/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* LLR values - negative value for '1' bit */ #define LLR_1_BIT 0x81 #define LLR_0_BIT 0x7F #define MAX_PKT_BURST 32 #define NB_MBUF 8191 #define MEMPOOL_CACHE_SIZE 256 /* Hardcoded K value */ #define K 40 #define NCB (3 * RTE_ALIGN_CEIL(K + 4, 32)) #define CRC_24B_LEN 3 /* Configurable number of RX/TX ring descriptors */ #define RTE_TEST_RX_DESC_DEFAULT 128 #define RTE_TEST_TX_DESC_DEFAULT 512 #define BBDEV_ASSERT(a) do { \ if (!(a)) { \ usage(prgname); \ return -1; \ } \ } while (0) static int input_dynfield_offset = -1; static inline struct rte_mbuf ** mbuf_input(struct rte_mbuf *mbuf) { return RTE_MBUF_DYNFIELD(mbuf, input_dynfield_offset, struct rte_mbuf **); } static const struct rte_eth_conf port_conf = { .rxmode = { .mq_mode = RTE_ETH_MQ_RX_NONE, .split_hdr_size = 0, }, .txmode = { .mq_mode = RTE_ETH_MQ_TX_NONE, }, }; struct rte_bbdev_op_turbo_enc def_op_enc = { /* These values are arbitrarily put, and does not map to the real * values for the data received from ethdev ports */ .rv_index = 0, .code_block_mode = 1, .cb_params = { .k = K, }, .op_flags = RTE_BBDEV_TURBO_CRC_24A_ATTACH }; struct rte_bbdev_op_turbo_dec def_op_dec = { /* These values are arbitrarily put, and does not map to the real * values for the data received from ethdev ports */ .code_block_mode = 1, .cb_params = { .k = K, }, .rv_index = 0, .iter_max = 8, .iter_min = 4, .ext_scale = 15, .num_maps = 0, .op_flags = RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN }; struct app_config_params { /* Placeholders for app params */ uint16_t port_id; uint16_t bbdev_id; uint64_t enc_core_mask; uint64_t dec_core_mask; /* Values filled during init time */ uint16_t enc_queue_ids[RTE_MAX_LCORE]; uint16_t dec_queue_ids[RTE_MAX_LCORE]; uint16_t num_enc_cores; uint16_t num_dec_cores; }; struct lcore_statistics { unsigned int enqueued; unsigned int dequeued; unsigned int rx_lost_packets; unsigned int enc_to_dec_lost_packets; unsigned int tx_lost_packets; } __rte_cache_aligned; /** each lcore configuration */ struct lcore_conf { uint64_t core_type; unsigned int port_id; unsigned int rx_queue_id; unsigned int tx_queue_id; unsigned int bbdev_id; unsigned int enc_queue_id; unsigned int dec_queue_id; uint8_t llr_temp_buf[NCB]; struct rte_mempool *bbdev_dec_op_pool; struct rte_mempool *bbdev_enc_op_pool; struct rte_mempool *enc_out_pool; struct rte_ring *enc_to_dec_ring; struct lcore_statistics *lcore_stats; } __rte_cache_aligned; struct stats_lcore_params { struct lcore_conf *lconf; struct app_config_params *app_params; }; static const struct app_config_params def_app_config = { .port_id = 0, .bbdev_id = 0, .enc_core_mask = 0x2, .dec_core_mask = 0x4, .num_enc_cores = 1, .num_dec_cores = 1, }; static uint16_t global_exit_flag; /* display usage */ static inline void usage(const char *prgname) { printf("%s [EAL options] " " --\n" " --enc_cores - number of encoding cores (default = 0x2)\n" " --dec_cores - number of decoding cores (default = 0x4)\n" " --port_id - Ethernet port ID (default = 0)\n" " --bbdev_id - BBDev ID (default = 0)\n" "\n", prgname); } /* parse core mask */ static inline uint16_t bbdev_parse_mask(const char *mask) { char *end = NULL; unsigned long pm; /* parse hexadecimal string */ pm = strtoul(mask, &end, 16); if ((mask[0] == '\0') || (end == NULL) || (*end != '\0')) return 0; return pm; } /* parse core mask */ static inline uint16_t bbdev_parse_number(const char *mask) { char *end = NULL; unsigned long pm; /* parse hexadecimal string */ pm = strtoul(mask, &end, 10); if ((mask[0] == '\0') || (end == NULL) || (*end != '\0')) return 0; return pm; } static int bbdev_parse_args(int argc, char **argv, struct app_config_params *app_params) { int optind = 0; int opt; int opt_indx = 0; char *prgname = argv[0]; static struct option lgopts[] = { { "enc_core_mask", required_argument, 0, 'e' }, { "dec_core_mask", required_argument, 0, 'd' }, { "port_id", required_argument, 0, 'p' }, { "bbdev_id", required_argument, 0, 'b' }, { NULL, 0, 0, 0 } }; BBDEV_ASSERT(argc != 0); BBDEV_ASSERT(argv != NULL); BBDEV_ASSERT(app_params != NULL); while ((opt = getopt_long(argc, argv, "e:d:p:b:", lgopts, &opt_indx)) != EOF) { switch (opt) { case 'e': app_params->enc_core_mask = bbdev_parse_mask(optarg); if (app_params->enc_core_mask == 0) { usage(prgname); return -1; } app_params->num_enc_cores = __builtin_popcount(app_params->enc_core_mask); break; case 'd': app_params->dec_core_mask = bbdev_parse_mask(optarg); if (app_params->dec_core_mask == 0) { usage(prgname); return -1; } app_params->num_dec_cores = __builtin_popcount(app_params->dec_core_mask); break; case 'p': app_params->port_id = bbdev_parse_number(optarg); break; case 'b': app_params->bbdev_id = bbdev_parse_number(optarg); break; default: usage(prgname); return -1; } } optind = 0; return optind; } static void signal_handler(int signum) { printf("\nSignal %d received\n", signum); __atomic_store_n(&global_exit_flag, 1, __ATOMIC_RELAXED); } static void print_mac(unsigned int portid, struct rte_ether_addr *bbdev_ports_eth_address) { printf("Port %u, MAC address: " RTE_ETHER_ADDR_PRT_FMT "\n\n", (unsigned int) portid, RTE_ETHER_ADDR_BYTES(bbdev_ports_eth_address)); } static inline void pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int nb_to_free) { unsigned int i; for (i = 0; i < nb_to_free; ++i) rte_pktmbuf_free(mbufs[i]); } static inline void pktmbuf_input_free_bulk(struct rte_mbuf **mbufs, unsigned int nb_to_free) { unsigned int i; for (i = 0; i < nb_to_free; ++i) { struct rte_mbuf *rx_pkt = *mbuf_input(mbufs[i]); rte_pktmbuf_free(rx_pkt); rte_pktmbuf_free(mbufs[i]); } } /* Check the link status of all ports in up to 9s, and print them finally */ static int check_port_link_status(uint16_t port_id) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ uint8_t count; struct rte_eth_link link; int link_get_err = -EINVAL; printf("\nChecking link status."); fflush(stdout); for (count = 0; count <= MAX_CHECK_TIME && !__atomic_load_n(&global_exit_flag, __ATOMIC_RELAXED); count++) { memset(&link, 0, sizeof(link)); link_get_err = rte_eth_link_get_nowait(port_id, &link); if (link_get_err >= 0 && link.link_status) { const char *dp = (link.link_duplex == RTE_ETH_LINK_FULL_DUPLEX) ? "full-duplex" : "half-duplex"; printf("\nPort %u Link Up - speed %s - %s\n", port_id, rte_eth_link_speed_to_str(link.link_speed), dp); return 0; } printf("."); fflush(stdout); rte_delay_ms(CHECK_INTERVAL); } if (link_get_err >= 0) printf("\nPort %d Link Down\n", port_id); else printf("\nGet link failed (port %d): %s\n", port_id, rte_strerror(-link_get_err)); return 0; } static inline void add_ether_hdr(struct rte_mbuf *pkt_src, struct rte_mbuf *pkt_dst) { struct rte_ether_hdr *eth_from; struct rte_ether_hdr *eth_to; eth_from = rte_pktmbuf_mtod(pkt_src, struct rte_ether_hdr *); eth_to = rte_pktmbuf_mtod(pkt_dst, struct rte_ether_hdr *); /* copy header */ rte_memcpy(eth_to, eth_from, sizeof(struct rte_ether_hdr)); } static inline void add_awgn(struct rte_mbuf **mbufs, uint16_t num_pkts) { RTE_SET_USED(mbufs); RTE_SET_USED(num_pkts); } /* Encoder output to Decoder input adapter. The Decoder accepts only soft input * so each bit of the encoder output must be translated into one byte of LLR. If * Sub-block Deinterleaver is bypassed, which is the case, the padding bytes * must additionally be inserted at the end of each sub-block. */ static inline void transform_enc_out_dec_in(struct rte_mbuf **mbufs, uint8_t *temp_buf, uint16_t num_pkts, uint16_t k) { uint16_t i, l, j; uint16_t start_bit_idx; uint16_t out_idx; uint16_t d = k + 4; uint16_t kpi = RTE_ALIGN_CEIL(d, 32); uint16_t nd = kpi - d; uint16_t ncb = 3 * kpi; for (i = 0; i < num_pkts; ++i) { uint16_t pkt_data_len = rte_pktmbuf_data_len(mbufs[i]) - sizeof(struct rte_ether_hdr); /* Resize the packet if needed */ if (pkt_data_len < ncb) { char *data = rte_pktmbuf_append(mbufs[i], ncb - pkt_data_len); if (data == NULL) printf( "Not enough space in decoder input packet"); } /* Translate each bit into 1 LLR byte. */ start_bit_idx = 0; out_idx = 0; for (j = 0; j < 3; ++j) { for (l = start_bit_idx; l < start_bit_idx + d; ++l) { uint8_t *data = rte_pktmbuf_mtod_offset( mbufs[i], uint8_t *, sizeof(struct rte_ether_hdr) + (l >> 3)); if (*data & (0x80 >> (l & 7))) temp_buf[out_idx] = LLR_1_BIT; else temp_buf[out_idx] = LLR_0_BIT; ++out_idx; } /* Padding bytes should be at the end of the sub-block. */ memset(&temp_buf[out_idx], 0, nd); out_idx += nd; start_bit_idx += d; } rte_memcpy(rte_pktmbuf_mtod_offset(mbufs[i], uint8_t *, sizeof(struct rte_ether_hdr)), temp_buf, ncb); } } static inline void verify_data(struct rte_mbuf **mbufs, uint16_t num_pkts) { uint16_t i; for (i = 0; i < num_pkts; ++i) { struct rte_mbuf *out = mbufs[i]; struct rte_mbuf *in = *mbuf_input(out); if (memcmp(rte_pktmbuf_mtod_offset(in, uint8_t *, sizeof(struct rte_ether_hdr)), rte_pktmbuf_mtod_offset(out, uint8_t *, sizeof(struct rte_ether_hdr)), K / 8 - CRC_24B_LEN)) printf("Input and output buffers are not equal!\n"); } } static int initialize_ports(struct app_config_params *app_params, struct rte_mempool *ethdev_mbuf_mempool) { int ret; uint16_t port_id = app_params->port_id; uint16_t q; /* ethernet addresses of ports */ struct rte_ether_addr bbdev_port_eth_addr; /* initialize ports */ printf("\nInitializing port %u...\n", app_params->port_id); ret = rte_eth_dev_configure(port_id, app_params->num_enc_cores, app_params->num_dec_cores, &port_conf); if (ret < 0) { printf("Cannot configure device: err=%d, port=%u\n", ret, port_id); return -1; } /* initialize RX queues for encoder */ for (q = 0; q < app_params->num_enc_cores; q++) { ret = rte_eth_rx_queue_setup(port_id, q, RTE_TEST_RX_DESC_DEFAULT, rte_eth_dev_socket_id(port_id), NULL, ethdev_mbuf_mempool); if (ret < 0) { printf("rte_eth_rx_queue_setup: err=%d, queue=%u\n", ret, q); return -1; } } /* initialize TX queues for decoder */ for (q = 0; q < app_params->num_dec_cores; q++) { ret = rte_eth_tx_queue_setup(port_id, q, RTE_TEST_TX_DESC_DEFAULT, rte_eth_dev_socket_id(port_id), NULL); if (ret < 0) { printf("rte_eth_tx_queue_setup: err=%d, queue=%u\n", ret, q); return -1; } } ret = rte_eth_promiscuous_enable(port_id); if (ret != 0) { printf("Cannot enable promiscuous mode: err=%s, port=%u\n", rte_strerror(-ret), port_id); return ret; } ret = rte_eth_macaddr_get(port_id, &bbdev_port_eth_addr); if (ret < 0) { printf("rte_eth_macaddr_get: err=%d, queue=%u\n", ret, q); return -1; } print_mac(port_id, &bbdev_port_eth_addr); return 0; } static void lcore_conf_init(struct app_config_params *app_params, struct lcore_conf *lcore_conf, struct rte_mempool **bbdev_op_pools, struct rte_mempool *bbdev_mbuf_mempool, struct rte_ring *enc_to_dec_ring, struct lcore_statistics *lcore_stats) { unsigned int lcore_id; struct lcore_conf *lconf; uint16_t rx_queue_id = 0; uint16_t tx_queue_id = 0; uint16_t enc_q_id = 0; uint16_t dec_q_id = 0; /* Configure lcores */ for (lcore_id = 0; lcore_id < 8 * sizeof(uint64_t); ++lcore_id) { lconf = &lcore_conf[lcore_id]; lconf->core_type = 0; if ((1ULL << lcore_id) & app_params->enc_core_mask) { lconf->core_type |= (1 << RTE_BBDEV_OP_TURBO_ENC); lconf->rx_queue_id = rx_queue_id++; lconf->enc_queue_id = app_params->enc_queue_ids[enc_q_id++]; } if ((1ULL << lcore_id) & app_params->dec_core_mask) { lconf->core_type |= (1 << RTE_BBDEV_OP_TURBO_DEC); lconf->tx_queue_id = tx_queue_id++; lconf->dec_queue_id = app_params->dec_queue_ids[dec_q_id++]; } lconf->bbdev_enc_op_pool = bbdev_op_pools[RTE_BBDEV_OP_TURBO_ENC]; lconf->bbdev_dec_op_pool = bbdev_op_pools[RTE_BBDEV_OP_TURBO_DEC]; lconf->bbdev_id = app_params->bbdev_id; lconf->port_id = app_params->port_id; lconf->enc_out_pool = bbdev_mbuf_mempool; lconf->enc_to_dec_ring = enc_to_dec_ring; lconf->lcore_stats = &lcore_stats[lcore_id]; } } static void print_lcore_stats(struct lcore_statistics *lstats, unsigned int lcore_id) { static const char *stats_border = "_______"; printf("\nLcore %d: %s enqueued count:\t\t%u\n", lcore_id, stats_border, lstats->enqueued); printf("Lcore %d: %s dequeued count:\t\t%u\n", lcore_id, stats_border, lstats->dequeued); printf("Lcore %d: %s RX lost packets count:\t\t%u\n", lcore_id, stats_border, lstats->rx_lost_packets); printf("Lcore %d: %s encoder-to-decoder lost count:\t%u\n", lcore_id, stats_border, lstats->enc_to_dec_lost_packets); printf("Lcore %d: %s TX lost packets count:\t\t%u\n", lcore_id, stats_border, lstats->tx_lost_packets); } static void print_stats(struct stats_lcore_params *stats_lcore) { unsigned int l_id; unsigned int bbdev_id = stats_lcore->app_params->bbdev_id; unsigned int port_id = stats_lcore->app_params->port_id; int len, ret, i; struct rte_eth_xstat *xstats; struct rte_eth_xstat_name *xstats_names; struct rte_bbdev_stats bbstats; static const char *stats_border = "_______"; const char clr[] = { 27, '[', '2', 'J', '\0' }; const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; /* Clear screen and move to top left */ printf("%s%s", clr, topLeft); printf("PORT STATISTICS:\n================\n"); len = rte_eth_xstats_get(port_id, NULL, 0); if (len < 0) rte_exit(EXIT_FAILURE, "rte_eth_xstats_get(%u) failed: %d", port_id, len); xstats = calloc(len, sizeof(*xstats)); if (xstats == NULL) rte_exit(EXIT_FAILURE, "Failed to calloc memory for xstats"); ret = rte_eth_xstats_get(port_id, xstats, len); if (ret < 0 || ret > len) { free(xstats); rte_exit(EXIT_FAILURE, "rte_eth_xstats_get(%u) len%i failed: %d", port_id, len, ret); } xstats_names = calloc(len, sizeof(*xstats_names)); if (xstats_names == NULL) { free(xstats); rte_exit(EXIT_FAILURE, "Failed to calloc memory for xstats_names"); } ret = rte_eth_xstats_get_names(port_id, xstats_names, len); if (ret < 0 || ret > len) { free(xstats); free(xstats_names); rte_exit(EXIT_FAILURE, "rte_eth_xstats_get_names(%u) len%i failed: %d", port_id, len, ret); } for (i = 0; i < len; i++) { if (xstats[i].value > 0) printf("Port %u: %s %s:\t\t%"PRIu64"\n", port_id, stats_border, xstats_names[i].name, xstats[i].value); } ret = rte_bbdev_stats_get(bbdev_id, &bbstats); if (ret < 0) { free(xstats); free(xstats_names); rte_exit(EXIT_FAILURE, "ERROR(%d): Failure to get BBDEV %u statistics\n", ret, bbdev_id); } printf("\nBBDEV STATISTICS:\n=================\n"); printf("BBDEV %u: %s enqueue count:\t\t%"PRIu64"\n", bbdev_id, stats_border, bbstats.enqueued_count); printf("BBDEV %u: %s dequeue count:\t\t%"PRIu64"\n", bbdev_id, stats_border, bbstats.dequeued_count); printf("BBDEV %u: %s enqueue error count:\t\t%"PRIu64"\n", bbdev_id, stats_border, bbstats.enqueue_err_count); printf("BBDEV %u: %s dequeue error count:\t\t%"PRIu64"\n\n", bbdev_id, stats_border, bbstats.dequeue_err_count); printf("LCORE STATISTICS:\n=================\n"); for (l_id = 0; l_id < RTE_MAX_LCORE; ++l_id) { if (stats_lcore->lconf[l_id].core_type == 0) continue; print_lcore_stats(stats_lcore->lconf[l_id].lcore_stats, l_id); } fflush(stdout); free(xstats); free(xstats_names); } static int stats_loop(void *arg) { struct stats_lcore_params *stats_lcore = arg; while (!__atomic_load_n(&global_exit_flag, __ATOMIC_RELAXED)) { print_stats(stats_lcore); rte_delay_ms(500); } return 0; } static inline void run_encoding(struct lcore_conf *lcore_conf) { uint16_t i; uint16_t port_id, rx_queue_id; uint16_t bbdev_id, enc_queue_id; uint16_t nb_rx, nb_enq, nb_deq, nb_sent; struct rte_mbuf *rx_pkts_burst[MAX_PKT_BURST]; struct rte_mbuf *enc_out_pkts[MAX_PKT_BURST]; struct rte_bbdev_enc_op *bbdev_ops_burst[MAX_PKT_BURST]; struct lcore_statistics *lcore_stats; struct rte_mempool *bbdev_op_pool, *enc_out_pool; struct rte_ring *enc_to_dec_ring; const int in_data_len = (def_op_enc.cb_params.k / 8) - CRC_24B_LEN; lcore_stats = lcore_conf->lcore_stats; port_id = lcore_conf->port_id; rx_queue_id = lcore_conf->rx_queue_id; bbdev_id = lcore_conf->bbdev_id; enc_queue_id = lcore_conf->enc_queue_id; bbdev_op_pool = lcore_conf->bbdev_enc_op_pool; enc_out_pool = lcore_conf->enc_out_pool; enc_to_dec_ring = lcore_conf->enc_to_dec_ring; /* Read packet from RX queues*/ nb_rx = rte_eth_rx_burst(port_id, rx_queue_id, rx_pkts_burst, MAX_PKT_BURST); if (!nb_rx) return; if (unlikely(rte_mempool_get_bulk(enc_out_pool, (void **)enc_out_pkts, nb_rx) != 0)) { pktmbuf_free_bulk(rx_pkts_burst, nb_rx); lcore_stats->rx_lost_packets += nb_rx; return; } if (unlikely(rte_bbdev_enc_op_alloc_bulk(bbdev_op_pool, bbdev_ops_burst, nb_rx) != 0)) { pktmbuf_free_bulk(enc_out_pkts, nb_rx); pktmbuf_free_bulk(rx_pkts_burst, nb_rx); lcore_stats->rx_lost_packets += nb_rx; return; } for (i = 0; i < nb_rx; i++) { char *data; const uint16_t pkt_data_len = rte_pktmbuf_data_len(rx_pkts_burst[i]) - sizeof(struct rte_ether_hdr); /* save input mbuf pointer for later comparison */ *mbuf_input(enc_out_pkts[i]) = rx_pkts_burst[i]; /* copy ethernet header */ rte_pktmbuf_reset(enc_out_pkts[i]); data = rte_pktmbuf_append(enc_out_pkts[i], sizeof(struct rte_ether_hdr)); if (data == NULL) { printf( "Not enough space for ethernet header in encoder output mbuf\n"); continue; } add_ether_hdr(rx_pkts_burst[i], enc_out_pkts[i]); /* set op */ bbdev_ops_burst[i]->turbo_enc = def_op_enc; bbdev_ops_burst[i]->turbo_enc.input.data = rx_pkts_burst[i]; bbdev_ops_burst[i]->turbo_enc.input.offset = sizeof(struct rte_ether_hdr); /* Encoder will attach the CRC24B, adjust the length */ bbdev_ops_burst[i]->turbo_enc.input.length = in_data_len; if (in_data_len < pkt_data_len) rte_pktmbuf_trim(rx_pkts_burst[i], pkt_data_len - in_data_len); else if (in_data_len > pkt_data_len) { data = rte_pktmbuf_append(rx_pkts_burst[i], in_data_len - pkt_data_len); if (data == NULL) printf( "Not enough storage in mbuf to perform the encoding\n"); } bbdev_ops_burst[i]->turbo_enc.output.data = enc_out_pkts[i]; bbdev_ops_burst[i]->turbo_enc.output.offset = sizeof(struct rte_ether_hdr); } /* Enqueue packets on BBDevice */ nb_enq = rte_bbdev_enqueue_enc_ops(bbdev_id, enc_queue_id, bbdev_ops_burst, nb_rx); if (unlikely(nb_enq < nb_rx)) { pktmbuf_input_free_bulk(&enc_out_pkts[nb_enq], nb_rx - nb_enq); rte_bbdev_enc_op_free_bulk(&bbdev_ops_burst[nb_enq], nb_rx - nb_enq); lcore_stats->rx_lost_packets += nb_rx - nb_enq; if (!nb_enq) return; } lcore_stats->enqueued += nb_enq; /* Dequeue packets from bbdev device*/ nb_deq = 0; do { nb_deq += rte_bbdev_dequeue_enc_ops(bbdev_id, enc_queue_id, &bbdev_ops_burst[nb_deq], nb_enq - nb_deq); } while (unlikely(nb_deq < nb_enq)); lcore_stats->dequeued += nb_deq; /* Generate and add AWGN */ add_awgn(enc_out_pkts, nb_deq); rte_bbdev_enc_op_free_bulk(bbdev_ops_burst, nb_deq); /* Enqueue packets to encoder-to-decoder ring */ nb_sent = rte_ring_enqueue_burst(enc_to_dec_ring, (void **)enc_out_pkts, nb_deq, NULL); if (unlikely(nb_sent < nb_deq)) { pktmbuf_input_free_bulk(&enc_out_pkts[nb_sent], nb_deq - nb_sent); lcore_stats->enc_to_dec_lost_packets += nb_deq - nb_sent; } } static void run_decoding(struct lcore_conf *lcore_conf) { uint16_t i; uint16_t port_id, tx_queue_id; uint16_t bbdev_id, bbdev_queue_id; uint16_t nb_recv, nb_enq, nb_deq, nb_tx; uint8_t *llr_temp_buf; struct rte_mbuf *recv_pkts_burst[MAX_PKT_BURST]; struct rte_bbdev_dec_op *bbdev_ops_burst[MAX_PKT_BURST]; struct lcore_statistics *lcore_stats; struct rte_mempool *bbdev_op_pool; struct rte_ring *enc_to_dec_ring; lcore_stats = lcore_conf->lcore_stats; port_id = lcore_conf->port_id; tx_queue_id = lcore_conf->tx_queue_id; bbdev_id = lcore_conf->bbdev_id; bbdev_queue_id = lcore_conf->dec_queue_id; bbdev_op_pool = lcore_conf->bbdev_dec_op_pool; enc_to_dec_ring = lcore_conf->enc_to_dec_ring; llr_temp_buf = lcore_conf->llr_temp_buf; /* Dequeue packets from the ring */ nb_recv = rte_ring_dequeue_burst(enc_to_dec_ring, (void **)recv_pkts_burst, MAX_PKT_BURST, NULL); if (!nb_recv) return; if (unlikely(rte_bbdev_dec_op_alloc_bulk(bbdev_op_pool, bbdev_ops_burst, nb_recv) != 0)) { pktmbuf_input_free_bulk(recv_pkts_burst, nb_recv); lcore_stats->rx_lost_packets += nb_recv; return; } transform_enc_out_dec_in(recv_pkts_burst, llr_temp_buf, nb_recv, def_op_dec.cb_params.k); for (i = 0; i < nb_recv; i++) { /* set op */ bbdev_ops_burst[i]->turbo_dec = def_op_dec; bbdev_ops_burst[i]->turbo_dec.input.data = recv_pkts_burst[i]; bbdev_ops_burst[i]->turbo_dec.input.offset = sizeof(struct rte_ether_hdr); bbdev_ops_burst[i]->turbo_dec.input.length = rte_pktmbuf_data_len(recv_pkts_burst[i]) - sizeof(struct rte_ether_hdr); bbdev_ops_burst[i]->turbo_dec.hard_output.data = recv_pkts_burst[i]; bbdev_ops_burst[i]->turbo_dec.hard_output.offset = sizeof(struct rte_ether_hdr); } /* Enqueue packets on BBDevice */ nb_enq = rte_bbdev_enqueue_dec_ops(bbdev_id, bbdev_queue_id, bbdev_ops_burst, nb_recv); if (unlikely(nb_enq < nb_recv)) { pktmbuf_input_free_bulk(&recv_pkts_burst[nb_enq], nb_recv - nb_enq); rte_bbdev_dec_op_free_bulk(&bbdev_ops_burst[nb_enq], nb_recv - nb_enq); lcore_stats->rx_lost_packets += nb_recv - nb_enq; if (!nb_enq) return; } lcore_stats->enqueued += nb_enq; /* Dequeue packets from BBDevice */ nb_deq = 0; do { nb_deq += rte_bbdev_dequeue_dec_ops(bbdev_id, bbdev_queue_id, &bbdev_ops_burst[nb_deq], nb_enq - nb_deq); } while (unlikely(nb_deq < nb_enq)); lcore_stats->dequeued += nb_deq; rte_bbdev_dec_op_free_bulk(bbdev_ops_burst, nb_deq); verify_data(recv_pkts_burst, nb_deq); /* Free the RX mbufs after verification */ for (i = 0; i < nb_deq; ++i) rte_pktmbuf_free(*mbuf_input(recv_pkts_burst[i])); /* Transmit the packets */ nb_tx = rte_eth_tx_burst(port_id, tx_queue_id, recv_pkts_burst, nb_deq); if (unlikely(nb_tx < nb_deq)) { pktmbuf_input_free_bulk(&recv_pkts_burst[nb_tx], nb_deq - nb_tx); lcore_stats->tx_lost_packets += nb_deq - nb_tx; } } static int processing_loop(void *arg) { struct lcore_conf *lcore_conf = arg; const bool run_encoder = (lcore_conf->core_type & (1 << RTE_BBDEV_OP_TURBO_ENC)); const bool run_decoder = (lcore_conf->core_type & (1 << RTE_BBDEV_OP_TURBO_DEC)); while (!__atomic_load_n(&global_exit_flag, __ATOMIC_RELAXED)) { if (run_encoder) run_encoding(lcore_conf); if (run_decoder) run_decoding(lcore_conf); } return 0; } static int prepare_bbdev_device(unsigned int dev_id, struct rte_bbdev_info *info, struct app_config_params *app_params) { int ret; unsigned int q_id, dec_q_id, enc_q_id; struct rte_bbdev_queue_conf qconf = {0}; uint16_t dec_qs_nb = app_params->num_dec_cores; uint16_t enc_qs_nb = app_params->num_enc_cores; uint16_t tot_qs = dec_qs_nb + enc_qs_nb; ret = rte_bbdev_setup_queues(dev_id, tot_qs, info->socket_id); if (ret < 0) rte_exit(EXIT_FAILURE, "ERROR(%d): BBDEV %u not configured properly\n", ret, dev_id); /* setup device DEC queues */ qconf.socket = info->socket_id; qconf.queue_size = info->drv.queue_size_lim; qconf.op_type = RTE_BBDEV_OP_TURBO_DEC; for (q_id = 0, dec_q_id = 0; q_id < dec_qs_nb; q_id++) { ret = rte_bbdev_queue_configure(dev_id, q_id, &qconf); if (ret < 0) rte_exit(EXIT_FAILURE, "ERROR(%d): BBDEV %u DEC queue %u not configured properly\n", ret, dev_id, q_id); app_params->dec_queue_ids[dec_q_id++] = q_id; } /* setup device ENC queues */ qconf.op_type = RTE_BBDEV_OP_TURBO_ENC; for (q_id = dec_qs_nb, enc_q_id = 0; q_id < tot_qs; q_id++) { ret = rte_bbdev_queue_configure(dev_id, q_id, &qconf); if (ret < 0) rte_exit(EXIT_FAILURE, "ERROR(%d): BBDEV %u ENC queue %u not configured properly\n", ret, dev_id, q_id); app_params->enc_queue_ids[enc_q_id++] = q_id; } ret = rte_bbdev_start(dev_id); if (ret != 0) rte_exit(EXIT_FAILURE, "ERROR(%d): BBDEV %u not started\n", ret, dev_id); printf("BBdev %u started\n", dev_id); return 0; } static inline bool check_matching_capabilities(uint64_t mask, uint64_t required_mask) { return (mask & required_mask) == required_mask; } static void enable_bbdev(struct app_config_params *app_params) { struct rte_bbdev_info dev_info; const struct rte_bbdev_op_cap *op_cap; uint16_t bbdev_id = app_params->bbdev_id; bool encoder_capable = false; bool decoder_capable = false; rte_bbdev_info_get(bbdev_id, &dev_info); op_cap = dev_info.drv.capabilities; while (op_cap->type != RTE_BBDEV_OP_NONE) { if (op_cap->type == RTE_BBDEV_OP_TURBO_ENC) { if (check_matching_capabilities( op_cap->cap.turbo_enc.capability_flags, def_op_enc.op_flags)) encoder_capable = true; } if (op_cap->type == RTE_BBDEV_OP_TURBO_DEC) { if (check_matching_capabilities( op_cap->cap.turbo_dec.capability_flags, def_op_dec.op_flags)) decoder_capable = true; } op_cap++; } if (encoder_capable == false) rte_exit(EXIT_FAILURE, "The specified BBDev %u doesn't have required encoder capabilities!\n", bbdev_id); if (decoder_capable == false) rte_exit(EXIT_FAILURE, "The specified BBDev %u doesn't have required decoder capabilities!\n", bbdev_id); prepare_bbdev_device(bbdev_id, &dev_info, app_params); } int main(int argc, char **argv) { int ret; unsigned int nb_bbdevs, flags, lcore_id; void *sigret; struct app_config_params app_params = def_app_config; struct rte_mempool *ethdev_mbuf_mempool, *bbdev_mbuf_mempool; struct rte_mempool *bbdev_op_pools[RTE_BBDEV_OP_TYPE_COUNT]; struct lcore_conf lcore_conf[RTE_MAX_LCORE] = { {0} }; struct lcore_statistics lcore_stats[RTE_MAX_LCORE] = { {0} }; struct stats_lcore_params stats_lcore; struct rte_ring *enc_to_dec_ring; bool stats_thread_started = false; unsigned int main_lcore_id = rte_get_main_lcore(); static const struct rte_mbuf_dynfield input_dynfield_desc = { .name = "example_bbdev_dynfield_input", .size = sizeof(struct rte_mbuf *), .align = __alignof__(struct rte_mbuf *), }; __atomic_store_n(&global_exit_flag, 0, __ATOMIC_RELAXED); sigret = signal(SIGTERM, signal_handler); if (sigret == SIG_ERR) rte_exit(EXIT_FAILURE, "signal(%d, ...) failed", SIGTERM); sigret = signal(SIGINT, signal_handler); if (sigret == SIG_ERR) rte_exit(EXIT_FAILURE, "signal(%d, ...) failed", SIGINT); ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); argc -= ret; argv += ret; /* parse application arguments (after the EAL ones) */ ret = bbdev_parse_args(argc, argv, &app_params); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid BBDEV arguments\n"); /*create bbdev op pools*/ bbdev_op_pools[RTE_BBDEV_OP_TURBO_DEC] = rte_bbdev_op_pool_create("bbdev_op_pool_dec", RTE_BBDEV_OP_TURBO_DEC, NB_MBUF, 128, rte_socket_id()); bbdev_op_pools[RTE_BBDEV_OP_TURBO_ENC] = rte_bbdev_op_pool_create("bbdev_op_pool_enc", RTE_BBDEV_OP_TURBO_ENC, NB_MBUF, 128, rte_socket_id()); if ((bbdev_op_pools[RTE_BBDEV_OP_TURBO_DEC] == NULL) || (bbdev_op_pools[RTE_BBDEV_OP_TURBO_ENC] == NULL)) rte_exit(EXIT_FAILURE, "Cannot create bbdev op pools\n"); /* Create encoder to decoder ring */ flags = (app_params.num_enc_cores == 1) ? RING_F_SP_ENQ : 0; if (app_params.num_dec_cores == 1) flags |= RING_F_SC_DEQ; enc_to_dec_ring = rte_ring_create("enc_to_dec_ring", rte_align32pow2(NB_MBUF), rte_socket_id(), flags); /* Get the number of available bbdev devices */ nb_bbdevs = rte_bbdev_count(); if (nb_bbdevs <= app_params.bbdev_id) rte_exit(EXIT_FAILURE, "%u BBDevs detected, cannot use BBDev with ID %u!\n", nb_bbdevs, app_params.bbdev_id); printf("Number of bbdevs detected: %d\n", nb_bbdevs); if (!rte_eth_dev_is_valid_port(app_params.port_id)) rte_exit(EXIT_FAILURE, "cannot use port with ID %u!\n", app_params.port_id); /* create the mbuf mempool for ethdev pkts */ ethdev_mbuf_mempool = rte_pktmbuf_pool_create("ethdev_mbuf_pool", NB_MBUF, MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); if (ethdev_mbuf_mempool == NULL) rte_exit(EXIT_FAILURE, "Cannot create ethdev mbuf mempool\n"); /* create the mbuf mempool for encoder output */ bbdev_mbuf_mempool = rte_pktmbuf_pool_create("bbdev_mbuf_pool", NB_MBUF, MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); if (bbdev_mbuf_mempool == NULL) rte_exit(EXIT_FAILURE, "Cannot create ethdev mbuf mempool\n"); /* register mbuf field to store input pointer */ input_dynfield_offset = rte_mbuf_dynfield_register(&input_dynfield_desc); if (input_dynfield_offset < 0) rte_exit(EXIT_FAILURE, "Cannot register mbuf field\n"); /* initialize ports */ ret = initialize_ports(&app_params, ethdev_mbuf_mempool); /* Check if all requested lcores are available */ for (lcore_id = 0; lcore_id < 8 * sizeof(uint64_t); ++lcore_id) if (((1ULL << lcore_id) & app_params.enc_core_mask) || ((1ULL << lcore_id) & app_params.dec_core_mask)) if (!rte_lcore_is_enabled(lcore_id)) rte_exit(EXIT_FAILURE, "Requested lcore_id %u is not enabled!\n", lcore_id); /* Start ethernet port */ ret = rte_eth_dev_start(app_params.port_id); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_dev_start:err=%d, port=%u\n", ret, app_params.port_id); ret = check_port_link_status(app_params.port_id); if (ret < 0) exit(EXIT_FAILURE); /* start BBDevice and save BBDev queue IDs */ enable_bbdev(&app_params); /* Initialize the port/queue configuration of each logical core */ lcore_conf_init(&app_params, lcore_conf, bbdev_op_pools, bbdev_mbuf_mempool, enc_to_dec_ring, lcore_stats); stats_lcore.app_params = &app_params; stats_lcore.lconf = lcore_conf; RTE_LCORE_FOREACH_WORKER(lcore_id) { if (lcore_conf[lcore_id].core_type != 0) /* launch per-lcore processing loop on worker lcores */ rte_eal_remote_launch(processing_loop, &lcore_conf[lcore_id], lcore_id); else if (!stats_thread_started) { /* launch statistics printing loop */ rte_eal_remote_launch(stats_loop, &stats_lcore, lcore_id); stats_thread_started = true; } } if (!stats_thread_started && lcore_conf[main_lcore_id].core_type != 0) rte_exit(EXIT_FAILURE, "Not enough lcores to run the statistics printing loop!"); else if (lcore_conf[main_lcore_id].core_type != 0) processing_loop(&lcore_conf[main_lcore_id]); else if (!stats_thread_started) stats_loop(&stats_lcore); RTE_LCORE_FOREACH_WORKER(lcore_id) { ret |= rte_eal_wait_lcore(lcore_id); } /* clean up the EAL */ rte_eal_cleanup(); return ret; }