/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2015-2020 Beijing WangXun Technology Co., Ltd. * Copyright(c) 2010-2017 Intel Corporation */ #include #include #include #include #include #include "txgbe_ethdev.h" #define TXGBE_MIN_N_TUPLE_PRIO 1 #define TXGBE_MAX_N_TUPLE_PRIO 7 #define TXGBE_MAX_FLX_SOURCE_OFF 62 /* ntuple filter list structure */ struct txgbe_ntuple_filter_ele { TAILQ_ENTRY(txgbe_ntuple_filter_ele) entries; struct rte_eth_ntuple_filter filter_info; }; /* ethertype filter list structure */ struct txgbe_ethertype_filter_ele { TAILQ_ENTRY(txgbe_ethertype_filter_ele) entries; struct rte_eth_ethertype_filter filter_info; }; /* syn filter list structure */ struct txgbe_eth_syn_filter_ele { TAILQ_ENTRY(txgbe_eth_syn_filter_ele) entries; struct rte_eth_syn_filter filter_info; }; /* fdir filter list structure */ struct txgbe_fdir_rule_ele { TAILQ_ENTRY(txgbe_fdir_rule_ele) entries; struct txgbe_fdir_rule filter_info; }; /* l2_tunnel filter list structure */ struct txgbe_eth_l2_tunnel_conf_ele { TAILQ_ENTRY(txgbe_eth_l2_tunnel_conf_ele) entries; struct txgbe_l2_tunnel_conf filter_info; }; /* rss filter list structure */ struct txgbe_rss_conf_ele { TAILQ_ENTRY(txgbe_rss_conf_ele) entries; struct txgbe_rte_flow_rss_conf filter_info; }; /* txgbe_flow memory list structure */ struct txgbe_flow_mem { TAILQ_ENTRY(txgbe_flow_mem) entries; struct rte_flow *flow; }; TAILQ_HEAD(txgbe_ntuple_filter_list, txgbe_ntuple_filter_ele); TAILQ_HEAD(txgbe_ethertype_filter_list, txgbe_ethertype_filter_ele); TAILQ_HEAD(txgbe_syn_filter_list, txgbe_eth_syn_filter_ele); TAILQ_HEAD(txgbe_fdir_rule_filter_list, txgbe_fdir_rule_ele); TAILQ_HEAD(txgbe_l2_tunnel_filter_list, txgbe_eth_l2_tunnel_conf_ele); TAILQ_HEAD(txgbe_rss_filter_list, txgbe_rss_conf_ele); TAILQ_HEAD(txgbe_flow_mem_list, txgbe_flow_mem); static struct txgbe_ntuple_filter_list filter_ntuple_list; static struct txgbe_ethertype_filter_list filter_ethertype_list; static struct txgbe_syn_filter_list filter_syn_list; static struct txgbe_fdir_rule_filter_list filter_fdir_list; static struct txgbe_l2_tunnel_filter_list filter_l2_tunnel_list; static struct txgbe_rss_filter_list filter_rss_list; static struct txgbe_flow_mem_list txgbe_flow_list; /** * Endless loop will never happen with below assumption * 1. there is at least one no-void item(END) * 2. cur is before END. */ static inline const struct rte_flow_item *next_no_void_pattern( const struct rte_flow_item pattern[], const struct rte_flow_item *cur) { const struct rte_flow_item *next = cur ? cur + 1 : &pattern[0]; while (1) { if (next->type != RTE_FLOW_ITEM_TYPE_VOID) return next; next++; } } static inline const struct rte_flow_action *next_no_void_action( const struct rte_flow_action actions[], const struct rte_flow_action *cur) { const struct rte_flow_action *next = cur ? cur + 1 : &actions[0]; while (1) { if (next->type != RTE_FLOW_ACTION_TYPE_VOID) return next; next++; } } /** * Please aware there's an assumption for all the parsers. * rte_flow_item is using big endian, rte_flow_attr and * rte_flow_action are using CPU order. * Because the pattern is used to describe the packets, * normally the packets should use network order. */ /** * Parse the rule to see if it is a n-tuple rule. * And get the n-tuple filter info BTW. * pattern: * The first not void item can be ETH or IPV4. * The second not void item must be IPV4 if the first one is ETH. * The third not void item must be UDP or TCP. * The next not void item must be END. * action: * The first not void action should be QUEUE. * The next not void action should be END. * pattern example: * ITEM Spec Mask * ETH NULL NULL * IPV4 src_addr 192.168.1.20 0xFFFFFFFF * dst_addr 192.167.3.50 0xFFFFFFFF * next_proto_id 17 0xFF * UDP/TCP/ src_port 80 0xFFFF * SCTP dst_port 80 0xFFFF * END * other members in mask and spec should set to 0x00. * item->last should be NULL. * * Special case for flow action type RTE_FLOW_ACTION_TYPE_SECURITY. * */ static int cons_parse_ntuple_filter(const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_eth_ntuple_filter *filter, struct rte_flow_error *error) { const struct rte_flow_item *item; const struct rte_flow_action *act; const struct rte_flow_item_ipv4 *ipv4_spec; const struct rte_flow_item_ipv4 *ipv4_mask; const struct rte_flow_item_tcp *tcp_spec; const struct rte_flow_item_tcp *tcp_mask; const struct rte_flow_item_udp *udp_spec; const struct rte_flow_item_udp *udp_mask; const struct rte_flow_item_sctp *sctp_spec; const struct rte_flow_item_sctp *sctp_mask; const struct rte_flow_item_eth *eth_spec; const struct rte_flow_item_eth *eth_mask; const struct rte_flow_item_vlan *vlan_spec; const struct rte_flow_item_vlan *vlan_mask; struct rte_flow_item_eth eth_null; struct rte_flow_item_vlan vlan_null; if (!pattern) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, "NULL pattern."); return -rte_errno; } if (!actions) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, "NULL action."); return -rte_errno; } if (!attr) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR, NULL, "NULL attribute."); return -rte_errno; } memset(ð_null, 0, sizeof(struct rte_flow_item_eth)); memset(&vlan_null, 0, sizeof(struct rte_flow_item_vlan)); #ifdef RTE_LIB_SECURITY /** * Special case for flow action type RTE_FLOW_ACTION_TYPE_SECURITY */ act = next_no_void_action(actions, NULL); if (act->type == RTE_FLOW_ACTION_TYPE_SECURITY) { const void *conf = act->conf; /* check if the next not void item is END */ act = next_no_void_action(actions, act); if (act->type != RTE_FLOW_ACTION_TYPE_END) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } /* get the IP pattern*/ item = next_no_void_pattern(pattern, NULL); while (item->type != RTE_FLOW_ITEM_TYPE_IPV4 && item->type != RTE_FLOW_ITEM_TYPE_IPV6) { if (item->last || item->type == RTE_FLOW_ITEM_TYPE_END) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "IP pattern missing."); return -rte_errno; } item = next_no_void_pattern(pattern, item); } filter->proto = IPPROTO_ESP; return txgbe_crypto_add_ingress_sa_from_flow(conf, item->spec, item->type == RTE_FLOW_ITEM_TYPE_IPV6); } #endif /* the first not void item can be MAC or IPv4 */ item = next_no_void_pattern(pattern, NULL); if (item->type != RTE_FLOW_ITEM_TYPE_ETH && item->type != RTE_FLOW_ITEM_TYPE_IPV4) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } /* Skip Ethernet */ if (item->type == RTE_FLOW_ITEM_TYPE_ETH) { eth_spec = item->spec; eth_mask = item->mask; /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /* if the first item is MAC, the content should be NULL */ if ((item->spec && memcmp(eth_spec, ð_null, sizeof(struct rte_flow_item_eth))) || (item->mask && memcmp(eth_mask, ð_null, sizeof(struct rte_flow_item_eth)))) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } /* check if the next not void item is IPv4 or Vlan */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_IPV4 && item->type != RTE_FLOW_ITEM_TYPE_VLAN) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } } if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) { vlan_spec = item->spec; vlan_mask = item->mask; /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /* the content should be NULL */ if ((item->spec && memcmp(vlan_spec, &vlan_null, sizeof(struct rte_flow_item_vlan))) || (item->mask && memcmp(vlan_mask, &vlan_null, sizeof(struct rte_flow_item_vlan)))) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } /* check if the next not void item is IPv4 */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_IPV4) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } } if (item->mask) { /* get the IPv4 info */ if (!item->spec || !item->mask) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid ntuple mask"); return -rte_errno; } /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } ipv4_mask = item->mask; /** * Only support src & dst addresses, protocol, * others should be masked. */ if (ipv4_mask->hdr.version_ihl || ipv4_mask->hdr.type_of_service || ipv4_mask->hdr.total_length || ipv4_mask->hdr.packet_id || ipv4_mask->hdr.fragment_offset || ipv4_mask->hdr.time_to_live || ipv4_mask->hdr.hdr_checksum) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } if ((ipv4_mask->hdr.src_addr != 0 && ipv4_mask->hdr.src_addr != UINT32_MAX) || (ipv4_mask->hdr.dst_addr != 0 && ipv4_mask->hdr.dst_addr != UINT32_MAX) || (ipv4_mask->hdr.next_proto_id != UINT8_MAX && ipv4_mask->hdr.next_proto_id != 0)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } filter->dst_ip_mask = ipv4_mask->hdr.dst_addr; filter->src_ip_mask = ipv4_mask->hdr.src_addr; filter->proto_mask = ipv4_mask->hdr.next_proto_id; ipv4_spec = item->spec; filter->dst_ip = ipv4_spec->hdr.dst_addr; filter->src_ip = ipv4_spec->hdr.src_addr; filter->proto = ipv4_spec->hdr.next_proto_id; } /* check if the next not void item is TCP or UDP */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_TCP && item->type != RTE_FLOW_ITEM_TYPE_UDP && item->type != RTE_FLOW_ITEM_TYPE_SCTP && item->type != RTE_FLOW_ITEM_TYPE_END) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } if (item->type != RTE_FLOW_ITEM_TYPE_END && (!item->spec && !item->mask)) { goto action; } /* get the TCP/UDP/SCTP info */ if (item->type != RTE_FLOW_ITEM_TYPE_END && (!item->spec || !item->mask)) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid ntuple mask"); return -rte_errno; } /*Not supported last point for range*/ if (item->last) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } if (item->type == RTE_FLOW_ITEM_TYPE_TCP) { tcp_mask = item->mask; /** * Only support src & dst ports, tcp flags, * others should be masked. */ if (tcp_mask->hdr.sent_seq || tcp_mask->hdr.recv_ack || tcp_mask->hdr.data_off || tcp_mask->hdr.rx_win || tcp_mask->hdr.cksum || tcp_mask->hdr.tcp_urp) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } if ((tcp_mask->hdr.src_port != 0 && tcp_mask->hdr.src_port != UINT16_MAX) || (tcp_mask->hdr.dst_port != 0 && tcp_mask->hdr.dst_port != UINT16_MAX)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } filter->dst_port_mask = tcp_mask->hdr.dst_port; filter->src_port_mask = tcp_mask->hdr.src_port; if (tcp_mask->hdr.tcp_flags == 0xFF) { filter->flags |= RTE_NTUPLE_FLAGS_TCP_FLAG; } else if (!tcp_mask->hdr.tcp_flags) { filter->flags &= ~RTE_NTUPLE_FLAGS_TCP_FLAG; } else { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } tcp_spec = item->spec; filter->dst_port = tcp_spec->hdr.dst_port; filter->src_port = tcp_spec->hdr.src_port; filter->tcp_flags = tcp_spec->hdr.tcp_flags; } else if (item->type == RTE_FLOW_ITEM_TYPE_UDP) { udp_mask = item->mask; /** * Only support src & dst ports, * others should be masked. */ if (udp_mask->hdr.dgram_len || udp_mask->hdr.dgram_cksum) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } if ((udp_mask->hdr.src_port != 0 && udp_mask->hdr.src_port != UINT16_MAX) || (udp_mask->hdr.dst_port != 0 && udp_mask->hdr.dst_port != UINT16_MAX)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } filter->dst_port_mask = udp_mask->hdr.dst_port; filter->src_port_mask = udp_mask->hdr.src_port; udp_spec = item->spec; filter->dst_port = udp_spec->hdr.dst_port; filter->src_port = udp_spec->hdr.src_port; } else if (item->type == RTE_FLOW_ITEM_TYPE_SCTP) { sctp_mask = item->mask; /** * Only support src & dst ports, * others should be masked. */ if (sctp_mask->hdr.tag || sctp_mask->hdr.cksum) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } filter->dst_port_mask = sctp_mask->hdr.dst_port; filter->src_port_mask = sctp_mask->hdr.src_port; sctp_spec = item->spec; filter->dst_port = sctp_spec->hdr.dst_port; filter->src_port = sctp_spec->hdr.src_port; } else { goto action; } /* check if the next not void item is END */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_END) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } action: /** * n-tuple only supports forwarding, * check if the first not void action is QUEUE. */ act = next_no_void_action(actions, NULL); if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } filter->queue = ((const struct rte_flow_action_queue *)act->conf)->index; /* check if the next not void item is END */ act = next_no_void_action(actions, act); if (act->type != RTE_FLOW_ACTION_TYPE_END) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } /* parse attr */ /* must be input direction */ if (!attr->ingress) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, "Only support ingress."); return -rte_errno; } /* not supported */ if (attr->egress) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, "Not support egress."); return -rte_errno; } /* not supported */ if (attr->transfer) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, attr, "No support for transfer."); return -rte_errno; } if (attr->priority > 0xFFFF) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr, "Error priority."); return -rte_errno; } filter->priority = (uint16_t)attr->priority; if (attr->priority < TXGBE_MIN_N_TUPLE_PRIO || attr->priority > TXGBE_MAX_N_TUPLE_PRIO) filter->priority = 1; return 0; } /* a specific function for txgbe because the flags is specific */ static int txgbe_parse_ntuple_filter(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_eth_ntuple_filter *filter, struct rte_flow_error *error) { int ret; ret = cons_parse_ntuple_filter(attr, pattern, actions, filter, error); if (ret) return ret; #ifdef RTE_LIB_SECURITY /* ESP flow not really a flow */ if (filter->proto == IPPROTO_ESP) return 0; #endif /* txgbe doesn't support tcp flags */ if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Not supported by ntuple filter"); return -rte_errno; } /* txgbe doesn't support many priorities */ if (filter->priority < TXGBE_MIN_N_TUPLE_PRIO || filter->priority > TXGBE_MAX_N_TUPLE_PRIO) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Priority not supported by ntuple filter"); return -rte_errno; } if (filter->queue >= dev->data->nb_rx_queues) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Not supported by ntuple filter"); return -rte_errno; } /* fixed value for txgbe */ filter->flags = RTE_5TUPLE_FLAGS; return 0; } /** * Parse the rule to see if it is a ethertype rule. * And get the ethertype filter info BTW. * pattern: * The first not void item can be ETH. * The next not void item must be END. * action: * The first not void action should be QUEUE. * The next not void action should be END. * pattern example: * ITEM Spec Mask * ETH type 0x0807 0xFFFF * END * other members in mask and spec should set to 0x00. * item->last should be NULL. */ static int cons_parse_ethertype_filter(const struct rte_flow_attr *attr, const struct rte_flow_item *pattern, const struct rte_flow_action *actions, struct rte_eth_ethertype_filter *filter, struct rte_flow_error *error) { const struct rte_flow_item *item; const struct rte_flow_action *act; const struct rte_flow_item_eth *eth_spec; const struct rte_flow_item_eth *eth_mask; const struct rte_flow_action_queue *act_q; if (!pattern) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, "NULL pattern."); return -rte_errno; } if (!actions) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, "NULL action."); return -rte_errno; } if (!attr) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR, NULL, "NULL attribute."); return -rte_errno; } item = next_no_void_pattern(pattern, NULL); /* The first non-void item should be MAC. */ if (item->type != RTE_FLOW_ITEM_TYPE_ETH) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ethertype filter"); return -rte_errno; } /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /* Get the MAC info. */ if (!item->spec || !item->mask) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ethertype filter"); return -rte_errno; } eth_spec = item->spec; eth_mask = item->mask; /* Mask bits of source MAC address must be full of 0. * Mask bits of destination MAC address must be full * of 1 or full of 0. */ if (!rte_is_zero_ether_addr(ð_mask->src) || (!rte_is_zero_ether_addr(ð_mask->dst) && !rte_is_broadcast_ether_addr(ð_mask->dst))) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid ether address mask"); return -rte_errno; } if ((eth_mask->type & UINT16_MAX) != UINT16_MAX) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid ethertype mask"); return -rte_errno; } /* If mask bits of destination MAC address * are full of 1, set RTE_ETHTYPE_FLAGS_MAC. */ if (rte_is_broadcast_ether_addr(ð_mask->dst)) { filter->mac_addr = eth_spec->dst; filter->flags |= RTE_ETHTYPE_FLAGS_MAC; } else { filter->flags &= ~RTE_ETHTYPE_FLAGS_MAC; } filter->ether_type = rte_be_to_cpu_16(eth_spec->type); /* Check if the next non-void item is END. */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_END) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ethertype filter."); return -rte_errno; } /* Parse action */ act = next_no_void_action(actions, NULL); if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE && act->type != RTE_FLOW_ACTION_TYPE_DROP) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } if (act->type == RTE_FLOW_ACTION_TYPE_QUEUE) { act_q = (const struct rte_flow_action_queue *)act->conf; filter->queue = act_q->index; } else { filter->flags |= RTE_ETHTYPE_FLAGS_DROP; } /* Check if the next non-void item is END */ act = next_no_void_action(actions, act); if (act->type != RTE_FLOW_ACTION_TYPE_END) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } /* Parse attr */ /* Must be input direction */ if (!attr->ingress) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, "Only support ingress."); return -rte_errno; } /* Not supported */ if (attr->egress) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, "Not support egress."); return -rte_errno; } /* Not supported */ if (attr->transfer) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, attr, "No support for transfer."); return -rte_errno; } /* Not supported */ if (attr->priority) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr, "Not support priority."); return -rte_errno; } /* Not supported */ if (attr->group) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr, "Not support group."); return -rte_errno; } return 0; } static int txgbe_parse_ethertype_filter(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_eth_ethertype_filter *filter, struct rte_flow_error *error) { int ret; ret = cons_parse_ethertype_filter(attr, pattern, actions, filter, error); if (ret) return ret; if (filter->queue >= dev->data->nb_rx_queues) { memset(filter, 0, sizeof(struct rte_eth_ethertype_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "queue index much too big"); return -rte_errno; } if (filter->ether_type == RTE_ETHER_TYPE_IPV4 || filter->ether_type == RTE_ETHER_TYPE_IPV6) { memset(filter, 0, sizeof(struct rte_eth_ethertype_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "IPv4/IPv6 not supported by ethertype filter"); return -rte_errno; } if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) { memset(filter, 0, sizeof(struct rte_eth_ethertype_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "mac compare is unsupported"); return -rte_errno; } if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) { memset(filter, 0, sizeof(struct rte_eth_ethertype_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "drop option is unsupported"); return -rte_errno; } return 0; } /** * Parse the rule to see if it is a TCP SYN rule. * And get the TCP SYN filter info BTW. * pattern: * The first not void item must be ETH. * The second not void item must be IPV4 or IPV6. * The third not void item must be TCP. * The next not void item must be END. * action: * The first not void action should be QUEUE. * The next not void action should be END. * pattern example: * ITEM Spec Mask * ETH NULL NULL * IPV4/IPV6 NULL NULL * TCP tcp_flags 0x02 0xFF * END * other members in mask and spec should set to 0x00. * item->last should be NULL. */ static int cons_parse_syn_filter(const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_eth_syn_filter *filter, struct rte_flow_error *error) { const struct rte_flow_item *item; const struct rte_flow_action *act; const struct rte_flow_item_tcp *tcp_spec; const struct rte_flow_item_tcp *tcp_mask; const struct rte_flow_action_queue *act_q; if (!pattern) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, "NULL pattern."); return -rte_errno; } if (!actions) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, "NULL action."); return -rte_errno; } if (!attr) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR, NULL, "NULL attribute."); return -rte_errno; } /* the first not void item should be MAC or IPv4 or IPv6 or TCP */ item = next_no_void_pattern(pattern, NULL); if (item->type != RTE_FLOW_ITEM_TYPE_ETH && item->type != RTE_FLOW_ITEM_TYPE_IPV4 && item->type != RTE_FLOW_ITEM_TYPE_IPV6 && item->type != RTE_FLOW_ITEM_TYPE_TCP) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by syn filter"); return -rte_errno; } /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /* Skip Ethernet */ if (item->type == RTE_FLOW_ITEM_TYPE_ETH) { /* if the item is MAC, the content should be NULL */ if (item->spec || item->mask) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid SYN address mask"); return -rte_errno; } /* check if the next not void item is IPv4 or IPv6 */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_IPV4 && item->type != RTE_FLOW_ITEM_TYPE_IPV6) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by syn filter"); return -rte_errno; } } /* Skip IP */ if (item->type == RTE_FLOW_ITEM_TYPE_IPV4 || item->type == RTE_FLOW_ITEM_TYPE_IPV6) { /* if the item is IP, the content should be NULL */ if (item->spec || item->mask) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid SYN mask"); return -rte_errno; } /* check if the next not void item is TCP */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_TCP) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by syn filter"); return -rte_errno; } } /* Get the TCP info. Only support SYN. */ if (!item->spec || !item->mask) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid SYN mask"); return -rte_errno; } /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } tcp_spec = item->spec; tcp_mask = item->mask; if (!(tcp_spec->hdr.tcp_flags & RTE_TCP_SYN_FLAG) || tcp_mask->hdr.src_port || tcp_mask->hdr.dst_port || tcp_mask->hdr.sent_seq || tcp_mask->hdr.recv_ack || tcp_mask->hdr.data_off || tcp_mask->hdr.tcp_flags != RTE_TCP_SYN_FLAG || tcp_mask->hdr.rx_win || tcp_mask->hdr.cksum || tcp_mask->hdr.tcp_urp) { memset(filter, 0, sizeof(struct rte_eth_syn_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by syn filter"); return -rte_errno; } /* check if the next not void item is END */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_END) { memset(filter, 0, sizeof(struct rte_eth_syn_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by syn filter"); return -rte_errno; } /* check if the first not void action is QUEUE. */ act = next_no_void_action(actions, NULL); if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE) { memset(filter, 0, sizeof(struct rte_eth_syn_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } act_q = (const struct rte_flow_action_queue *)act->conf; filter->queue = act_q->index; if (filter->queue >= TXGBE_MAX_RX_QUEUE_NUM) { memset(filter, 0, sizeof(struct rte_eth_syn_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } /* check if the next not void item is END */ act = next_no_void_action(actions, act); if (act->type != RTE_FLOW_ACTION_TYPE_END) { memset(filter, 0, sizeof(struct rte_eth_syn_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } /* parse attr */ /* must be input direction */ if (!attr->ingress) { memset(filter, 0, sizeof(struct rte_eth_syn_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, "Only support ingress."); return -rte_errno; } /* not supported */ if (attr->egress) { memset(filter, 0, sizeof(struct rte_eth_syn_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, "Not support egress."); return -rte_errno; } /* not supported */ if (attr->transfer) { memset(filter, 0, sizeof(struct rte_eth_syn_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, attr, "No support for transfer."); return -rte_errno; } /* Support 2 priorities, the lowest or highest. */ if (!attr->priority) { filter->hig_pri = 0; } else if (attr->priority == (uint32_t)~0U) { filter->hig_pri = 1; } else { memset(filter, 0, sizeof(struct rte_eth_syn_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr, "Not support priority."); return -rte_errno; } return 0; } static int txgbe_parse_syn_filter(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_eth_syn_filter *filter, struct rte_flow_error *error) { int ret; ret = cons_parse_syn_filter(attr, pattern, actions, filter, error); if (filter->queue >= dev->data->nb_rx_queues) return -rte_errno; if (ret) return ret; return 0; } /** * Parse the rule to see if it is a L2 tunnel rule. * And get the L2 tunnel filter info BTW. * Only support E-tag now. * pattern: * The first not void item can be E_TAG. * The next not void item must be END. * action: * The first not void action should be VF or PF. * The next not void action should be END. * pattern example: * ITEM Spec Mask * E_TAG grp 0x1 0x3 e_cid_base 0x309 0xFFF * END * other members in mask and spec should set to 0x00. * item->last should be NULL. */ static int cons_parse_l2_tn_filter(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct txgbe_l2_tunnel_conf *filter, struct rte_flow_error *error) { const struct rte_flow_item *item; const struct rte_flow_item_e_tag *e_tag_spec; const struct rte_flow_item_e_tag *e_tag_mask; const struct rte_flow_action *act; const struct rte_flow_action_vf *act_vf; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); if (!pattern) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, "NULL pattern."); return -rte_errno; } if (!actions) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, "NULL action."); return -rte_errno; } if (!attr) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR, NULL, "NULL attribute."); return -rte_errno; } /* The first not void item should be e-tag. */ item = next_no_void_pattern(pattern, NULL); if (item->type != RTE_FLOW_ITEM_TYPE_E_TAG) { memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by L2 tunnel filter"); return -rte_errno; } if (!item->spec || !item->mask) { memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by L2 tunnel filter"); return -rte_errno; } /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } e_tag_spec = item->spec; e_tag_mask = item->mask; /* Only care about GRP and E cid base. */ if (e_tag_mask->epcp_edei_in_ecid_b || e_tag_mask->in_ecid_e || e_tag_mask->ecid_e || e_tag_mask->rsvd_grp_ecid_b != rte_cpu_to_be_16(0x3FFF)) { memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by L2 tunnel filter"); return -rte_errno; } filter->l2_tunnel_type = RTE_ETH_L2_TUNNEL_TYPE_E_TAG; /** * grp and e_cid_base are bit fields and only use 14 bits. * e-tag id is taken as little endian by HW. */ filter->tunnel_id = rte_be_to_cpu_16(e_tag_spec->rsvd_grp_ecid_b); /* check if the next not void item is END */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_END) { memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by L2 tunnel filter"); return -rte_errno; } /* parse attr */ /* must be input direction */ if (!attr->ingress) { memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, "Only support ingress."); return -rte_errno; } /* not supported */ if (attr->egress) { memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, "Not support egress."); return -rte_errno; } /* not supported */ if (attr->transfer) { memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, attr, "No support for transfer."); return -rte_errno; } /* not supported */ if (attr->priority) { memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr, "Not support priority."); return -rte_errno; } /* check if the first not void action is VF or PF. */ act = next_no_void_action(actions, NULL); if (act->type != RTE_FLOW_ACTION_TYPE_VF && act->type != RTE_FLOW_ACTION_TYPE_PF) { memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } if (act->type == RTE_FLOW_ACTION_TYPE_VF) { act_vf = (const struct rte_flow_action_vf *)act->conf; filter->pool = act_vf->id; } else { filter->pool = pci_dev->max_vfs; } /* check if the next not void item is END */ act = next_no_void_action(actions, act); if (act->type != RTE_FLOW_ACTION_TYPE_END) { memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } return 0; } static int txgbe_parse_l2_tn_filter(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct txgbe_l2_tunnel_conf *l2_tn_filter, struct rte_flow_error *error) { int ret = 0; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); uint16_t vf_num; ret = cons_parse_l2_tn_filter(dev, attr, pattern, actions, l2_tn_filter, error); vf_num = pci_dev->max_vfs; if (l2_tn_filter->pool > vf_num) return -rte_errno; return ret; } /* Parse to get the attr and action info of flow director rule. */ static int txgbe_parse_fdir_act_attr(const struct rte_flow_attr *attr, const struct rte_flow_action actions[], struct txgbe_fdir_rule *rule, struct rte_flow_error *error) { const struct rte_flow_action *act; const struct rte_flow_action_queue *act_q; const struct rte_flow_action_mark *mark; /* parse attr */ /* must be input direction */ if (!attr->ingress) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, "Only support ingress."); return -rte_errno; } /* not supported */ if (attr->egress) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, "Not support egress."); return -rte_errno; } /* not supported */ if (attr->transfer) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, attr, "No support for transfer."); return -rte_errno; } /* not supported */ if (attr->priority) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr, "Not support priority."); return -rte_errno; } /* check if the first not void action is QUEUE or DROP. */ act = next_no_void_action(actions, NULL); if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE && act->type != RTE_FLOW_ACTION_TYPE_DROP) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } if (act->type == RTE_FLOW_ACTION_TYPE_QUEUE) { act_q = (const struct rte_flow_action_queue *)act->conf; rule->queue = act_q->index; } else { /* drop */ /* signature mode does not support drop action. */ if (rule->mode == RTE_FDIR_MODE_SIGNATURE) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } rule->fdirflags = TXGBE_FDIRPICMD_DROP; } /* check if the next not void item is MARK */ act = next_no_void_action(actions, act); if (act->type != RTE_FLOW_ACTION_TYPE_MARK && act->type != RTE_FLOW_ACTION_TYPE_END) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } rule->soft_id = 0; if (act->type == RTE_FLOW_ACTION_TYPE_MARK) { mark = (const struct rte_flow_action_mark *)act->conf; rule->soft_id = mark->id; act = next_no_void_action(actions, act); } /* check if the next not void item is END */ if (act->type != RTE_FLOW_ACTION_TYPE_END) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } return 0; } /* search next no void pattern and skip fuzzy */ static inline const struct rte_flow_item *next_no_fuzzy_pattern( const struct rte_flow_item pattern[], const struct rte_flow_item *cur) { const struct rte_flow_item *next = next_no_void_pattern(pattern, cur); while (1) { if (next->type != RTE_FLOW_ITEM_TYPE_FUZZY) return next; next = next_no_void_pattern(pattern, next); } } static inline uint8_t signature_match(const struct rte_flow_item pattern[]) { const struct rte_flow_item_fuzzy *spec, *last, *mask; const struct rte_flow_item *item; uint32_t sh, lh, mh; int i = 0; while (1) { item = pattern + i; if (item->type == RTE_FLOW_ITEM_TYPE_END) break; if (item->type == RTE_FLOW_ITEM_TYPE_FUZZY) { spec = item->spec; last = item->last; mask = item->mask; if (!spec || !mask) return 0; sh = spec->thresh; if (!last) lh = sh; else lh = last->thresh; mh = mask->thresh; sh = sh & mh; lh = lh & mh; if (!sh || sh > lh) return 0; return 1; } i++; } return 0; } /** * Parse the rule to see if it is a IP or MAC VLAN flow director rule. * And get the flow director filter info BTW. * UDP/TCP/SCTP PATTERN: * The first not void item can be ETH or IPV4 or IPV6 * The second not void item must be IPV4 or IPV6 if the first one is ETH. * The next not void item could be UDP or TCP or SCTP (optional) * The next not void item could be RAW (for flexbyte, optional) * The next not void item must be END. * A Fuzzy Match pattern can appear at any place before END. * Fuzzy Match is optional for IPV4 but is required for IPV6 * MAC VLAN PATTERN: * The first not void item must be ETH. * The second not void item must be MAC VLAN. * The next not void item must be END. * ACTION: * The first not void action should be QUEUE or DROP. * The second not void optional action should be MARK, * mark_id is a uint32_t number. * The next not void action should be END. * UDP/TCP/SCTP pattern example: * ITEM Spec Mask * ETH NULL NULL * IPV4 src_addr 192.168.1.20 0xFFFFFFFF * dst_addr 192.167.3.50 0xFFFFFFFF * UDP/TCP/SCTP src_port 80 0xFFFF * dst_port 80 0xFFFF * FLEX relative 0 0x1 * search 0 0x1 * reserved 0 0 * offset 12 0xFFFFFFFF * limit 0 0xFFFF * length 2 0xFFFF * pattern[0] 0x86 0xFF * pattern[1] 0xDD 0xFF * END * MAC VLAN pattern example: * ITEM Spec Mask * ETH dst_addr {0xAC, 0x7B, 0xA1, {0xFF, 0xFF, 0xFF, 0x2C, 0x6D, 0x36} 0xFF, 0xFF, 0xFF} * MAC VLAN tci 0x2016 0xEFFF * END * Other members in mask and spec should set to 0x00. * Item->last should be NULL. */ static int txgbe_parse_fdir_filter_normal(struct rte_eth_dev *dev __rte_unused, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct txgbe_fdir_rule *rule, struct rte_flow_error *error) { const struct rte_flow_item *item; const struct rte_flow_item_eth *eth_mask; const struct rte_flow_item_ipv4 *ipv4_spec; const struct rte_flow_item_ipv4 *ipv4_mask; const struct rte_flow_item_ipv6 *ipv6_spec; const struct rte_flow_item_ipv6 *ipv6_mask; const struct rte_flow_item_tcp *tcp_spec; const struct rte_flow_item_tcp *tcp_mask; const struct rte_flow_item_udp *udp_spec; const struct rte_flow_item_udp *udp_mask; const struct rte_flow_item_sctp *sctp_spec; const struct rte_flow_item_sctp *sctp_mask; const struct rte_flow_item_raw *raw_mask; const struct rte_flow_item_raw *raw_spec; u32 ptype = 0; uint8_t j; if (!pattern) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, "NULL pattern."); return -rte_errno; } if (!actions) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, "NULL action."); return -rte_errno; } if (!attr) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR, NULL, "NULL attribute."); return -rte_errno; } /** * Some fields may not be provided. Set spec to 0 and mask to default * value. So, we need not do anything for the not provided fields later. */ memset(rule, 0, sizeof(struct txgbe_fdir_rule)); memset(&rule->mask, 0, sizeof(struct txgbe_hw_fdir_mask)); /** * The first not void item should be * MAC or IPv4 or TCP or UDP or SCTP. */ item = next_no_fuzzy_pattern(pattern, NULL); if (item->type != RTE_FLOW_ITEM_TYPE_ETH && item->type != RTE_FLOW_ITEM_TYPE_IPV4 && item->type != RTE_FLOW_ITEM_TYPE_IPV6 && item->type != RTE_FLOW_ITEM_TYPE_TCP && item->type != RTE_FLOW_ITEM_TYPE_UDP && item->type != RTE_FLOW_ITEM_TYPE_SCTP) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } if (signature_match(pattern)) rule->mode = RTE_FDIR_MODE_SIGNATURE; else rule->mode = RTE_FDIR_MODE_PERFECT; /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /* Get the MAC info. */ if (item->type == RTE_FLOW_ITEM_TYPE_ETH) { /** * Only support vlan and dst MAC address, * others should be masked. */ if (item->spec && !item->mask) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } if (item->mask) { rule->b_mask = TRUE; eth_mask = item->mask; /* Ether type should be masked. */ if (eth_mask->type || rule->mode == RTE_FDIR_MODE_SIGNATURE) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } /* If ethernet has meaning, it means MAC VLAN mode. */ rule->mode = RTE_FDIR_MODE_PERFECT_MAC_VLAN; /** * src MAC address must be masked, * and don't support dst MAC address mask. */ for (j = 0; j < RTE_ETHER_ADDR_LEN; j++) { if (eth_mask->src.addr_bytes[j] || eth_mask->dst.addr_bytes[j] != 0xFF) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } /* When no VLAN, considered as full mask. */ rule->mask.vlan_tci_mask = rte_cpu_to_be_16(0xEFFF); } /*** If both spec and mask are item, * it means don't care about ETH. * Do nothing. */ /** * Check if the next not void item is vlan or ipv4. * IPv6 is not supported. */ item = next_no_fuzzy_pattern(pattern, item); if (rule->mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) { if (item->type != RTE_FLOW_ITEM_TYPE_VLAN) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } else { if (item->type != RTE_FLOW_ITEM_TYPE_IPV4 && item->type != RTE_FLOW_ITEM_TYPE_VLAN) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } } /* Get the IPV4 info. */ if (item->type == RTE_FLOW_ITEM_TYPE_IPV4) { /** * Set the flow type even if there's no content * as we must have a flow type. */ rule->input.flow_type = TXGBE_ATR_FLOW_TYPE_IPV4; ptype = txgbe_ptype_table[TXGBE_PT_IPV4]; /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /** * Only care about src & dst addresses, * others should be masked. */ if (!item->mask) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } rule->b_mask = TRUE; ipv4_mask = item->mask; if (ipv4_mask->hdr.version_ihl || ipv4_mask->hdr.type_of_service || ipv4_mask->hdr.total_length || ipv4_mask->hdr.packet_id || ipv4_mask->hdr.fragment_offset || ipv4_mask->hdr.time_to_live || ipv4_mask->hdr.next_proto_id || ipv4_mask->hdr.hdr_checksum) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } rule->mask.dst_ipv4_mask = ipv4_mask->hdr.dst_addr; rule->mask.src_ipv4_mask = ipv4_mask->hdr.src_addr; if (item->spec) { rule->b_spec = TRUE; ipv4_spec = item->spec; rule->input.dst_ip[0] = ipv4_spec->hdr.dst_addr; rule->input.src_ip[0] = ipv4_spec->hdr.src_addr; } /** * Check if the next not void item is * TCP or UDP or SCTP or END. */ item = next_no_fuzzy_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_TCP && item->type != RTE_FLOW_ITEM_TYPE_UDP && item->type != RTE_FLOW_ITEM_TYPE_SCTP && item->type != RTE_FLOW_ITEM_TYPE_END && item->type != RTE_FLOW_ITEM_TYPE_RAW) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } /* Get the IPV6 info. */ if (item->type == RTE_FLOW_ITEM_TYPE_IPV6) { /** * Set the flow type even if there's no content * as we must have a flow type. */ rule->input.flow_type = TXGBE_ATR_FLOW_TYPE_IPV6; ptype = txgbe_ptype_table[TXGBE_PT_IPV6]; /** * 1. must signature match * 2. not support last * 3. mask must not null */ if (rule->mode != RTE_FDIR_MODE_SIGNATURE || item->last || !item->mask) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } rule->b_mask = TRUE; ipv6_mask = item->mask; if (ipv6_mask->hdr.vtc_flow || ipv6_mask->hdr.payload_len || ipv6_mask->hdr.proto || ipv6_mask->hdr.hop_limits) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } /* check src addr mask */ for (j = 0; j < 16; j++) { if (ipv6_mask->hdr.src_addr[j] == UINT8_MAX) { rule->mask.src_ipv6_mask |= 1 << j; } else if (ipv6_mask->hdr.src_addr[j] != 0) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } /* check dst addr mask */ for (j = 0; j < 16; j++) { if (ipv6_mask->hdr.dst_addr[j] == UINT8_MAX) { rule->mask.dst_ipv6_mask |= 1 << j; } else if (ipv6_mask->hdr.dst_addr[j] != 0) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } if (item->spec) { rule->b_spec = TRUE; ipv6_spec = item->spec; rte_memcpy(rule->input.src_ip, ipv6_spec->hdr.src_addr, 16); rte_memcpy(rule->input.dst_ip, ipv6_spec->hdr.dst_addr, 16); } /** * Check if the next not void item is * TCP or UDP or SCTP or END. */ item = next_no_fuzzy_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_TCP && item->type != RTE_FLOW_ITEM_TYPE_UDP && item->type != RTE_FLOW_ITEM_TYPE_SCTP && item->type != RTE_FLOW_ITEM_TYPE_END && item->type != RTE_FLOW_ITEM_TYPE_RAW) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } /* Get the TCP info. */ if (item->type == RTE_FLOW_ITEM_TYPE_TCP) { /** * Set the flow type even if there's no content * as we must have a flow type. */ rule->input.flow_type |= TXGBE_ATR_L4TYPE_TCP; if (rule->input.flow_type & TXGBE_ATR_FLOW_TYPE_IPV6) ptype = txgbe_ptype_table[TXGBE_PT_IPV6_TCP]; else ptype = txgbe_ptype_table[TXGBE_PT_IPV4_TCP]; /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /** * Only care about src & dst ports, * others should be masked. */ if (!item->mask) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } rule->b_mask = TRUE; tcp_mask = item->mask; if (tcp_mask->hdr.sent_seq || tcp_mask->hdr.recv_ack || tcp_mask->hdr.data_off || tcp_mask->hdr.tcp_flags || tcp_mask->hdr.rx_win || tcp_mask->hdr.cksum || tcp_mask->hdr.tcp_urp) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } rule->mask.src_port_mask = tcp_mask->hdr.src_port; rule->mask.dst_port_mask = tcp_mask->hdr.dst_port; if (item->spec) { rule->b_spec = TRUE; tcp_spec = item->spec; rule->input.src_port = tcp_spec->hdr.src_port; rule->input.dst_port = tcp_spec->hdr.dst_port; } item = next_no_fuzzy_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_RAW && item->type != RTE_FLOW_ITEM_TYPE_END) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } /* Get the UDP info */ if (item->type == RTE_FLOW_ITEM_TYPE_UDP) { /** * Set the flow type even if there's no content * as we must have a flow type. */ rule->input.flow_type |= TXGBE_ATR_L4TYPE_UDP; if (rule->input.flow_type & TXGBE_ATR_FLOW_TYPE_IPV6) ptype = txgbe_ptype_table[TXGBE_PT_IPV6_UDP]; else ptype = txgbe_ptype_table[TXGBE_PT_IPV4_UDP]; /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /** * Only care about src & dst ports, * others should be masked. */ if (!item->mask) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } rule->b_mask = TRUE; udp_mask = item->mask; if (udp_mask->hdr.dgram_len || udp_mask->hdr.dgram_cksum) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } rule->mask.src_port_mask = udp_mask->hdr.src_port; rule->mask.dst_port_mask = udp_mask->hdr.dst_port; if (item->spec) { rule->b_spec = TRUE; udp_spec = item->spec; rule->input.src_port = udp_spec->hdr.src_port; rule->input.dst_port = udp_spec->hdr.dst_port; } item = next_no_fuzzy_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_RAW && item->type != RTE_FLOW_ITEM_TYPE_END) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } /* Get the SCTP info */ if (item->type == RTE_FLOW_ITEM_TYPE_SCTP) { /** * Set the flow type even if there's no content * as we must have a flow type. */ rule->input.flow_type |= TXGBE_ATR_L4TYPE_SCTP; if (rule->input.flow_type & TXGBE_ATR_FLOW_TYPE_IPV6) ptype = txgbe_ptype_table[TXGBE_PT_IPV6_SCTP]; else ptype = txgbe_ptype_table[TXGBE_PT_IPV4_SCTP]; /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /** * Only care about src & dst ports, * others should be masked. */ if (!item->mask) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } rule->b_mask = TRUE; sctp_mask = item->mask; if (sctp_mask->hdr.tag || sctp_mask->hdr.cksum) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } rule->mask.src_port_mask = sctp_mask->hdr.src_port; rule->mask.dst_port_mask = sctp_mask->hdr.dst_port; if (item->spec) { rule->b_spec = TRUE; sctp_spec = item->spec; rule->input.src_port = sctp_spec->hdr.src_port; rule->input.dst_port = sctp_spec->hdr.dst_port; } /* others even sctp port is not supported */ sctp_mask = item->mask; if (sctp_mask && (sctp_mask->hdr.src_port || sctp_mask->hdr.dst_port || sctp_mask->hdr.tag || sctp_mask->hdr.cksum)) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } item = next_no_fuzzy_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_RAW && item->type != RTE_FLOW_ITEM_TYPE_END) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } /* Get the flex byte info */ if (item->type == RTE_FLOW_ITEM_TYPE_RAW) { /* Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /* mask should not be null */ if (!item->mask || !item->spec) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } raw_mask = item->mask; /* check mask */ if (raw_mask->relative != 0x1 || raw_mask->search != 0x1 || raw_mask->reserved != 0x0 || (uint32_t)raw_mask->offset != 0xffffffff || raw_mask->limit != 0xffff || raw_mask->length != 0xffff) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } raw_spec = item->spec; /* check spec */ if (raw_spec->relative != 0 || raw_spec->search != 0 || raw_spec->reserved != 0 || raw_spec->offset > TXGBE_MAX_FLX_SOURCE_OFF || raw_spec->offset % 2 || raw_spec->limit != 0 || raw_spec->length != 2 || /* pattern can't be 0xffff */ (raw_spec->pattern[0] == 0xff && raw_spec->pattern[1] == 0xff)) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } /* check pattern mask */ if (raw_mask->pattern[0] != 0xff || raw_mask->pattern[1] != 0xff) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } rule->mask.flex_bytes_mask = 0xffff; rule->input.flex_bytes = (((uint16_t)raw_spec->pattern[1]) << 8) | raw_spec->pattern[0]; rule->flex_bytes_offset = raw_spec->offset; } if (item->type != RTE_FLOW_ITEM_TYPE_END) { /* check if the next not void item is END */ item = next_no_fuzzy_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_END) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } rule->input.pkt_type = cpu_to_be16(txgbe_encode_ptype(ptype)); if (rule->input.flow_type & TXGBE_ATR_FLOW_TYPE_IPV6) { if (rule->input.flow_type & TXGBE_ATR_L4TYPE_MASK) rule->input.pkt_type &= 0xFFFF; else rule->input.pkt_type &= 0xF8FF; rule->input.flow_type &= TXGBE_ATR_L3TYPE_MASK | TXGBE_ATR_L4TYPE_MASK; } return txgbe_parse_fdir_act_attr(attr, actions, rule, error); } /** * Parse the rule to see if it is a VxLAN or NVGRE flow director rule. * And get the flow director filter info BTW. * VxLAN PATTERN: * The first not void item must be ETH. * The second not void item must be IPV4/ IPV6. * The third not void item must be NVGRE. * The next not void item must be END. * NVGRE PATTERN: * The first not void item must be ETH. * The second not void item must be IPV4/ IPV6. * The third not void item must be NVGRE. * The next not void item must be END. * ACTION: * The first not void action should be QUEUE or DROP. * The second not void optional action should be MARK, * mark_id is a uint32_t number. * The next not void action should be END. * VxLAN pattern example: * ITEM Spec Mask * ETH NULL NULL * IPV4/IPV6 NULL NULL * UDP NULL NULL * VxLAN vni{0x00, 0x32, 0x54} {0xFF, 0xFF, 0xFF} * MAC VLAN tci 0x2016 0xEFFF * END * NEGRV pattern example: * ITEM Spec Mask * ETH NULL NULL * IPV4/IPV6 NULL NULL * NVGRE protocol 0x6558 0xFFFF * tni{0x00, 0x32, 0x54} {0xFF, 0xFF, 0xFF} * MAC VLAN tci 0x2016 0xEFFF * END * other members in mask and spec should set to 0x00. * item->last should be NULL. */ static int txgbe_parse_fdir_filter_tunnel(const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct txgbe_fdir_rule *rule, struct rte_flow_error *error) { const struct rte_flow_item *item; const struct rte_flow_item_eth *eth_mask; uint32_t j; if (!pattern) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, "NULL pattern."); return -rte_errno; } if (!actions) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, "NULL action."); return -rte_errno; } if (!attr) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR, NULL, "NULL attribute."); return -rte_errno; } /** * Some fields may not be provided. Set spec to 0 and mask to default * value. So, we need not do anything for the not provided fields later. */ memset(rule, 0, sizeof(struct txgbe_fdir_rule)); memset(&rule->mask, 0xFF, sizeof(struct txgbe_hw_fdir_mask)); rule->mask.vlan_tci_mask = 0; /** * The first not void item should be * MAC or IPv4 or IPv6 or UDP or VxLAN. */ item = next_no_void_pattern(pattern, NULL); if (item->type != RTE_FLOW_ITEM_TYPE_ETH && item->type != RTE_FLOW_ITEM_TYPE_IPV4 && item->type != RTE_FLOW_ITEM_TYPE_IPV6 && item->type != RTE_FLOW_ITEM_TYPE_UDP && item->type != RTE_FLOW_ITEM_TYPE_VXLAN && item->type != RTE_FLOW_ITEM_TYPE_NVGRE) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } rule->mode = RTE_FDIR_MODE_PERFECT_TUNNEL; /* Skip MAC. */ if (item->type == RTE_FLOW_ITEM_TYPE_ETH) { /* Only used to describe the protocol stack. */ if (item->spec || item->mask) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } /* Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /* Check if the next not void item is IPv4 or IPv6. */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_IPV4 && item->type != RTE_FLOW_ITEM_TYPE_IPV6) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } /* Skip IP. */ if (item->type == RTE_FLOW_ITEM_TYPE_IPV4 || item->type == RTE_FLOW_ITEM_TYPE_IPV6) { /* Only used to describe the protocol stack. */ if (item->spec || item->mask) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /* Check if the next not void item is UDP or NVGRE. */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_UDP && item->type != RTE_FLOW_ITEM_TYPE_NVGRE) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } /* Skip UDP. */ if (item->type == RTE_FLOW_ITEM_TYPE_UDP) { /* Only used to describe the protocol stack. */ if (item->spec || item->mask) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /* Check if the next not void item is VxLAN. */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_VXLAN) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } /* check if the next not void item is MAC */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_ETH) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } /** * Only support vlan and dst MAC address, * others should be masked. */ if (!item->mask) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } rule->b_mask = TRUE; eth_mask = item->mask; /* Ether type should be masked. */ if (eth_mask->type) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } /* src MAC address should be masked. */ for (j = 0; j < RTE_ETHER_ADDR_LEN; j++) { if (eth_mask->src.addr_bytes[j]) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } rule->mask.mac_addr_byte_mask = 0; for (j = 0; j < ETH_ADDR_LEN; j++) { /* It's a per byte mask. */ if (eth_mask->dst.addr_bytes[j] == 0xFF) { rule->mask.mac_addr_byte_mask |= 0x1 << j; } else if (eth_mask->dst.addr_bytes[j]) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } } /* When no vlan, considered as full mask. */ rule->mask.vlan_tci_mask = rte_cpu_to_be_16(0xEFFF); /** * Check if the next not void item is vlan or ipv4. * IPv6 is not supported. */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_VLAN && item->type != RTE_FLOW_ITEM_TYPE_IPV4) { memset(rule, 0, sizeof(struct txgbe_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter"); return -rte_errno; } /*Not supported last point for range*/ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /** * If the tags is 0, it means don't care about the VLAN. * Do nothing. */ return txgbe_parse_fdir_act_attr(attr, actions, rule, error); } static int txgbe_parse_fdir_filter(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct txgbe_fdir_rule *rule, struct rte_flow_error *error) { int ret; struct txgbe_hw *hw = TXGBE_DEV_HW(dev); enum rte_fdir_mode fdir_mode = dev->data->dev_conf.fdir_conf.mode; ret = txgbe_parse_fdir_filter_normal(dev, attr, pattern, actions, rule, error); if (!ret) goto step_next; ret = txgbe_parse_fdir_filter_tunnel(attr, pattern, actions, rule, error); if (ret) return ret; step_next: if (hw->mac.type == txgbe_mac_raptor && rule->fdirflags == TXGBE_FDIRPICMD_DROP && (rule->input.src_port != 0 || rule->input.dst_port != 0)) return -ENOTSUP; if (fdir_mode == RTE_FDIR_MODE_NONE || fdir_mode != rule->mode) return -ENOTSUP; if (rule->queue >= dev->data->nb_rx_queues) return -ENOTSUP; return ret; } static int txgbe_parse_rss_filter(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_action actions[], struct txgbe_rte_flow_rss_conf *rss_conf, struct rte_flow_error *error) { const struct rte_flow_action *act; const struct rte_flow_action_rss *rss; uint16_t n; /** * rss only supports forwarding, * check if the first not void action is RSS. */ act = next_no_void_action(actions, NULL); if (act->type != RTE_FLOW_ACTION_TYPE_RSS) { memset(rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } rss = (const struct rte_flow_action_rss *)act->conf; if (!rss || !rss->queue_num) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "no valid queues"); return -rte_errno; } for (n = 0; n < rss->queue_num; n++) { if (rss->queue[n] >= dev->data->nb_rx_queues) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "queue id > max number of queues"); return -rte_errno; } } if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT) return rte_flow_error_set (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act, "non-default RSS hash functions are not supported"); if (rss->level) return rte_flow_error_set (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act, "a nonzero RSS encapsulation level is not supported"); if (rss->key_len && rss->key_len != RTE_DIM(rss_conf->key)) return rte_flow_error_set (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act, "RSS hash key must be exactly 40 bytes"); if (rss->queue_num > RTE_DIM(rss_conf->queue)) return rte_flow_error_set (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act, "too many queues for RSS context"); if (txgbe_rss_conf_init(rss_conf, rss)) return rte_flow_error_set (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "RSS context initialization failure"); /* check if the next not void item is END */ act = next_no_void_action(actions, act); if (act->type != RTE_FLOW_ACTION_TYPE_END) { memset(rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } /* parse attr */ /* must be input direction */ if (!attr->ingress) { memset(rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, "Only support ingress."); return -rte_errno; } /* not supported */ if (attr->egress) { memset(rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, "Not support egress."); return -rte_errno; } /* not supported */ if (attr->transfer) { memset(rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, attr, "No support for transfer."); return -rte_errno; } if (attr->priority > 0xFFFF) { memset(rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr, "Error priority."); return -rte_errno; } return 0; } /* remove the rss filter */ static void txgbe_clear_rss_filter(struct rte_eth_dev *dev) { struct txgbe_filter_info *filter_info = TXGBE_DEV_FILTER(dev); if (filter_info->rss_info.conf.queue_num) txgbe_config_rss_filter(dev, &filter_info->rss_info, FALSE); } void txgbe_filterlist_init(void) { TAILQ_INIT(&filter_ntuple_list); TAILQ_INIT(&filter_ethertype_list); TAILQ_INIT(&filter_syn_list); TAILQ_INIT(&filter_fdir_list); TAILQ_INIT(&filter_l2_tunnel_list); TAILQ_INIT(&filter_rss_list); TAILQ_INIT(&txgbe_flow_list); } void txgbe_filterlist_flush(void) { struct txgbe_ntuple_filter_ele *ntuple_filter_ptr; struct txgbe_ethertype_filter_ele *ethertype_filter_ptr; struct txgbe_eth_syn_filter_ele *syn_filter_ptr; struct txgbe_eth_l2_tunnel_conf_ele *l2_tn_filter_ptr; struct txgbe_fdir_rule_ele *fdir_rule_ptr; struct txgbe_flow_mem *txgbe_flow_mem_ptr; struct txgbe_rss_conf_ele *rss_filter_ptr; while ((ntuple_filter_ptr = TAILQ_FIRST(&filter_ntuple_list))) { TAILQ_REMOVE(&filter_ntuple_list, ntuple_filter_ptr, entries); rte_free(ntuple_filter_ptr); } while ((ethertype_filter_ptr = TAILQ_FIRST(&filter_ethertype_list))) { TAILQ_REMOVE(&filter_ethertype_list, ethertype_filter_ptr, entries); rte_free(ethertype_filter_ptr); } while ((syn_filter_ptr = TAILQ_FIRST(&filter_syn_list))) { TAILQ_REMOVE(&filter_syn_list, syn_filter_ptr, entries); rte_free(syn_filter_ptr); } while ((l2_tn_filter_ptr = TAILQ_FIRST(&filter_l2_tunnel_list))) { TAILQ_REMOVE(&filter_l2_tunnel_list, l2_tn_filter_ptr, entries); rte_free(l2_tn_filter_ptr); } while ((fdir_rule_ptr = TAILQ_FIRST(&filter_fdir_list))) { TAILQ_REMOVE(&filter_fdir_list, fdir_rule_ptr, entries); rte_free(fdir_rule_ptr); } while ((rss_filter_ptr = TAILQ_FIRST(&filter_rss_list))) { TAILQ_REMOVE(&filter_rss_list, rss_filter_ptr, entries); rte_free(rss_filter_ptr); } while ((txgbe_flow_mem_ptr = TAILQ_FIRST(&txgbe_flow_list))) { TAILQ_REMOVE(&txgbe_flow_list, txgbe_flow_mem_ptr, entries); rte_free(txgbe_flow_mem_ptr->flow); rte_free(txgbe_flow_mem_ptr); } } /** * Create or destroy a flow rule. * Theorically one rule can match more than one filters. * We will let it use the filter which it hit first. * So, the sequence matters. */ static struct rte_flow * txgbe_flow_create(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { int ret; struct rte_eth_ntuple_filter ntuple_filter; struct rte_eth_ethertype_filter ethertype_filter; struct rte_eth_syn_filter syn_filter; struct txgbe_fdir_rule fdir_rule; struct txgbe_l2_tunnel_conf l2_tn_filter; struct txgbe_hw_fdir_info *fdir_info = TXGBE_DEV_FDIR(dev); struct txgbe_rte_flow_rss_conf rss_conf; struct rte_flow *flow = NULL; struct txgbe_ntuple_filter_ele *ntuple_filter_ptr; struct txgbe_ethertype_filter_ele *ethertype_filter_ptr; struct txgbe_eth_syn_filter_ele *syn_filter_ptr; struct txgbe_eth_l2_tunnel_conf_ele *l2_tn_filter_ptr; struct txgbe_fdir_rule_ele *fdir_rule_ptr; struct txgbe_rss_conf_ele *rss_filter_ptr; struct txgbe_flow_mem *txgbe_flow_mem_ptr; uint8_t first_mask = FALSE; flow = rte_zmalloc("txgbe_rte_flow", sizeof(struct rte_flow), 0); if (!flow) { PMD_DRV_LOG(ERR, "failed to allocate memory"); return (struct rte_flow *)flow; } txgbe_flow_mem_ptr = rte_zmalloc("txgbe_flow_mem", sizeof(struct txgbe_flow_mem), 0); if (!txgbe_flow_mem_ptr) { PMD_DRV_LOG(ERR, "failed to allocate memory"); rte_free(flow); return NULL; } txgbe_flow_mem_ptr->flow = flow; TAILQ_INSERT_TAIL(&txgbe_flow_list, txgbe_flow_mem_ptr, entries); memset(&ntuple_filter, 0, sizeof(struct rte_eth_ntuple_filter)); ret = txgbe_parse_ntuple_filter(dev, attr, pattern, actions, &ntuple_filter, error); #ifdef RTE_LIB_SECURITY /* ESP flow not really a flow*/ if (ntuple_filter.proto == IPPROTO_ESP) return flow; #endif if (!ret) { ret = txgbe_add_del_ntuple_filter(dev, &ntuple_filter, TRUE); if (!ret) { ntuple_filter_ptr = rte_zmalloc("txgbe_ntuple_filter", sizeof(struct txgbe_ntuple_filter_ele), 0); if (!ntuple_filter_ptr) { PMD_DRV_LOG(ERR, "failed to allocate memory"); goto out; } rte_memcpy(&ntuple_filter_ptr->filter_info, &ntuple_filter, sizeof(struct rte_eth_ntuple_filter)); TAILQ_INSERT_TAIL(&filter_ntuple_list, ntuple_filter_ptr, entries); flow->rule = ntuple_filter_ptr; flow->filter_type = RTE_ETH_FILTER_NTUPLE; return flow; } goto out; } memset(ðertype_filter, 0, sizeof(struct rte_eth_ethertype_filter)); ret = txgbe_parse_ethertype_filter(dev, attr, pattern, actions, ðertype_filter, error); if (!ret) { ret = txgbe_add_del_ethertype_filter(dev, ðertype_filter, TRUE); if (!ret) { ethertype_filter_ptr = rte_zmalloc("txgbe_ethertype_filter", sizeof(struct txgbe_ethertype_filter_ele), 0); if (!ethertype_filter_ptr) { PMD_DRV_LOG(ERR, "failed to allocate memory"); goto out; } rte_memcpy(ðertype_filter_ptr->filter_info, ðertype_filter, sizeof(struct rte_eth_ethertype_filter)); TAILQ_INSERT_TAIL(&filter_ethertype_list, ethertype_filter_ptr, entries); flow->rule = ethertype_filter_ptr; flow->filter_type = RTE_ETH_FILTER_ETHERTYPE; return flow; } goto out; } memset(&syn_filter, 0, sizeof(struct rte_eth_syn_filter)); ret = txgbe_parse_syn_filter(dev, attr, pattern, actions, &syn_filter, error); if (!ret) { ret = txgbe_syn_filter_set(dev, &syn_filter, TRUE); if (!ret) { syn_filter_ptr = rte_zmalloc("txgbe_syn_filter", sizeof(struct txgbe_eth_syn_filter_ele), 0); if (!syn_filter_ptr) { PMD_DRV_LOG(ERR, "failed to allocate memory"); goto out; } rte_memcpy(&syn_filter_ptr->filter_info, &syn_filter, sizeof(struct rte_eth_syn_filter)); TAILQ_INSERT_TAIL(&filter_syn_list, syn_filter_ptr, entries); flow->rule = syn_filter_ptr; flow->filter_type = RTE_ETH_FILTER_SYN; return flow; } goto out; } memset(&fdir_rule, 0, sizeof(struct txgbe_fdir_rule)); ret = txgbe_parse_fdir_filter(dev, attr, pattern, actions, &fdir_rule, error); if (!ret) { /* A mask cannot be deleted. */ if (fdir_rule.b_mask) { if (!fdir_info->mask_added) { /* It's the first time the mask is set. */ rte_memcpy(&fdir_info->mask, &fdir_rule.mask, sizeof(struct txgbe_hw_fdir_mask)); fdir_info->flex_bytes_offset = fdir_rule.flex_bytes_offset; if (fdir_rule.mask.flex_bytes_mask) txgbe_fdir_set_flexbytes_offset(dev, fdir_rule.flex_bytes_offset); ret = txgbe_fdir_set_input_mask(dev); if (ret) goto out; fdir_info->mask_added = TRUE; first_mask = TRUE; } else { /** * Only support one global mask, * all the masks should be the same. */ ret = memcmp(&fdir_info->mask, &fdir_rule.mask, sizeof(struct txgbe_hw_fdir_mask)); if (ret) { PMD_DRV_LOG(ERR, "only support one global mask"); goto out; } if (fdir_info->flex_bytes_offset != fdir_rule.flex_bytes_offset) goto out; } } if (fdir_rule.b_spec) { ret = txgbe_fdir_filter_program(dev, &fdir_rule, FALSE, FALSE); if (!ret) { fdir_rule_ptr = rte_zmalloc("txgbe_fdir_filter", sizeof(struct txgbe_fdir_rule_ele), 0); if (!fdir_rule_ptr) { PMD_DRV_LOG(ERR, "failed to allocate memory"); goto out; } rte_memcpy(&fdir_rule_ptr->filter_info, &fdir_rule, sizeof(struct txgbe_fdir_rule)); TAILQ_INSERT_TAIL(&filter_fdir_list, fdir_rule_ptr, entries); flow->rule = fdir_rule_ptr; flow->filter_type = RTE_ETH_FILTER_FDIR; return flow; } if (ret) { /** * clean the mask_added flag if fail to * program **/ if (first_mask) fdir_info->mask_added = FALSE; goto out; } } goto out; } memset(&l2_tn_filter, 0, sizeof(struct txgbe_l2_tunnel_conf)); ret = txgbe_parse_l2_tn_filter(dev, attr, pattern, actions, &l2_tn_filter, error); if (!ret) { ret = txgbe_dev_l2_tunnel_filter_add(dev, &l2_tn_filter, FALSE); if (!ret) { l2_tn_filter_ptr = rte_zmalloc("txgbe_l2_tn_filter", sizeof(struct txgbe_eth_l2_tunnel_conf_ele), 0); if (!l2_tn_filter_ptr) { PMD_DRV_LOG(ERR, "failed to allocate memory"); goto out; } rte_memcpy(&l2_tn_filter_ptr->filter_info, &l2_tn_filter, sizeof(struct txgbe_l2_tunnel_conf)); TAILQ_INSERT_TAIL(&filter_l2_tunnel_list, l2_tn_filter_ptr, entries); flow->rule = l2_tn_filter_ptr; flow->filter_type = RTE_ETH_FILTER_L2_TUNNEL; return flow; } } memset(&rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf)); ret = txgbe_parse_rss_filter(dev, attr, actions, &rss_conf, error); if (!ret) { ret = txgbe_config_rss_filter(dev, &rss_conf, TRUE); if (!ret) { rss_filter_ptr = rte_zmalloc("txgbe_rss_filter", sizeof(struct txgbe_rss_conf_ele), 0); if (!rss_filter_ptr) { PMD_DRV_LOG(ERR, "failed to allocate memory"); goto out; } txgbe_rss_conf_init(&rss_filter_ptr->filter_info, &rss_conf.conf); TAILQ_INSERT_TAIL(&filter_rss_list, rss_filter_ptr, entries); flow->rule = rss_filter_ptr; flow->filter_type = RTE_ETH_FILTER_HASH; return flow; } } out: TAILQ_REMOVE(&txgbe_flow_list, txgbe_flow_mem_ptr, entries); rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to create flow."); rte_free(txgbe_flow_mem_ptr); rte_free(flow); return NULL; } /** * Check if the flow rule is supported by txgbe. * It only checks the format. Don't guarantee the rule can be programmed into * the HW. Because there can be no enough room for the rule. */ static int txgbe_flow_validate(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { struct rte_eth_ntuple_filter ntuple_filter; struct rte_eth_ethertype_filter ethertype_filter; struct rte_eth_syn_filter syn_filter; struct txgbe_l2_tunnel_conf l2_tn_filter; struct txgbe_fdir_rule fdir_rule; struct txgbe_rte_flow_rss_conf rss_conf; int ret = 0; memset(&ntuple_filter, 0, sizeof(struct rte_eth_ntuple_filter)); ret = txgbe_parse_ntuple_filter(dev, attr, pattern, actions, &ntuple_filter, error); if (!ret) return 0; memset(ðertype_filter, 0, sizeof(struct rte_eth_ethertype_filter)); ret = txgbe_parse_ethertype_filter(dev, attr, pattern, actions, ðertype_filter, error); if (!ret) return 0; memset(&syn_filter, 0, sizeof(struct rte_eth_syn_filter)); ret = txgbe_parse_syn_filter(dev, attr, pattern, actions, &syn_filter, error); if (!ret) return 0; memset(&fdir_rule, 0, sizeof(struct txgbe_fdir_rule)); ret = txgbe_parse_fdir_filter(dev, attr, pattern, actions, &fdir_rule, error); if (!ret) return 0; memset(&l2_tn_filter, 0, sizeof(struct txgbe_l2_tunnel_conf)); ret = txgbe_parse_l2_tn_filter(dev, attr, pattern, actions, &l2_tn_filter, error); if (!ret) return 0; memset(&rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf)); ret = txgbe_parse_rss_filter(dev, attr, actions, &rss_conf, error); return ret; } /* Destroy a flow rule on txgbe. */ static int txgbe_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow, struct rte_flow_error *error) { int ret = 0; struct rte_flow *pmd_flow = flow; enum rte_filter_type filter_type = pmd_flow->filter_type; struct rte_eth_ntuple_filter ntuple_filter; struct rte_eth_ethertype_filter ethertype_filter; struct rte_eth_syn_filter syn_filter; struct txgbe_fdir_rule fdir_rule; struct txgbe_l2_tunnel_conf l2_tn_filter; struct txgbe_ntuple_filter_ele *ntuple_filter_ptr; struct txgbe_ethertype_filter_ele *ethertype_filter_ptr; struct txgbe_eth_syn_filter_ele *syn_filter_ptr; struct txgbe_eth_l2_tunnel_conf_ele *l2_tn_filter_ptr; struct txgbe_fdir_rule_ele *fdir_rule_ptr; struct txgbe_flow_mem *txgbe_flow_mem_ptr; struct txgbe_hw_fdir_info *fdir_info = TXGBE_DEV_FDIR(dev); struct txgbe_rss_conf_ele *rss_filter_ptr; switch (filter_type) { case RTE_ETH_FILTER_NTUPLE: ntuple_filter_ptr = (struct txgbe_ntuple_filter_ele *) pmd_flow->rule; rte_memcpy(&ntuple_filter, &ntuple_filter_ptr->filter_info, sizeof(struct rte_eth_ntuple_filter)); ret = txgbe_add_del_ntuple_filter(dev, &ntuple_filter, FALSE); if (!ret) { TAILQ_REMOVE(&filter_ntuple_list, ntuple_filter_ptr, entries); rte_free(ntuple_filter_ptr); } break; case RTE_ETH_FILTER_ETHERTYPE: ethertype_filter_ptr = (struct txgbe_ethertype_filter_ele *) pmd_flow->rule; rte_memcpy(ðertype_filter, ðertype_filter_ptr->filter_info, sizeof(struct rte_eth_ethertype_filter)); ret = txgbe_add_del_ethertype_filter(dev, ðertype_filter, FALSE); if (!ret) { TAILQ_REMOVE(&filter_ethertype_list, ethertype_filter_ptr, entries); rte_free(ethertype_filter_ptr); } break; case RTE_ETH_FILTER_SYN: syn_filter_ptr = (struct txgbe_eth_syn_filter_ele *) pmd_flow->rule; rte_memcpy(&syn_filter, &syn_filter_ptr->filter_info, sizeof(struct rte_eth_syn_filter)); ret = txgbe_syn_filter_set(dev, &syn_filter, FALSE); if (!ret) { TAILQ_REMOVE(&filter_syn_list, syn_filter_ptr, entries); rte_free(syn_filter_ptr); } break; case RTE_ETH_FILTER_FDIR: fdir_rule_ptr = (struct txgbe_fdir_rule_ele *)pmd_flow->rule; rte_memcpy(&fdir_rule, &fdir_rule_ptr->filter_info, sizeof(struct txgbe_fdir_rule)); ret = txgbe_fdir_filter_program(dev, &fdir_rule, TRUE, FALSE); if (!ret) { TAILQ_REMOVE(&filter_fdir_list, fdir_rule_ptr, entries); rte_free(fdir_rule_ptr); if (TAILQ_EMPTY(&filter_fdir_list)) fdir_info->mask_added = false; } break; case RTE_ETH_FILTER_L2_TUNNEL: l2_tn_filter_ptr = (struct txgbe_eth_l2_tunnel_conf_ele *) pmd_flow->rule; rte_memcpy(&l2_tn_filter, &l2_tn_filter_ptr->filter_info, sizeof(struct txgbe_l2_tunnel_conf)); ret = txgbe_dev_l2_tunnel_filter_del(dev, &l2_tn_filter); if (!ret) { TAILQ_REMOVE(&filter_l2_tunnel_list, l2_tn_filter_ptr, entries); rte_free(l2_tn_filter_ptr); } break; case RTE_ETH_FILTER_HASH: rss_filter_ptr = (struct txgbe_rss_conf_ele *) pmd_flow->rule; ret = txgbe_config_rss_filter(dev, &rss_filter_ptr->filter_info, FALSE); if (!ret) { TAILQ_REMOVE(&filter_rss_list, rss_filter_ptr, entries); rte_free(rss_filter_ptr); } break; default: PMD_DRV_LOG(WARNING, "Filter type (%d) not supported", filter_type); ret = -EINVAL; break; } if (ret) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to destroy flow"); return ret; } TAILQ_FOREACH(txgbe_flow_mem_ptr, &txgbe_flow_list, entries) { if (txgbe_flow_mem_ptr->flow == pmd_flow) { TAILQ_REMOVE(&txgbe_flow_list, txgbe_flow_mem_ptr, entries); rte_free(txgbe_flow_mem_ptr); } } rte_free(flow); return ret; } /* Destroy all flow rules associated with a port on txgbe. */ static int txgbe_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *error) { int ret = 0; txgbe_clear_all_ntuple_filter(dev); txgbe_clear_all_ethertype_filter(dev); txgbe_clear_syn_filter(dev); ret = txgbe_clear_all_fdir_filter(dev); if (ret < 0) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to flush rule"); return ret; } ret = txgbe_clear_all_l2_tn_filter(dev); if (ret < 0) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to flush rule"); return ret; } txgbe_clear_rss_filter(dev); txgbe_filterlist_flush(); return 0; } const struct rte_flow_ops txgbe_flow_ops = { .validate = txgbe_flow_validate, .create = txgbe_flow_create, .destroy = txgbe_flow_destroy, .flush = txgbe_flow_flush, };