printf("error: option --event-schedule-type applies only to " "event mode\n"); return -EINVAL; } if (eh_conf->mode != EH_PKT_TRANSFER_MODE_EVENT) return 0; /* Set schedule type to ORDERED if it wasn't explicitly set by user */ if (em_conf->ext_params.sched_type == SCHED_TYPE_NOT_SET) em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED; /* * Event mode currently supports only inline protocol sessions. * If there are other types of sessions configured then exit with * error. */ ev_mode_sess_verify(sa_in, nb_sa_in); ev_mode_sess_verify(sa_out, nb_sa_out); /* Option --config does not apply to event mode */ if (nb_lcore_params > 0) { printf("error: option --config applies only to poll mode\n"); return -EINVAL; } /* * In order to use the same port_init routine for both poll and event * modes initialize lcore_params with one queue for each eth port */ lcore_params = lcore_params_array; RTE_ETH_FOREACH_DEV(portid) { if ((enabled_port_mask & (1 << portid)) == 0) continue; params = &lcore_params[nb_lcore_params++]; params->port_id = portid; params->queue_id = 0; params->lcore_id = rte_get_next_lcore(0, 0, 1); } return 0; } static void inline_sessions_free(struct sa_ctx *sa_ctx) { struct rte_ipsec_session *ips; struct ipsec_sa *sa; int32_t ret; uint32_t i; if (!sa_ctx) return; for (i = 0; i < sa_ctx->nb_sa; i++) { sa = &sa_ctx->sa[i]; if (!sa->spi) continue; ips = ipsec_get_primary_session(sa); if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL && ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) continue; if (!rte_eth_dev_is_valid_port(sa->portid)) continue; ret = rte_security_session_destroy( rte_eth_dev_get_sec_ctx(sa->portid), ips->security.ses); if (ret) RTE_LOG(ERR, IPSEC, "Failed to destroy security " "session type %d, spi %d\n", ips->type, sa->spi); } } static uint32_t calculate_nb_mbufs(uint16_t nb_ports, uint16_t nb_crypto_qp, uint32_t nb_rxq, uint32_t nb_txq) { return RTE_MAX((nb_rxq * nb_rxd + nb_ports * nb_lcores * MAX_PKT_BURST + nb_ports * nb_txq * nb_txd + nb_lcores * MEMPOOL_CACHE_SIZE + nb_crypto_qp * CDEV_QUEUE_DESC + nb_lcores * frag_tbl_sz * FRAG_TBL_BUCKET_ENTRIES), 8192U); } static int handle_telemetry_cmd_ipsec_secgw_stats(const char *cmd __rte_unused, const char *params, struct rte_tel_data *data) { uint64_t total_pkts_dropped = 0, total_pkts_tx = 0, total_pkts_rx = 0; unsigned int coreid; rte_tel_data_start_dict(data); if (params) { coreid = (uint32_t)atoi(params); if (rte_lcore_is_enabled(coreid) == 0) return -EINVAL; total_pkts_dropped = core_statistics[coreid].dropped; total_pkts_tx = core_statistics[coreid].tx; total_pkts_rx = core_statistics[coreid].rx; } else { for (coreid = 0; coreid < RTE_MAX_LCORE; coreid++) { /* skip disabled cores */ if (rte_lcore_is_enabled(coreid) == 0) continue; total_pkts_dropped += core_statistics[coreid].dropped; total_pkts_tx += core_statistics[coreid].tx; total_pkts_rx += core_statistics[coreid].rx; } } /* add telemetry key/values pairs */ rte_tel_data_add_dict_u64(data, "packets received", total_pkts_rx); rte_tel_data_add_dict_u64(data, "packets transmitted", total_pkts_tx); rte_tel_data_add_dict_u64(data, "packets dropped", total_pkts_dropped); return 0; } static void update_lcore_statistics(struct ipsec_core_statistics *total, uint32_t coreid) { struct ipsec_core_statistics *lcore_stats; /* skip disabled cores */ if (rte_lcore_is_enabled(coreid) == 0) return; lcore_stats = &core_statistics[coreid]; total->rx = lcore_stats->rx; total->dropped = lcore_stats->dropped; total->tx = lcore_stats->tx; /* outbound stats */ total->outbound.spd6.protect += lcore_stats->outbound.spd6.protect; total->outbound.spd6.bypass += lcore_stats->outbound.spd6.bypass; total->outbound.spd6.discard += lcore_stats->outbound.spd6.discard; total->outbound.spd4.protect += lcore_stats->outbound.spd4.protect; total->outbound.spd4.bypass += lcore_stats->outbound.spd4.bypass; total->outbound.spd4.discard += lcore_stats->outbound.spd4.discard; total->outbound.sad.miss += lcore_stats->outbound.sad.miss; /* inbound stats */ total->inbound.spd6.protect += lcore_stats->inbound.spd6.protect; total->inbound.spd6.bypass += lcore_stats->inbound.spd6.bypass; total->inbound.spd6.discard += lcore_stats->inbound.spd6.discard; total->inbound.spd4.protect += lcore_stats->inbound.spd4.protect; total->inbound.spd4.bypass += lcore_stats->inbound.spd4.bypass; total->inbound.spd4.discard += lcore_stats->inbound.spd4.discard; total->inbound.sad.miss += lcore_stats->inbound.sad.miss; /* routing stats */ total->lpm4.miss += lcore_stats->lpm4.miss; total->lpm6.miss += lcore_stats->lpm6.miss; } static void update_statistics(struct ipsec_core_statistics *total, uint32_t coreid) { memset(total, 0, sizeof(*total)); if (coreid != UINT32_MAX) { update_lcore_statistics(total, coreid); } else { for (coreid = 0; coreid < RTE_MAX_LCORE; coreid++) update_lcore_statistics(total, coreid); } } static int handle_telemetry_cmd_ipsec_secgw_stats_outbound(const char *cmd __rte_unused, const char *params, struct rte_tel_data *data) { struct ipsec_core_statistics total_stats; struct rte_tel_data *spd4_data = rte_tel_data_alloc(); struct rte_tel_data *spd6_data = rte_tel_data_alloc(); struct rte_tel_data *sad_data = rte_tel_data_alloc(); unsigned int coreid = UINT32_MAX; int rc = 0; /* verify allocated telemetry data structures */ if (!spd4_data || !spd6_data || !sad_data) { rc = -ENOMEM; goto exit; } /* initialize telemetry data structs as dicts */ rte_tel_data_start_dict(data); rte_tel_data_start_dict(spd4_data); rte_tel_data_start_dict(spd6_data); rte_tel_data_start_dict(sad_data); if (params) { coreid = (uint32_t)atoi(params); if (rte_lcore_is_enabled(coreid) == 0) { rc = -EINVAL; goto exit; } } update_statistics(&total_stats, coreid); /* add spd 4 telemetry key/values pairs */ rte_tel_data_add_dict_u64(spd4_data, "protect", total_stats.outbound.spd4.protect); rte_tel_data_add_dict_u64(spd4_data, "bypass", total_stats.outbound.spd4.bypass); rte_tel_data_add_dict_u64(spd4_data, "discard", total_stats.outbound.spd4.discard); rte_tel_data_add_dict_container(data, "spd4", spd4_data, 0); /* add spd 6 telemetry key/values pairs */ rte_tel_data_add_dict_u64(spd6_data, "protect", total_stats.outbound.spd6.protect); rte_tel_data_add_dict_u64(spd6_data, "bypass", total_stats.outbound.spd6.bypass); rte_tel_data_add_dict_u64(spd6_data, "discard", total_stats.outbound.spd6.discard); rte_tel_data_add_dict_container(data, "spd6", spd6_data, 0); /* add sad telemetry key/values pairs */ rte_tel_data_add_dict_u64(sad_data, "miss", total_stats.outbound.sad.miss); rte_tel_data_add_dict_container(data, "sad", sad_data, 0); exit: if (rc) { rte_tel_data_free(spd4_data); rte_tel_data_free(spd6_data); rte_tel_data_free(sad_data); } return rc; } static int handle_telemetry_cmd_ipsec_secgw_stats_inbound(const char *cmd __rte_unused, const char *params, struct rte_tel_data *data) { struct ipsec_core_statistics total_stats; struct rte_tel_data *spd4_data = rte_tel_data_alloc(); struct rte_tel_data *spd6_data = rte_tel_data_alloc(); struct rte_tel_data *sad_data = rte_tel_data_alloc(); unsigned int coreid = UINT32_MAX; int rc = 0; /* verify allocated telemetry data structures */ if (!spd4_data || !spd6_data || !sad_data) { rc = -ENOMEM; goto exit; } /* initialize telemetry data structs as dicts */ rte_tel_data_start_dict(data); rte_tel_data_start_dict(spd4_data); rte_tel_data_start_dict(spd6_data); rte_tel_data_start_dict(sad_data); /* add children dicts to parent dict */ if (params) { coreid = (uint32_t)atoi(params); if (rte_lcore_is_enabled(coreid) == 0) { rc = -EINVAL; goto exit; } } update_statistics(&total_stats, coreid); /* add sad telemetry key/values pairs */ rte_tel_data_add_dict_u64(sad_data, "miss", total_stats.inbound.sad.miss); rte_tel_data_add_dict_container(data, "sad", sad_data, 0); /* add spd 4 telemetry key/values pairs */ rte_tel_data_add_dict_u64(spd4_data, "protect", total_stats.inbound.spd4.protect); rte_tel_data_add_dict_u64(spd4_data, "bypass", total_stats.inbound.spd4.bypass); rte_tel_data_add_dict_u64(spd4_data, "discard", total_stats.inbound.spd4.discard); rte_tel_data_add_dict_container(data, "spd4", spd4_data, 0); /* add spd 6 telemetry key/values pairs */ rte_tel_data_add_dict_u64(spd6_data, "protect", total_stats.inbound.spd6.protect); rte_tel_data_add_dict_u64(spd6_data, "bypass", total_stats.inbound.spd6.bypass); rte_tel_data_add_dict_u64(spd6_data, "discard", total_stats.inbound.spd6.discard); rte_tel_data_add_dict_container(data, "spd6", spd6_data, 0); exit: if (rc) { rte_tel_data_free(spd4_data); rte_tel_data_free(spd6_data); rte_tel_data_free(sad_data); } return rc; } static int handle_telemetry_cmd_ipsec_secgw_stats_routing(const char *cmd __rte_unused, const char *params, struct rte_tel_data *data) { struct ipsec_core_statistics total_stats; struct rte_tel_data *lpm4_data = rte_tel_data_alloc(); struct rte_tel_data *lpm6_data = rte_tel_data_alloc(); unsigned int coreid = UINT32_MAX; int rc = 0; /* verify allocated telemetry data structures */ if (!lpm4_data || !lpm6_data) { rc = -ENOMEM; goto exit; } /* initialize telemetry data structs as dicts */ rte_tel_data_start_dict(data); rte_tel_data_start_dict(lpm4_data); rte_tel_data_start_dict(lpm6_data); if (params) { coreid = (uint32_t)atoi(params); if (rte_lcore_is_enabled(coreid) == 0) { rc = -EINVAL; goto exit; } } update_statistics(&total_stats, coreid); /* add lpm 4 telemetry key/values pairs */ rte_tel_data_add_dict_u64(lpm4_data, "miss", total_stats.lpm4.miss); rte_tel_data_add_dict_container(data, "IPv4 LPM", lpm4_data, 0); /* add lpm 6 telemetry key/values pairs */ rte_tel_data_add_dict_u64(lpm6_data, "miss", total_stats.lpm6.miss); rte_tel_data_add_dict_container(data, "IPv6 LPM", lpm6_data, 0); exit: if (rc) { rte_tel_data_free(lpm4_data); rte_tel_data_free(lpm6_data); } return rc; } static void ipsec_secgw_telemetry_init(void) { rte_telemetry_register_cmd("/examples/ipsec-secgw/stats", handle_telemetry_cmd_ipsec_secgw_stats, "Returns global stats. " "Optional Parameters: int "); rte_telemetry_register_cmd("/examples/ipsec-secgw/stats/outbound", handle_telemetry_cmd_ipsec_secgw_stats_outbound, "Returns outbound global stats. " "Optional Parameters: int "); rte_telemetry_register_cmd("/examples/ipsec-secgw/stats/inbound", handle_telemetry_cmd_ipsec_secgw_stats_inbound, "Returns inbound global stats. " "Optional Parameters: int "); rte_telemetry_register_cmd("/examples/ipsec-secgw/stats/routing", handle_telemetry_cmd_ipsec_secgw_stats_routing, "Returns routing stats. " "Optional Parameters: int "); } int32_t main(int32_t argc, char **argv) { int32_t ret; uint32_t lcore_id, nb_txq, nb_rxq = 0; uint32_t cdev_id; uint32_t i; uint8_t socket_id; uint16_t portid, nb_crypto_qp, nb_ports = 0; uint64_t req_rx_offloads[RTE_MAX_ETHPORTS]; uint64_t req_tx_offloads[RTE_MAX_ETHPORTS]; struct eh_conf *eh_conf = NULL; uint32_t ipv4_cksum_port_mask = 0; size_t sess_sz; nb_bufs_in_pool = 0; /* init EAL */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); argc -= ret; argv += ret; force_quit = false; signal(SIGINT, signal_handler); signal(SIGTERM, signal_handler); /* initialize event helper configuration */ eh_conf = eh_conf_init(); if (eh_conf == NULL) rte_exit(EXIT_FAILURE, "Failed to init event helper config"); /* parse application arguments (after the EAL ones) */ ret = parse_args(argc, argv, eh_conf); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid parameters\n"); ipsec_secgw_telemetry_init(); /* parse configuration file */ if (parse_cfg_file(cfgfile) < 0) { printf("parsing file \"%s\" failed\n", optarg); print_usage(argv[0]); return -1; } if ((unprotected_port_mask & enabled_port_mask) != unprotected_port_mask) rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n", unprotected_port_mask); if (check_poll_mode_params(eh_conf) < 0) rte_exit(EXIT_FAILURE, "check_poll_mode_params failed\n"); if (check_event_mode_params(eh_conf) < 0) rte_exit(EXIT_FAILURE, "check_event_mode_params failed\n"); ret = init_lcore_rx_queues(); if (ret < 0) rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n"); nb_lcores = rte_lcore_count(); sess_sz = max_session_size(); /* * In event mode request minimum number of crypto queues * to be reserved equal to number of ports. */ if (eh_conf->mode == EH_PKT_TRANSFER_MODE_EVENT) nb_crypto_qp = rte_eth_dev_count_avail(); else nb_crypto_qp = 0; nb_crypto_qp = cryptodevs_init(nb_crypto_qp); if (nb_bufs_in_pool == 0) { RTE_ETH_FOREACH_DEV(portid) { if ((enabled_port_mask & (1 << portid)) == 0) continue; nb_ports++; nb_rxq += get_port_nb_rx_queues(portid); } nb_txq = nb_lcores; nb_bufs_in_pool = calculate_nb_mbufs(nb_ports, nb_crypto_qp, nb_rxq, nb_txq); } for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; if (numa_on) socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id); else socket_id = 0; /* mbuf_pool is initialised by the pool_init() function*/ if (socket_ctx[socket_id].mbuf_pool) continue; pool_init(&socket_ctx[socket_id], socket_id, nb_bufs_in_pool); session_pool_init(&socket_ctx[socket_id], socket_id, sess_sz); session_priv_pool_init(&socket_ctx[socket_id], socket_id, sess_sz); } printf("Number of mbufs in packet pool %d\n", nb_bufs_in_pool); RTE_ETH_FOREACH_DEV(portid) { if ((enabled_port_mask & (1 << portid)) == 0) continue; sa_check_offloads(portid, &req_rx_offloads[portid], &req_tx_offloads[portid]); port_init(portid, req_rx_offloads[portid], req_tx_offloads[portid]); if ((req_tx_offloads[portid] & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ipv4_cksum_port_mask |= 1U << portid; } for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; /* Pre-populate pkt offloads based on capabilities */ lcore_conf[lcore_id].outbound.ipv4_offloads = RTE_MBUF_F_TX_IPV4; lcore_conf[lcore_id].outbound.ipv6_offloads = RTE_MBUF_F_TX_IPV6; /* Update per lcore checksum offload support only if all ports support it */ if (ipv4_cksum_port_mask == enabled_port_mask) lcore_conf[lcore_id].outbound.ipv4_offloads |= RTE_MBUF_F_TX_IP_CKSUM; } /* * Set the enabled port mask in helper config for use by helper * sub-system. This will be used while initializing devices using * helper sub-system. */ eh_conf->eth_portmask = enabled_port_mask; /* Initialize eventmode components */ ret = eh_devs_init(eh_conf); if (ret < 0) rte_exit(EXIT_FAILURE, "eh_devs_init failed, err=%d\n", ret); /* start ports */ RTE_ETH_FOREACH_DEV(portid) { if ((enabled_port_mask & (1 << portid)) == 0) continue; ret = rte_eth_dev_start(portid); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_dev_start: " "err=%d, port=%d\n", ret, portid); /* Create flow after starting the device */ create_default_ipsec_flow(portid, req_rx_offloads[portid]); /* * If enabled, put device in promiscuous mode. * This allows IO forwarding mode to forward packets * to itself through 2 cross-connected ports of the * target machine. */ if (promiscuous_on) { ret = rte_eth_promiscuous_enable(portid); if (ret != 0) rte_exit(EXIT_FAILURE, "rte_eth_promiscuous_enable: err=%s, port=%d\n", rte_strerror(-ret), portid); } rte_eth_dev_callback_register(portid, RTE_ETH_EVENT_INTR_RESET, ethdev_reset_event_callback, NULL); rte_eth_dev_callback_register(portid, RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL); } /* fragment reassemble is enabled */ if (frag_tbl_sz != 0) { ret = reassemble_init(); if (ret != 0) rte_exit(EXIT_FAILURE, "failed at reassemble init"); } /* Replicate each context per socket */ for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) { socket_id = rte_socket_id_by_idx(i); if ((socket_ctx[socket_id].mbuf_pool != NULL) && (socket_ctx[socket_id].sa_in == NULL) && (socket_ctx[socket_id].sa_out == NULL)) { sa_init(&socket_ctx[socket_id], socket_id); sp4_init(&socket_ctx[socket_id], socket_id); sp6_init(&socket_ctx[socket_id], socket_id); rt_init(&socket_ctx[socket_id], socket_id); } } flow_init(); check_all_ports_link_status(enabled_port_mask); if (stats_interval > 0) rte_eal_alarm_set(stats_interval * US_PER_S, print_stats_cb, NULL); else RTE_LOG(INFO, IPSEC, "Stats display disabled\n"); /* launch per-lcore init on every lcore */ rte_eal_mp_remote_launch(ipsec_launch_one_lcore, eh_conf, CALL_MAIN); RTE_LCORE_FOREACH_WORKER(lcore_id) { if (rte_eal_wait_lcore(lcore_id) < 0) return -1; } /* Uninitialize eventmode components */ ret = eh_devs_uninit(eh_conf); if (ret < 0) rte_exit(EXIT_FAILURE, "eh_devs_uninit failed, err=%d\n", ret); /* Free eventmode configuration memory */ eh_conf_uninit(eh_conf); /* Destroy inline inbound and outbound sessions */ for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) { socket_id = rte_socket_id_by_idx(i); inline_sessions_free(socket_ctx[socket_id].sa_in); inline_sessions_free(socket_ctx[socket_id].sa_out); } for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) { printf("Closing cryptodev %d...", cdev_id); rte_cryptodev_stop(cdev_id); rte_cryptodev_close(cdev_id); printf(" Done\n"); } RTE_ETH_FOREACH_DEV(portid) { if ((enabled_port_mask & (1 << portid)) == 0) continue; printf("Closing port %d...", portid); if (flow_info_tbl[portid].rx_def_flow) { struct rte_flow_error err; ret = rte_flow_destroy(portid, flow_info_tbl[portid].rx_def_flow, &err); if (ret) RTE_LOG(ERR, IPSEC, "Failed to destroy flow " " for port %u, err msg: %s\n", portid, err.message); } ret = rte_eth_dev_stop(portid); if (ret != 0) RTE_LOG(ERR, IPSEC, "rte_eth_dev_stop: err=%s, port=%u\n", rte_strerror(-ret), portid); rte_eth_dev_close(portid); printf(" Done\n"); } /* clean up the EAL */ rte_eal_cleanup(); printf("Bye...\n"); return 0; }