/* SPDX-License-Identifier: BSD-3-Clause * * Copyright(c) 2019-2021 Xilinx, Inc. * Copyright(c) 2019 Solarflare Communications Inc. * * This software was jointly developed between OKTET Labs (under contract * for Solarflare) and Solarflare Communications, Inc. */ #include #include #include #include #include "efx.h" #include "sfc.h" #include "sfc_flow_tunnel.h" #include "sfc_mae_counter.h" #include "sfc_log.h" #include "sfc_switch.h" #include "sfc_service.h" static int sfc_mae_assign_ethdev_mport(struct sfc_adapter *sa, efx_mport_sel_t *mportp) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); return efx_mae_mport_by_pcie_function(encp->enc_pf, encp->enc_vf, mportp); } static int sfc_mae_assign_entity_mport(struct sfc_adapter *sa, efx_mport_sel_t *mportp) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); int rc = 0; if (encp->enc_mae_admin) { /* * This ethdev sits on MAE admin PF. The represented * entity is the network port assigned to that PF. */ rc = efx_mae_mport_by_phy_port(encp->enc_assigned_port, mportp); } else { /* * This ethdev sits on unprivileged PF / VF. The entity * represented by the ethdev can change dynamically * as MAE admin changes default traffic rules. * * For the sake of simplicity, do not fill in the m-port * and assume that flow rules should not be allowed to * reference the entity represented by this ethdev. */ efx_mae_mport_invalid(mportp); } return rc; } static int sfc_mae_counter_registry_init(struct sfc_mae_counter_registry *registry, uint32_t nb_counters_max) { return sfc_mae_counters_init(®istry->counters, nb_counters_max); } static void sfc_mae_counter_registry_fini(struct sfc_mae_counter_registry *registry) { sfc_mae_counters_fini(®istry->counters); } static int sfc_mae_internal_rule_find_empty_slot(struct sfc_adapter *sa, struct sfc_mae_rule **rule) { struct sfc_mae *mae = &sa->mae; struct sfc_mae_internal_rules *internal_rules = &mae->internal_rules; unsigned int entry; int rc; for (entry = 0; entry < SFC_MAE_NB_RULES_MAX; entry++) { if (internal_rules->rules[entry].spec == NULL) break; } if (entry == SFC_MAE_NB_RULES_MAX) { rc = ENOSPC; sfc_err(sa, "failed too many rules (%u rules used)", entry); goto fail_too_many_rules; } *rule = &internal_rules->rules[entry]; return 0; fail_too_many_rules: return rc; } int sfc_mae_rule_add_mport_match_deliver(struct sfc_adapter *sa, const efx_mport_sel_t *mport_match, const efx_mport_sel_t *mport_deliver, int prio, struct sfc_mae_rule **rulep) { struct sfc_mae *mae = &sa->mae; struct sfc_mae_rule *rule; int rc; sfc_log_init(sa, "entry"); if (prio > 0 && (unsigned int)prio >= mae->nb_action_rule_prios_max) { rc = EINVAL; sfc_err(sa, "failed: invalid priority %d (max %u)", prio, mae->nb_action_rule_prios_max); goto fail_invalid_prio; } if (prio < 0) prio = mae->nb_action_rule_prios_max - 1; rc = sfc_mae_internal_rule_find_empty_slot(sa, &rule); if (rc != 0) goto fail_find_empty_slot; sfc_log_init(sa, "init MAE match spec"); rc = efx_mae_match_spec_init(sa->nic, EFX_MAE_RULE_ACTION, (uint32_t)prio, &rule->spec); if (rc != 0) { sfc_err(sa, "failed to init MAE match spec"); goto fail_match_init; } rc = efx_mae_match_spec_mport_set(rule->spec, mport_match, NULL); if (rc != 0) { sfc_err(sa, "failed to get MAE match mport selector"); goto fail_mport_set; } rc = efx_mae_action_set_spec_init(sa->nic, &rule->actions); if (rc != 0) { sfc_err(sa, "failed to init MAE action set"); goto fail_action_init; } rc = efx_mae_action_set_populate_deliver(rule->actions, mport_deliver); if (rc != 0) { sfc_err(sa, "failed to populate deliver action"); goto fail_populate_deliver; } rc = efx_mae_action_set_alloc(sa->nic, rule->actions, &rule->action_set); if (rc != 0) { sfc_err(sa, "failed to allocate action set"); goto fail_action_set_alloc; } rc = efx_mae_action_rule_insert(sa->nic, rule->spec, NULL, &rule->action_set, &rule->rule_id); if (rc != 0) { sfc_err(sa, "failed to insert action rule"); goto fail_rule_insert; } *rulep = rule; sfc_log_init(sa, "done"); return 0; fail_rule_insert: efx_mae_action_set_free(sa->nic, &rule->action_set); fail_action_set_alloc: fail_populate_deliver: efx_mae_action_set_spec_fini(sa->nic, rule->actions); fail_action_init: fail_mport_set: efx_mae_match_spec_fini(sa->nic, rule->spec); fail_match_init: fail_find_empty_slot: fail_invalid_prio: sfc_log_init(sa, "failed: %s", rte_strerror(rc)); return rc; } void sfc_mae_rule_del(struct sfc_adapter *sa, struct sfc_mae_rule *rule) { if (rule == NULL || rule->spec == NULL) return; efx_mae_action_rule_remove(sa->nic, &rule->rule_id); efx_mae_action_set_free(sa->nic, &rule->action_set); efx_mae_action_set_spec_fini(sa->nic, rule->actions); efx_mae_match_spec_fini(sa->nic, rule->spec); rule->spec = NULL; } int sfc_mae_attach(struct sfc_adapter *sa) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); struct sfc_mae_switch_port_request switch_port_request = {0}; const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); efx_mport_sel_t ethdev_mport; efx_mport_sel_t entity_mport; struct sfc_mae *mae = &sa->mae; struct sfc_mae_bounce_eh *bounce_eh = &mae->bounce_eh; efx_mae_limits_t limits; int rc; sfc_log_init(sa, "entry"); if (!encp->enc_mae_supported) { mae->status = SFC_MAE_STATUS_UNSUPPORTED; return 0; } if (encp->enc_mae_admin) { sfc_log_init(sa, "init MAE"); rc = efx_mae_init(sa->nic); if (rc != 0) goto fail_mae_init; sfc_log_init(sa, "get MAE limits"); rc = efx_mae_get_limits(sa->nic, &limits); if (rc != 0) goto fail_mae_get_limits; sfc_log_init(sa, "init MAE counter registry"); rc = sfc_mae_counter_registry_init(&mae->counter_registry, limits.eml_max_n_counters); if (rc != 0) { sfc_err(sa, "failed to init MAE counters registry for %u entries: %s", limits.eml_max_n_counters, rte_strerror(rc)); goto fail_counter_registry_init; } } sfc_log_init(sa, "assign ethdev MPORT"); rc = sfc_mae_assign_ethdev_mport(sa, ðdev_mport); if (rc != 0) goto fail_mae_assign_ethdev_mport; sfc_log_init(sa, "assign entity MPORT"); rc = sfc_mae_assign_entity_mport(sa, &entity_mport); if (rc != 0) goto fail_mae_assign_entity_mport; sfc_log_init(sa, "assign RTE switch domain"); rc = sfc_mae_assign_switch_domain(sa, &mae->switch_domain_id); if (rc != 0) goto fail_mae_assign_switch_domain; sfc_log_init(sa, "assign RTE switch port"); switch_port_request.type = SFC_MAE_SWITCH_PORT_INDEPENDENT; switch_port_request.ethdev_mportp = ðdev_mport; switch_port_request.entity_mportp = &entity_mport; switch_port_request.ethdev_port_id = sas->port_id; switch_port_request.port_data.indep.mae_admin = encp->enc_mae_admin == B_TRUE; rc = sfc_mae_assign_switch_port(mae->switch_domain_id, &switch_port_request, &mae->switch_port_id); if (rc != 0) goto fail_mae_assign_switch_port; if (encp->enc_mae_admin) { sfc_log_init(sa, "allocate encap. header bounce buffer"); bounce_eh->buf_size = limits.eml_encap_header_size_limit; bounce_eh->buf = rte_malloc("sfc_mae_bounce_eh", bounce_eh->buf_size, 0); if (bounce_eh->buf == NULL) goto fail_mae_alloc_bounce_eh; mae->nb_outer_rule_prios_max = limits.eml_max_n_outer_prios; mae->nb_action_rule_prios_max = limits.eml_max_n_action_prios; mae->encap_types_supported = limits.eml_encap_types_supported; } TAILQ_INIT(&mae->outer_rules); TAILQ_INIT(&mae->mac_addrs); TAILQ_INIT(&mae->encap_headers); TAILQ_INIT(&mae->action_sets); if (encp->enc_mae_admin) mae->status = SFC_MAE_STATUS_ADMIN; else mae->status = SFC_MAE_STATUS_SUPPORTED; sfc_log_init(sa, "done"); return 0; fail_mae_alloc_bounce_eh: fail_mae_assign_switch_port: fail_mae_assign_switch_domain: fail_mae_assign_entity_mport: fail_mae_assign_ethdev_mport: if (encp->enc_mae_admin) sfc_mae_counter_registry_fini(&mae->counter_registry); fail_counter_registry_init: fail_mae_get_limits: if (encp->enc_mae_admin) efx_mae_fini(sa->nic); fail_mae_init: sfc_log_init(sa, "failed %d", rc); return rc; } void sfc_mae_detach(struct sfc_adapter *sa) { struct sfc_mae *mae = &sa->mae; enum sfc_mae_status status_prev = mae->status; sfc_log_init(sa, "entry"); mae->nb_action_rule_prios_max = 0; mae->status = SFC_MAE_STATUS_UNKNOWN; if (status_prev != SFC_MAE_STATUS_ADMIN) return; rte_free(mae->bounce_eh.buf); sfc_mae_counter_registry_fini(&mae->counter_registry); efx_mae_fini(sa->nic); sfc_log_init(sa, "done"); } static struct sfc_mae_outer_rule * sfc_mae_outer_rule_attach(struct sfc_adapter *sa, const efx_mae_match_spec_t *match_spec, efx_tunnel_protocol_t encap_type) { struct sfc_mae_outer_rule *rule; struct sfc_mae *mae = &sa->mae; SFC_ASSERT(sfc_adapter_is_locked(sa)); TAILQ_FOREACH(rule, &mae->outer_rules, entries) { if (efx_mae_match_specs_equal(rule->match_spec, match_spec) && rule->encap_type == encap_type) { sfc_dbg(sa, "attaching to outer_rule=%p", rule); ++(rule->refcnt); return rule; } } return NULL; } static int sfc_mae_outer_rule_add(struct sfc_adapter *sa, efx_mae_match_spec_t *match_spec, efx_tunnel_protocol_t encap_type, struct sfc_mae_outer_rule **rulep) { struct sfc_mae_outer_rule *rule; struct sfc_mae *mae = &sa->mae; SFC_ASSERT(sfc_adapter_is_locked(sa)); rule = rte_zmalloc("sfc_mae_outer_rule", sizeof(*rule), 0); if (rule == NULL) return ENOMEM; rule->refcnt = 1; rule->match_spec = match_spec; rule->encap_type = encap_type; rule->fw_rsrc.rule_id.id = EFX_MAE_RSRC_ID_INVALID; TAILQ_INSERT_TAIL(&mae->outer_rules, rule, entries); *rulep = rule; sfc_dbg(sa, "added outer_rule=%p", rule); return 0; } static void sfc_mae_outer_rule_del(struct sfc_adapter *sa, struct sfc_mae_outer_rule *rule) { struct sfc_mae *mae = &sa->mae; SFC_ASSERT(sfc_adapter_is_locked(sa)); SFC_ASSERT(rule->refcnt != 0); --(rule->refcnt); if (rule->refcnt != 0) return; if (rule->fw_rsrc.rule_id.id != EFX_MAE_RSRC_ID_INVALID || rule->fw_rsrc.refcnt != 0) { sfc_err(sa, "deleting outer_rule=%p abandons its FW resource: OR_ID=0x%08x, refcnt=%u", rule, rule->fw_rsrc.rule_id.id, rule->fw_rsrc.refcnt); } efx_mae_match_spec_fini(sa->nic, rule->match_spec); TAILQ_REMOVE(&mae->outer_rules, rule, entries); rte_free(rule); sfc_dbg(sa, "deleted outer_rule=%p", rule); } static int sfc_mae_outer_rule_enable(struct sfc_adapter *sa, struct sfc_mae_outer_rule *rule, efx_mae_match_spec_t *match_spec_action) { struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc; int rc; SFC_ASSERT(sfc_adapter_is_locked(sa)); if (fw_rsrc->refcnt == 0) { SFC_ASSERT(fw_rsrc->rule_id.id == EFX_MAE_RSRC_ID_INVALID); SFC_ASSERT(rule->match_spec != NULL); rc = efx_mae_outer_rule_insert(sa->nic, rule->match_spec, rule->encap_type, &fw_rsrc->rule_id); if (rc != 0) { sfc_err(sa, "failed to enable outer_rule=%p: %s", rule, strerror(rc)); return rc; } } if (match_spec_action == NULL) goto skip_action_rule; rc = efx_mae_match_spec_outer_rule_id_set(match_spec_action, &fw_rsrc->rule_id); if (rc != 0) { if (fw_rsrc->refcnt == 0) { (void)efx_mae_outer_rule_remove(sa->nic, &fw_rsrc->rule_id); fw_rsrc->rule_id.id = EFX_MAE_RSRC_ID_INVALID; } sfc_err(sa, "can't match on outer rule ID: %s", strerror(rc)); return rc; } skip_action_rule: if (fw_rsrc->refcnt == 0) { sfc_dbg(sa, "enabled outer_rule=%p: OR_ID=0x%08x", rule, fw_rsrc->rule_id.id); } ++(fw_rsrc->refcnt); return 0; } static void sfc_mae_outer_rule_disable(struct sfc_adapter *sa, struct sfc_mae_outer_rule *rule) { struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc; int rc; SFC_ASSERT(sfc_adapter_is_locked(sa)); if (fw_rsrc->rule_id.id == EFX_MAE_RSRC_ID_INVALID || fw_rsrc->refcnt == 0) { sfc_err(sa, "failed to disable outer_rule=%p: already disabled; OR_ID=0x%08x, refcnt=%u", rule, fw_rsrc->rule_id.id, fw_rsrc->refcnt); return; } if (fw_rsrc->refcnt == 1) { rc = efx_mae_outer_rule_remove(sa->nic, &fw_rsrc->rule_id); if (rc == 0) { sfc_dbg(sa, "disabled outer_rule=%p with OR_ID=0x%08x", rule, fw_rsrc->rule_id.id); } else { sfc_err(sa, "failed to disable outer_rule=%p with OR_ID=0x%08x: %s", rule, fw_rsrc->rule_id.id, strerror(rc)); } fw_rsrc->rule_id.id = EFX_MAE_RSRC_ID_INVALID; } --(fw_rsrc->refcnt); } static struct sfc_mae_mac_addr * sfc_mae_mac_addr_attach(struct sfc_adapter *sa, const uint8_t addr_bytes[EFX_MAC_ADDR_LEN]) { struct sfc_mae_mac_addr *mac_addr; struct sfc_mae *mae = &sa->mae; SFC_ASSERT(sfc_adapter_is_locked(sa)); TAILQ_FOREACH(mac_addr, &mae->mac_addrs, entries) { if (memcmp(mac_addr->addr_bytes, addr_bytes, EFX_MAC_ADDR_LEN) == 0) { sfc_dbg(sa, "attaching to mac_addr=%p", mac_addr); ++(mac_addr->refcnt); return mac_addr; } } return NULL; } static int sfc_mae_mac_addr_add(struct sfc_adapter *sa, const uint8_t addr_bytes[EFX_MAC_ADDR_LEN], struct sfc_mae_mac_addr **mac_addrp) { struct sfc_mae_mac_addr *mac_addr; struct sfc_mae *mae = &sa->mae; SFC_ASSERT(sfc_adapter_is_locked(sa)); mac_addr = rte_zmalloc("sfc_mae_mac_addr", sizeof(*mac_addr), 0); if (mac_addr == NULL) return ENOMEM; rte_memcpy(mac_addr->addr_bytes, addr_bytes, EFX_MAC_ADDR_LEN); mac_addr->refcnt = 1; mac_addr->fw_rsrc.mac_id.id = EFX_MAE_RSRC_ID_INVALID; TAILQ_INSERT_TAIL(&mae->mac_addrs, mac_addr, entries); *mac_addrp = mac_addr; sfc_dbg(sa, "added mac_addr=%p", mac_addr); return 0; } static void sfc_mae_mac_addr_del(struct sfc_adapter *sa, struct sfc_mae_mac_addr *mac_addr) { struct sfc_mae *mae = &sa->mae; if (mac_addr == NULL) return; SFC_ASSERT(sfc_adapter_is_locked(sa)); SFC_ASSERT(mac_addr->refcnt != 0); --(mac_addr->refcnt); if (mac_addr->refcnt != 0) return; if (mac_addr->fw_rsrc.mac_id.id != EFX_MAE_RSRC_ID_INVALID || mac_addr->fw_rsrc.refcnt != 0) { sfc_err(sa, "deleting mac_addr=%p abandons its FW resource: MAC_ID=0x%08x, refcnt=%u", mac_addr, mac_addr->fw_rsrc.mac_id.id, mac_addr->fw_rsrc.refcnt); } TAILQ_REMOVE(&mae->mac_addrs, mac_addr, entries); rte_free(mac_addr); sfc_dbg(sa, "deleted mac_addr=%p", mac_addr); } enum sfc_mae_mac_addr_type { SFC_MAE_MAC_ADDR_DST, SFC_MAE_MAC_ADDR_SRC }; static int sfc_mae_mac_addr_enable(struct sfc_adapter *sa, struct sfc_mae_mac_addr *mac_addr, enum sfc_mae_mac_addr_type type, efx_mae_actions_t *aset_spec) { struct sfc_mae_fw_rsrc *fw_rsrc; int rc = 0; if (mac_addr == NULL) return 0; SFC_ASSERT(sfc_adapter_is_locked(sa)); fw_rsrc = &mac_addr->fw_rsrc; if (fw_rsrc->refcnt == 0) { SFC_ASSERT(fw_rsrc->mac_id.id == EFX_MAE_RSRC_ID_INVALID); rc = efx_mae_mac_addr_alloc(sa->nic, mac_addr->addr_bytes, &fw_rsrc->mac_id); if (rc != 0) { sfc_err(sa, "failed to enable mac_addr=%p: %s", mac_addr, strerror(rc)); return rc; } } switch (type) { case SFC_MAE_MAC_ADDR_DST: rc = efx_mae_action_set_fill_in_dst_mac_id(aset_spec, &fw_rsrc->mac_id); break; case SFC_MAE_MAC_ADDR_SRC: rc = efx_mae_action_set_fill_in_src_mac_id(aset_spec, &fw_rsrc->mac_id); break; default: rc = EINVAL; break; } if (rc != 0) { if (fw_rsrc->refcnt == 0) { (void)efx_mae_mac_addr_free(sa->nic, &fw_rsrc->mac_id); fw_rsrc->mac_id.id = EFX_MAE_RSRC_ID_INVALID; } sfc_err(sa, "cannot fill in MAC address entry ID: %s", strerror(rc)); return rc; } if (fw_rsrc->refcnt == 0) { sfc_dbg(sa, "enabled mac_addr=%p: MAC_ID=0x%08x", mac_addr, fw_rsrc->mac_id.id); } ++(fw_rsrc->refcnt); return 0; } static void sfc_mae_mac_addr_disable(struct sfc_adapter *sa, struct sfc_mae_mac_addr *mac_addr) { struct sfc_mae_fw_rsrc *fw_rsrc; int rc; if (mac_addr == NULL) return; SFC_ASSERT(sfc_adapter_is_locked(sa)); fw_rsrc = &mac_addr->fw_rsrc; if (fw_rsrc->mac_id.id == EFX_MAE_RSRC_ID_INVALID || fw_rsrc->refcnt == 0) { sfc_err(sa, "failed to disable mac_addr=%p: already disabled; MAC_ID=0x%08x, refcnt=%u", mac_addr, fw_rsrc->mac_id.id, fw_rsrc->refcnt); return; } if (fw_rsrc->refcnt == 1) { rc = efx_mae_mac_addr_free(sa->nic, &fw_rsrc->mac_id); if (rc == 0) { sfc_dbg(sa, "disabled mac_addr=%p with MAC_ID=0x%08x", mac_addr, fw_rsrc->mac_id.id); } else { sfc_err(sa, "failed to disable mac_addr=%p with MAC_ID=0x%08x: %s", mac_addr, fw_rsrc->mac_id.id, strerror(rc)); } fw_rsrc->mac_id.id = EFX_MAE_RSRC_ID_INVALID; } --(fw_rsrc->refcnt); } static struct sfc_mae_encap_header * sfc_mae_encap_header_attach(struct sfc_adapter *sa, const struct sfc_mae_bounce_eh *bounce_eh) { struct sfc_mae_encap_header *encap_header; struct sfc_mae *mae = &sa->mae; SFC_ASSERT(sfc_adapter_is_locked(sa)); TAILQ_FOREACH(encap_header, &mae->encap_headers, entries) { if (encap_header->size == bounce_eh->size && memcmp(encap_header->buf, bounce_eh->buf, bounce_eh->size) == 0) { sfc_dbg(sa, "attaching to encap_header=%p", encap_header); ++(encap_header->refcnt); return encap_header; } } return NULL; } static int sfc_mae_encap_header_add(struct sfc_adapter *sa, const struct sfc_mae_bounce_eh *bounce_eh, struct sfc_mae_encap_header **encap_headerp) { struct sfc_mae_encap_header *encap_header; struct sfc_mae *mae = &sa->mae; SFC_ASSERT(sfc_adapter_is_locked(sa)); encap_header = rte_zmalloc("sfc_mae_encap_header", sizeof(*encap_header), 0); if (encap_header == NULL) return ENOMEM; encap_header->size = bounce_eh->size; encap_header->buf = rte_malloc("sfc_mae_encap_header_buf", encap_header->size, 0); if (encap_header->buf == NULL) { rte_free(encap_header); return ENOMEM; } rte_memcpy(encap_header->buf, bounce_eh->buf, bounce_eh->size); encap_header->refcnt = 1; encap_header->type = bounce_eh->type; encap_header->fw_rsrc.eh_id.id = EFX_MAE_RSRC_ID_INVALID; TAILQ_INSERT_TAIL(&mae->encap_headers, encap_header, entries); *encap_headerp = encap_header; sfc_dbg(sa, "added encap_header=%p", encap_header); return 0; } static void sfc_mae_encap_header_del(struct sfc_adapter *sa, struct sfc_mae_encap_header *encap_header) { struct sfc_mae *mae = &sa->mae; if (encap_header == NULL) return; SFC_ASSERT(sfc_adapter_is_locked(sa)); SFC_ASSERT(encap_header->refcnt != 0); --(encap_header->refcnt); if (encap_header->refcnt != 0) return; if (encap_header->fw_rsrc.eh_id.id != EFX_MAE_RSRC_ID_INVALID || encap_header->fw_rsrc.refcnt != 0) { sfc_err(sa, "deleting encap_header=%p abandons its FW resource: EH_ID=0x%08x, refcnt=%u", encap_header, encap_header->fw_rsrc.eh_id.id, encap_header->fw_rsrc.refcnt); } TAILQ_REMOVE(&mae->encap_headers, encap_header, entries); rte_free(encap_header->buf); rte_free(encap_header); sfc_dbg(sa, "deleted encap_header=%p", encap_header); } static int sfc_mae_encap_header_enable(struct sfc_adapter *sa, struct sfc_mae_encap_header *encap_header, efx_mae_actions_t *action_set_spec) { struct sfc_mae_fw_rsrc *fw_rsrc; int rc; if (encap_header == NULL) return 0; SFC_ASSERT(sfc_adapter_is_locked(sa)); fw_rsrc = &encap_header->fw_rsrc; if (fw_rsrc->refcnt == 0) { SFC_ASSERT(fw_rsrc->eh_id.id == EFX_MAE_RSRC_ID_INVALID); SFC_ASSERT(encap_header->buf != NULL); SFC_ASSERT(encap_header->size != 0); rc = efx_mae_encap_header_alloc(sa->nic, encap_header->type, encap_header->buf, encap_header->size, &fw_rsrc->eh_id); if (rc != 0) { sfc_err(sa, "failed to enable encap_header=%p: %s", encap_header, strerror(rc)); return rc; } } rc = efx_mae_action_set_fill_in_eh_id(action_set_spec, &fw_rsrc->eh_id); if (rc != 0) { if (fw_rsrc->refcnt == 0) { (void)efx_mae_encap_header_free(sa->nic, &fw_rsrc->eh_id); fw_rsrc->eh_id.id = EFX_MAE_RSRC_ID_INVALID; } sfc_err(sa, "can't fill in encap. header ID: %s", strerror(rc)); return rc; } if (fw_rsrc->refcnt == 0) { sfc_dbg(sa, "enabled encap_header=%p: EH_ID=0x%08x", encap_header, fw_rsrc->eh_id.id); } ++(fw_rsrc->refcnt); return 0; } static void sfc_mae_encap_header_disable(struct sfc_adapter *sa, struct sfc_mae_encap_header *encap_header) { struct sfc_mae_fw_rsrc *fw_rsrc; int rc; if (encap_header == NULL) return; SFC_ASSERT(sfc_adapter_is_locked(sa)); fw_rsrc = &encap_header->fw_rsrc; if (fw_rsrc->eh_id.id == EFX_MAE_RSRC_ID_INVALID || fw_rsrc->refcnt == 0) { sfc_err(sa, "failed to disable encap_header=%p: already disabled; EH_ID=0x%08x, refcnt=%u", encap_header, fw_rsrc->eh_id.id, fw_rsrc->refcnt); return; } if (fw_rsrc->refcnt == 1) { rc = efx_mae_encap_header_free(sa->nic, &fw_rsrc->eh_id); if (rc == 0) { sfc_dbg(sa, "disabled encap_header=%p with EH_ID=0x%08x", encap_header, fw_rsrc->eh_id.id); } else { sfc_err(sa, "failed to disable encap_header=%p with EH_ID=0x%08x: %s", encap_header, fw_rsrc->eh_id.id, strerror(rc)); } fw_rsrc->eh_id.id = EFX_MAE_RSRC_ID_INVALID; } --(fw_rsrc->refcnt); } static int sfc_mae_counters_enable(struct sfc_adapter *sa, struct sfc_mae_counter_id *counters, unsigned int n_counters, efx_mae_actions_t *action_set_spec) { int rc; sfc_log_init(sa, "entry"); if (n_counters == 0) { sfc_log_init(sa, "no counters - skip"); return 0; } SFC_ASSERT(sfc_adapter_is_locked(sa)); SFC_ASSERT(n_counters == 1); rc = sfc_mae_counter_enable(sa, &counters[0]); if (rc != 0) { sfc_err(sa, "failed to enable MAE counter %u: %s", counters[0].mae_id.id, rte_strerror(rc)); goto fail_counter_add; } rc = efx_mae_action_set_fill_in_counter_id(action_set_spec, &counters[0].mae_id); if (rc != 0) { sfc_err(sa, "failed to fill in MAE counter %u in action set: %s", counters[0].mae_id.id, rte_strerror(rc)); goto fail_fill_in_id; } return 0; fail_fill_in_id: (void)sfc_mae_counter_disable(sa, &counters[0]); fail_counter_add: sfc_log_init(sa, "failed: %s", rte_strerror(rc)); return rc; } static int sfc_mae_counters_disable(struct sfc_adapter *sa, struct sfc_mae_counter_id *counters, unsigned int n_counters) { if (n_counters == 0) return 0; SFC_ASSERT(sfc_adapter_is_locked(sa)); SFC_ASSERT(n_counters == 1); if (counters[0].mae_id.id == EFX_MAE_RSRC_ID_INVALID) { sfc_err(sa, "failed to disable: already disabled"); return EALREADY; } return sfc_mae_counter_disable(sa, &counters[0]); } struct sfc_mae_aset_ctx { uint64_t *ft_group_hit_counter; struct sfc_mae_encap_header *encap_header; struct sfc_flow_tunnel *counter_ft; unsigned int n_counters; struct sfc_mae_mac_addr *dst_mac; struct sfc_mae_mac_addr *src_mac; efx_mae_actions_t *spec; }; static struct sfc_mae_action_set * sfc_mae_action_set_attach(struct sfc_adapter *sa, const struct sfc_mae_aset_ctx *ctx) { struct sfc_mae_action_set *action_set; struct sfc_mae *mae = &sa->mae; SFC_ASSERT(sfc_adapter_is_locked(sa)); /* * Shared counters are not supported, hence, action * sets with counters are not attachable. */ if (ctx->n_counters != 0) return NULL; TAILQ_FOREACH(action_set, &mae->action_sets, entries) { if (action_set->encap_header == ctx->encap_header && action_set->dst_mac_addr == ctx->dst_mac && action_set->src_mac_addr == ctx->src_mac && efx_mae_action_set_specs_equal(action_set->spec, ctx->spec)) { sfc_dbg(sa, "attaching to action_set=%p", action_set); ++(action_set->refcnt); return action_set; } } return NULL; } static int sfc_mae_action_set_add(struct sfc_adapter *sa, const struct rte_flow_action actions[], const struct sfc_mae_aset_ctx *ctx, struct sfc_mae_action_set **action_setp) { struct sfc_mae_action_set *action_set; struct sfc_mae *mae = &sa->mae; unsigned int i; SFC_ASSERT(sfc_adapter_is_locked(sa)); action_set = rte_zmalloc("sfc_mae_action_set", sizeof(*action_set), 0); if (action_set == NULL) { sfc_err(sa, "failed to alloc action set"); return ENOMEM; } if (ctx->n_counters > 0) { const struct rte_flow_action *action; action_set->counters = rte_malloc("sfc_mae_counter_ids", sizeof(action_set->counters[0]) * ctx->n_counters, 0); if (action_set->counters == NULL) { rte_free(action_set); sfc_err(sa, "failed to alloc counters"); return ENOMEM; } for (i = 0; i < ctx->n_counters; ++i) { action_set->counters[i].rte_id_valid = B_FALSE; action_set->counters[i].mae_id.id = EFX_MAE_RSRC_ID_INVALID; action_set->counters[i].ft_group_hit_counter = ctx->ft_group_hit_counter; action_set->counters[i].ft = ctx->counter_ft; } for (action = actions, i = 0; action->type != RTE_FLOW_ACTION_TYPE_END && i < ctx->n_counters; ++action) { const struct rte_flow_action_count *conf; if (action->type != RTE_FLOW_ACTION_TYPE_COUNT) continue; conf = action->conf; action_set->counters[i].rte_id_valid = B_TRUE; action_set->counters[i].rte_id = conf->id; i++; } action_set->n_counters = ctx->n_counters; } action_set->refcnt = 1; action_set->spec = ctx->spec; action_set->encap_header = ctx->encap_header; action_set->dst_mac_addr = ctx->dst_mac; action_set->src_mac_addr = ctx->src_mac; action_set->fw_rsrc.aset_id.id = EFX_MAE_RSRC_ID_INVALID; TAILQ_INSERT_TAIL(&mae->action_sets, action_set, entries); *action_setp = action_set; sfc_dbg(sa, "added action_set=%p", action_set); return 0; } static void sfc_mae_action_set_del(struct sfc_adapter *sa, struct sfc_mae_action_set *action_set) { struct sfc_mae *mae = &sa->mae; SFC_ASSERT(sfc_adapter_is_locked(sa)); SFC_ASSERT(action_set->refcnt != 0); --(action_set->refcnt); if (action_set->refcnt != 0) return; if (action_set->fw_rsrc.aset_id.id != EFX_MAE_RSRC_ID_INVALID || action_set->fw_rsrc.refcnt != 0) { sfc_err(sa, "deleting action_set=%p abandons its FW resource: AS_ID=0x%08x, refcnt=%u", action_set, action_set->fw_rsrc.aset_id.id, action_set->fw_rsrc.refcnt); } efx_mae_action_set_spec_fini(sa->nic, action_set->spec); sfc_mae_encap_header_del(sa, action_set->encap_header); sfc_mae_mac_addr_del(sa, action_set->dst_mac_addr); sfc_mae_mac_addr_del(sa, action_set->src_mac_addr); if (action_set->n_counters > 0) { SFC_ASSERT(action_set->n_counters == 1); SFC_ASSERT(action_set->counters[0].mae_id.id == EFX_MAE_RSRC_ID_INVALID); rte_free(action_set->counters); } TAILQ_REMOVE(&mae->action_sets, action_set, entries); rte_free(action_set); sfc_dbg(sa, "deleted action_set=%p", action_set); } static int sfc_mae_action_set_enable(struct sfc_adapter *sa, struct sfc_mae_action_set *action_set) { struct sfc_mae_encap_header *encap_header = action_set->encap_header; struct sfc_mae_mac_addr *dst_mac_addr = action_set->dst_mac_addr; struct sfc_mae_mac_addr *src_mac_addr = action_set->src_mac_addr; struct sfc_mae_counter_id *counters = action_set->counters; struct sfc_mae_fw_rsrc *fw_rsrc = &action_set->fw_rsrc; int rc; SFC_ASSERT(sfc_adapter_is_locked(sa)); if (fw_rsrc->refcnt == 0) { SFC_ASSERT(fw_rsrc->aset_id.id == EFX_MAE_RSRC_ID_INVALID); SFC_ASSERT(action_set->spec != NULL); rc = sfc_mae_mac_addr_enable(sa, dst_mac_addr, SFC_MAE_MAC_ADDR_DST, action_set->spec); if (rc != 0) return rc; rc = sfc_mae_mac_addr_enable(sa, src_mac_addr, SFC_MAE_MAC_ADDR_SRC, action_set->spec); if (rc != 0) { sfc_mae_mac_addr_disable(sa, dst_mac_addr); return rc; } rc = sfc_mae_encap_header_enable(sa, encap_header, action_set->spec); if (rc != 0) { sfc_mae_mac_addr_disable(sa, src_mac_addr); sfc_mae_mac_addr_disable(sa, dst_mac_addr); return rc; } rc = sfc_mae_counters_enable(sa, counters, action_set->n_counters, action_set->spec); if (rc != 0) { sfc_err(sa, "failed to enable %u MAE counters: %s", action_set->n_counters, rte_strerror(rc)); sfc_mae_encap_header_disable(sa, encap_header); sfc_mae_mac_addr_disable(sa, src_mac_addr); sfc_mae_mac_addr_disable(sa, dst_mac_addr); return rc; } rc = efx_mae_action_set_alloc(sa->nic, action_set->spec, &fw_rsrc->aset_id); if (rc != 0) { sfc_err(sa, "failed to enable action_set=%p: %s", action_set, strerror(rc)); (void)sfc_mae_counters_disable(sa, counters, action_set->n_counters); sfc_mae_encap_header_disable(sa, encap_header); sfc_mae_mac_addr_disable(sa, src_mac_addr); sfc_mae_mac_addr_disable(sa, dst_mac_addr); return rc; } sfc_dbg(sa, "enabled action_set=%p: AS_ID=0x%08x", action_set, fw_rsrc->aset_id.id); } ++(fw_rsrc->refcnt); return 0; } static void sfc_mae_action_set_disable(struct sfc_adapter *sa, struct sfc_mae_action_set *action_set) { struct sfc_mae_fw_rsrc *fw_rsrc = &action_set->fw_rsrc; int rc; SFC_ASSERT(sfc_adapter_is_locked(sa)); if (fw_rsrc->aset_id.id == EFX_MAE_RSRC_ID_INVALID || fw_rsrc->refcnt == 0) { sfc_err(sa, "failed to disable action_set=%p: already disabled; AS_ID=0x%08x, refcnt=%u", action_set, fw_rsrc->aset_id.id, fw_rsrc->refcnt); return; } if (fw_rsrc->refcnt == 1) { efx_mae_action_set_clear_fw_rsrc_ids(action_set->spec); rc = efx_mae_action_set_free(sa->nic, &fw_rsrc->aset_id); if (rc == 0) { sfc_dbg(sa, "disabled action_set=%p with AS_ID=0x%08x", action_set, fw_rsrc->aset_id.id); } else { sfc_err(sa, "failed to disable action_set=%p with AS_ID=0x%08x: %s", action_set, fw_rsrc->aset_id.id, strerror(rc)); } fw_rsrc->aset_id.id = EFX_MAE_RSRC_ID_INVALID; rc = sfc_mae_counters_disable(sa, action_set->counters, action_set->n_counters); if (rc != 0) { sfc_err(sa, "failed to disable %u MAE counters: %s", action_set->n_counters, rte_strerror(rc)); } sfc_mae_encap_header_disable(sa, action_set->encap_header); sfc_mae_mac_addr_disable(sa, action_set->src_mac_addr); sfc_mae_mac_addr_disable(sa, action_set->dst_mac_addr); } --(fw_rsrc->refcnt); } void sfc_mae_flow_cleanup(struct sfc_adapter *sa, struct rte_flow *flow) { struct sfc_flow_spec *spec; struct sfc_flow_spec_mae *spec_mae; if (flow == NULL) return; spec = &flow->spec; if (spec == NULL) return; spec_mae = &spec->mae; if (spec_mae->ft != NULL) { if (spec_mae->ft_rule_type == SFC_FT_RULE_JUMP) spec_mae->ft->jump_rule_is_set = B_FALSE; SFC_ASSERT(spec_mae->ft->refcnt != 0); --(spec_mae->ft->refcnt); } SFC_ASSERT(spec_mae->rule_id.id == EFX_MAE_RSRC_ID_INVALID); if (spec_mae->outer_rule != NULL) sfc_mae_outer_rule_del(sa, spec_mae->outer_rule); if (spec_mae->action_set != NULL) sfc_mae_action_set_del(sa, spec_mae->action_set); if (spec_mae->match_spec != NULL) efx_mae_match_spec_fini(sa->nic, spec_mae->match_spec); } static int sfc_mae_set_ethertypes(struct sfc_mae_parse_ctx *ctx) { struct sfc_mae_pattern_data *pdata = &ctx->pattern_data; const efx_mae_field_id_t *fremap = ctx->field_ids_remap; const efx_mae_field_id_t field_ids[] = { EFX_MAE_FIELD_VLAN0_PROTO_BE, EFX_MAE_FIELD_VLAN1_PROTO_BE, }; const struct sfc_mae_ethertype *et; unsigned int i; int rc; /* * In accordance with RTE flow API convention, the innermost L2 * item's "type" ("inner_type") is a L3 EtherType. If there is * no L3 item, it's 0x0000/0x0000. */ et = &pdata->ethertypes[pdata->nb_vlan_tags]; rc = efx_mae_match_spec_field_set(ctx->match_spec, fremap[EFX_MAE_FIELD_ETHER_TYPE_BE], sizeof(et->value), (const uint8_t *)&et->value, sizeof(et->mask), (const uint8_t *)&et->mask); if (rc != 0) return rc; /* * sfc_mae_rule_parse_item_vlan() has already made sure * that pdata->nb_vlan_tags does not exceed this figure. */ RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2); for (i = 0; i < pdata->nb_vlan_tags; ++i) { et = &pdata->ethertypes[i]; rc = efx_mae_match_spec_field_set(ctx->match_spec, fremap[field_ids[i]], sizeof(et->value), (const uint8_t *)&et->value, sizeof(et->mask), (const uint8_t *)&et->mask); if (rc != 0) return rc; } return 0; } static int sfc_mae_rule_process_pattern_data(struct sfc_mae_parse_ctx *ctx, struct rte_flow_error *error) { const efx_mae_field_id_t *fremap = ctx->field_ids_remap; struct sfc_mae_pattern_data *pdata = &ctx->pattern_data; struct sfc_mae_ethertype *ethertypes = pdata->ethertypes; const rte_be16_t supported_tpids[] = { /* VLAN standard TPID (always the first element) */ RTE_BE16(RTE_ETHER_TYPE_VLAN), /* Double-tagging TPIDs */ RTE_BE16(RTE_ETHER_TYPE_QINQ), RTE_BE16(RTE_ETHER_TYPE_QINQ1), RTE_BE16(RTE_ETHER_TYPE_QINQ2), RTE_BE16(RTE_ETHER_TYPE_QINQ3), }; bool enforce_tag_presence[SFC_MAE_MATCH_VLAN_MAX_NTAGS] = {0}; unsigned int nb_supported_tpids = RTE_DIM(supported_tpids); unsigned int ethertype_idx; const uint8_t *valuep; const uint8_t *maskp; int rc; if (pdata->innermost_ethertype_restriction.mask != 0 && pdata->nb_vlan_tags < SFC_MAE_MATCH_VLAN_MAX_NTAGS) { /* * If a single item VLAN is followed by a L3 item, value * of "type" in item ETH can't be a double-tagging TPID. */ nb_supported_tpids = 1; } /* * sfc_mae_rule_parse_item_vlan() has already made sure * that pdata->nb_vlan_tags does not exceed this figure. */ RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2); for (ethertype_idx = 0; ethertype_idx < pdata->nb_vlan_tags; ++ethertype_idx) { rte_be16_t tpid_v = ethertypes[ethertype_idx].value; rte_be16_t tpid_m = ethertypes[ethertype_idx].mask; unsigned int tpid_idx; /* * This loop can have only two iterations. On the second one, * drop outer tag presence enforcement bit because the inner * tag presence automatically assumes that for the outer tag. */ enforce_tag_presence[0] = B_FALSE; if (tpid_m == RTE_BE16(0)) { if (pdata->tci_masks[ethertype_idx] == RTE_BE16(0)) enforce_tag_presence[ethertype_idx] = B_TRUE; /* No match on this field, and no value check. */ nb_supported_tpids = 1; continue; } /* Exact match is supported only. */ if (tpid_m != RTE_BE16(0xffff)) { sfc_err(ctx->sa, "TPID mask must be 0x0 or 0xffff; got 0x%04x", rte_be_to_cpu_16(tpid_m)); rc = EINVAL; goto fail; } for (tpid_idx = pdata->nb_vlan_tags - ethertype_idx - 1; tpid_idx < nb_supported_tpids; ++tpid_idx) { if (tpid_v == supported_tpids[tpid_idx]) break; } if (tpid_idx == nb_supported_tpids) { sfc_err(ctx->sa, "TPID 0x%04x is unsupported", rte_be_to_cpu_16(tpid_v)); rc = EINVAL; goto fail; } nb_supported_tpids = 1; } if (pdata->innermost_ethertype_restriction.mask == RTE_BE16(0xffff)) { struct sfc_mae_ethertype *et = ðertypes[ethertype_idx]; rte_be16_t enforced_et; enforced_et = pdata->innermost_ethertype_restriction.value; if (et->mask == 0) { et->mask = RTE_BE16(0xffff); et->value = enforced_et; } else if (et->mask != RTE_BE16(0xffff) || et->value != enforced_et) { sfc_err(ctx->sa, "L3 EtherType must be 0x0/0x0 or 0x%04x/0xffff; got 0x%04x/0x%04x", rte_be_to_cpu_16(enforced_et), rte_be_to_cpu_16(et->value), rte_be_to_cpu_16(et->mask)); rc = EINVAL; goto fail; } } /* * Now, when the number of VLAN tags is known, set fields * ETHER_TYPE, VLAN0_PROTO and VLAN1_PROTO so that the first * one is either a valid L3 EtherType (or 0x0000/0x0000), * and the last two are valid TPIDs (or 0x0000/0x0000). */ rc = sfc_mae_set_ethertypes(ctx); if (rc != 0) goto fail; if (pdata->l3_next_proto_restriction_mask == 0xff) { if (pdata->l3_next_proto_mask == 0) { pdata->l3_next_proto_mask = 0xff; pdata->l3_next_proto_value = pdata->l3_next_proto_restriction_value; } else if (pdata->l3_next_proto_mask != 0xff || pdata->l3_next_proto_value != pdata->l3_next_proto_restriction_value) { sfc_err(ctx->sa, "L3 next protocol must be 0x0/0x0 or 0x%02x/0xff; got 0x%02x/0x%02x", pdata->l3_next_proto_restriction_value, pdata->l3_next_proto_value, pdata->l3_next_proto_mask); rc = EINVAL; goto fail; } } if (enforce_tag_presence[0] || pdata->has_ovlan_mask) { rc = efx_mae_match_spec_bit_set(ctx->match_spec, fremap[EFX_MAE_FIELD_HAS_OVLAN], enforce_tag_presence[0] || pdata->has_ovlan_value); if (rc != 0) goto fail; } if (enforce_tag_presence[1] || pdata->has_ivlan_mask) { rc = efx_mae_match_spec_bit_set(ctx->match_spec, fremap[EFX_MAE_FIELD_HAS_IVLAN], enforce_tag_presence[1] || pdata->has_ivlan_value); if (rc != 0) goto fail; } valuep = (const uint8_t *)&pdata->l3_next_proto_value; maskp = (const uint8_t *)&pdata->l3_next_proto_mask; rc = efx_mae_match_spec_field_set(ctx->match_spec, fremap[EFX_MAE_FIELD_IP_PROTO], sizeof(pdata->l3_next_proto_value), valuep, sizeof(pdata->l3_next_proto_mask), maskp); if (rc != 0) goto fail; return 0; fail: return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Failed to process pattern data"); } static int sfc_mae_rule_parse_item_mark(const struct rte_flow_item *item, struct sfc_flow_parse_ctx *ctx, struct rte_flow_error *error) { const struct rte_flow_item_mark *spec = item->spec; struct sfc_mae_parse_ctx *ctx_mae = ctx->mae; if (spec == NULL) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "NULL spec in item MARK"); } /* * This item is used in tunnel offload support only. * It must go before any network header items. This * way, sfc_mae_rule_preparse_item_mark() must have * already parsed it. Only one item MARK is allowed. */ if (ctx_mae->ft_rule_type != SFC_FT_RULE_GROUP || spec->id != (uint32_t)SFC_FT_ID_TO_MARK(ctx_mae->ft->id)) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "invalid item MARK"); } return 0; } static int sfc_mae_rule_parse_item_port_id(const struct rte_flow_item *item, struct sfc_flow_parse_ctx *ctx, struct rte_flow_error *error) { struct sfc_mae_parse_ctx *ctx_mae = ctx->mae; const struct rte_flow_item_port_id supp_mask = { .id = 0xffffffff, }; const void *def_mask = &rte_flow_item_port_id_mask; const struct rte_flow_item_port_id *spec = NULL; const struct rte_flow_item_port_id *mask = NULL; efx_mport_sel_t mport_sel; int rc; if (ctx_mae->match_mport_set) { return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "Can't handle multiple traffic source items"); } rc = sfc_flow_parse_init(item, (const void **)&spec, (const void **)&mask, (const void *)&supp_mask, def_mask, sizeof(struct rte_flow_item_port_id), error); if (rc != 0) return rc; if (mask->id != supp_mask.id) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Bad mask in the PORT_ID pattern item"); } /* If "spec" is not set, could be any port ID */ if (spec == NULL) return 0; if (spec->id > UINT16_MAX) { return rte_flow_error_set(error, EOVERFLOW, RTE_FLOW_ERROR_TYPE_ITEM, item, "The port ID is too large"); } rc = sfc_mae_switch_get_ethdev_mport(ctx_mae->sa->mae.switch_domain_id, spec->id, &mport_sel); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, item, "Can't get m-port for the given ethdev"); } rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_sel, NULL); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, item, "Failed to set MPORT for the port ID"); } ctx_mae->match_mport_set = B_TRUE; return 0; } static int sfc_mae_rule_parse_item_ethdev_based(const struct rte_flow_item *item, struct sfc_flow_parse_ctx *ctx, struct rte_flow_error *error) { struct sfc_mae_parse_ctx *ctx_mae = ctx->mae; const struct rte_flow_item_ethdev supp_mask = { .port_id = 0xffff, }; const void *def_mask = &rte_flow_item_ethdev_mask; const struct rte_flow_item_ethdev *spec = NULL; const struct rte_flow_item_ethdev *mask = NULL; efx_mport_sel_t mport_sel; int rc; if (ctx_mae->match_mport_set) { return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "Can't handle multiple traffic source items"); } rc = sfc_flow_parse_init(item, (const void **)&spec, (const void **)&mask, (const void *)&supp_mask, def_mask, sizeof(struct rte_flow_item_ethdev), error); if (rc != 0) return rc; if (mask->port_id != supp_mask.port_id) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Bad mask in the ethdev-based pattern item"); } /* If "spec" is not set, could be any port ID */ if (spec == NULL) return 0; switch (item->type) { case RTE_FLOW_ITEM_TYPE_PORT_REPRESENTOR: rc = sfc_mae_switch_get_ethdev_mport( ctx_mae->sa->mae.switch_domain_id, spec->port_id, &mport_sel); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, item, "Can't get m-port for the given ethdev"); } break; case RTE_FLOW_ITEM_TYPE_REPRESENTED_PORT: rc = sfc_mae_switch_get_entity_mport( ctx_mae->sa->mae.switch_domain_id, spec->port_id, &mport_sel); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, item, "Can't get m-port for the given ethdev"); } break; default: return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Unsupported ethdev-based flow item"); } rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_sel, NULL); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, item, "Failed to set MPORT for the port ID"); } ctx_mae->match_mport_set = B_TRUE; return 0; } static int sfc_mae_rule_parse_item_phy_port(const struct rte_flow_item *item, struct sfc_flow_parse_ctx *ctx, struct rte_flow_error *error) { struct sfc_mae_parse_ctx *ctx_mae = ctx->mae; const struct rte_flow_item_phy_port supp_mask = { .index = 0xffffffff, }; const void *def_mask = &rte_flow_item_phy_port_mask; const struct rte_flow_item_phy_port *spec = NULL; const struct rte_flow_item_phy_port *mask = NULL; efx_mport_sel_t mport_v; int rc; if (ctx_mae->match_mport_set) { return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "Can't handle multiple traffic source items"); } rc = sfc_flow_parse_init(item, (const void **)&spec, (const void **)&mask, (const void *)&supp_mask, def_mask, sizeof(struct rte_flow_item_phy_port), error); if (rc != 0) return rc; if (mask->index != supp_mask.index) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Bad mask in the PHY_PORT pattern item"); } /* If "spec" is not set, could be any physical port */ if (spec == NULL) return 0; rc = efx_mae_mport_by_phy_port(spec->index, &mport_v); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, item, "Failed to convert the PHY_PORT index"); } rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, item, "Failed to set MPORT for the PHY_PORT"); } ctx_mae->match_mport_set = B_TRUE; return 0; } static int sfc_mae_rule_parse_item_pf(const struct rte_flow_item *item, struct sfc_flow_parse_ctx *ctx, struct rte_flow_error *error) { struct sfc_mae_parse_ctx *ctx_mae = ctx->mae; const efx_nic_cfg_t *encp = efx_nic_cfg_get(ctx_mae->sa->nic); efx_mport_sel_t mport_v; int rc; if (ctx_mae->match_mport_set) { return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "Can't handle multiple traffic source items"); } rc = efx_mae_mport_by_pcie_function(encp->enc_pf, EFX_PCI_VF_INVALID, &mport_v); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, item, "Failed to convert the PF ID"); } rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, item, "Failed to set MPORT for the PF"); } ctx_mae->match_mport_set = B_TRUE; return 0; } static int sfc_mae_rule_parse_item_vf(const struct rte_flow_item *item, struct sfc_flow_parse_ctx *ctx, struct rte_flow_error *error) { struct sfc_mae_parse_ctx *ctx_mae = ctx->mae; const efx_nic_cfg_t *encp = efx_nic_cfg_get(ctx_mae->sa->nic); const struct rte_flow_item_vf supp_mask = { .id = 0xffffffff, }; const void *def_mask = &rte_flow_item_vf_mask; const struct rte_flow_item_vf *spec = NULL; const struct rte_flow_item_vf *mask = NULL; efx_mport_sel_t mport_v; int rc; if (ctx_mae->match_mport_set) { return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "Can't handle multiple traffic source items"); } rc = sfc_flow_parse_init(item, (const void **)&spec, (const void **)&mask, (const void *)&supp_mask, def_mask, sizeof(struct rte_flow_item_vf), error); if (rc != 0) return rc; if (mask->id != supp_mask.id) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Bad mask in the VF pattern item"); } /* * If "spec" is not set, the item requests any VF related to the * PF of the current DPDK port (but not the PF itself). * Reject this match criterion as unsupported. */ if (spec == NULL) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Bad spec in the VF pattern item"); } rc = efx_mae_mport_by_pcie_function(encp->enc_pf, spec->id, &mport_v); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, item, "Failed to convert the PF + VF IDs"); } rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, item, "Failed to set MPORT for the PF + VF"); } ctx_mae->match_mport_set = B_TRUE; return 0; } /* * Having this field ID in a field locator means that this * locator cannot be used to actually set the field at the * time when the corresponding item gets encountered. Such * fields get stashed in the parsing context instead. This * is required to resolve dependencies between the stashed * fields. See sfc_mae_rule_process_pattern_data(). */ #define SFC_MAE_FIELD_HANDLING_DEFERRED EFX_MAE_FIELD_NIDS struct sfc_mae_field_locator { efx_mae_field_id_t field_id; size_t size; /* Field offset in the corresponding rte_flow_item_ struct */ size_t ofst; }; static void sfc_mae_item_build_supp_mask(const struct sfc_mae_field_locator *field_locators, unsigned int nb_field_locators, void *mask_ptr, size_t mask_size) { unsigned int i; memset(mask_ptr, 0, mask_size); for (i = 0; i < nb_field_locators; ++i) { const struct sfc_mae_field_locator *fl = &field_locators[i]; SFC_ASSERT(fl->ofst + fl->size <= mask_size); memset(RTE_PTR_ADD(mask_ptr, fl->ofst), 0xff, fl->size); } } static int sfc_mae_parse_item(const struct sfc_mae_field_locator *field_locators, unsigned int nb_field_locators, const uint8_t *spec, const uint8_t *mask, struct sfc_mae_parse_ctx *ctx, struct rte_flow_error *error) { const efx_mae_field_id_t *fremap = ctx->field_ids_remap; unsigned int i; int rc = 0; for (i = 0; i < nb_field_locators; ++i) { const struct sfc_mae_field_locator *fl = &field_locators[i]; if (fl->field_id == SFC_MAE_FIELD_HANDLING_DEFERRED) continue; rc = efx_mae_match_spec_field_set(ctx->match_spec, fremap[fl->field_id], fl->size, spec + fl->ofst, fl->size, mask + fl->ofst); if (rc != 0) break; } if (rc != 0) { rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Failed to process item fields"); } return rc; } static const struct sfc_mae_field_locator flocs_eth[] = { { /* * This locator is used only for building supported fields mask. * The field is handled by sfc_mae_rule_process_pattern_data(). */ SFC_MAE_FIELD_HANDLING_DEFERRED, RTE_SIZEOF_FIELD(struct rte_flow_item_eth, type), offsetof(struct rte_flow_item_eth, type), }, { EFX_MAE_FIELD_ETH_DADDR_BE, RTE_SIZEOF_FIELD(struct rte_flow_item_eth, dst), offsetof(struct rte_flow_item_eth, dst), }, { EFX_MAE_FIELD_ETH_SADDR_BE, RTE_SIZEOF_FIELD(struct rte_flow_item_eth, src), offsetof(struct rte_flow_item_eth, src), }, }; static int sfc_mae_rule_parse_item_eth(const struct rte_flow_item *item, struct sfc_flow_parse_ctx *ctx, struct rte_flow_error *error) { struct sfc_mae_parse_ctx *ctx_mae = ctx->mae; struct rte_flow_item_eth override_mask; struct rte_flow_item_eth supp_mask; const uint8_t *spec = NULL; const uint8_t *mask = NULL; int rc; sfc_mae_item_build_supp_mask(flocs_eth, RTE_DIM(flocs_eth), &supp_mask, sizeof(supp_mask)); supp_mask.has_vlan = 1; rc = sfc_flow_parse_init(item, (const void **)&spec, (const void **)&mask, (const void *)&supp_mask, &rte_flow_item_eth_mask, sizeof(struct rte_flow_item_eth), error); if (rc != 0) return rc; if (ctx_mae->ft_rule_type == SFC_FT_RULE_JUMP && mask != NULL) { /* * The HW/FW hasn't got support for match on MAC addresses in * outer rules yet (this will change). Match on VLAN presence * isn't supported either. Ignore these match criteria. */ memcpy(&override_mask, mask, sizeof(override_mask)); memset(&override_mask.hdr.dst_addr, 0, sizeof(override_mask.hdr.dst_addr)); memset(&override_mask.hdr.src_addr, 0, sizeof(override_mask.hdr.src_addr)); override_mask.has_vlan = 0; mask = (const uint8_t *)&override_mask; } if (spec != NULL) { struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data; struct sfc_mae_ethertype *ethertypes = pdata->ethertypes; const struct rte_flow_item_eth *item_spec; const struct rte_flow_item_eth *item_mask; item_spec = (const struct rte_flow_item_eth *)spec; item_mask = (const struct rte_flow_item_eth *)mask; /* * Remember various match criteria in the parsing context. * sfc_mae_rule_process_pattern_data() will consider them * altogether when the rest of the items have been parsed. */ ethertypes[0].value = item_spec->type; ethertypes[0].mask = item_mask->type; if (item_mask->has_vlan) { pdata->has_ovlan_mask = B_TRUE; if (item_spec->has_vlan) pdata->has_ovlan_value = B_TRUE; } } else { /* * The specification is empty. The overall pattern * validity will be enforced at the end of parsing. * See sfc_mae_rule_process_pattern_data(). */ return 0; } return sfc_mae_parse_item(flocs_eth, RTE_DIM(flocs_eth), spec, mask, ctx_mae, error); } static const struct sfc_mae_field_locator flocs_vlan[] = { /* Outermost tag */ { EFX_MAE_FIELD_VLAN0_TCI_BE, RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, tci), offsetof(struct rte_flow_item_vlan, tci), }, { /* * This locator is used only for building supported fields mask. * The field is handled by sfc_mae_rule_process_pattern_data(). */ SFC_MAE_FIELD_HANDLING_DEFERRED, RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, inner_type), offsetof(struct rte_flow_item_vlan, inner_type), }, /* Innermost tag */ { EFX_MAE_FIELD_VLAN1_TCI_BE, RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, tci), offsetof(struct rte_flow_item_vlan, tci), }, { /* * This locator is used only for building supported fields mask. * The field is handled by sfc_mae_rule_process_pattern_data(). */ SFC_MAE_FIELD_HANDLING_DEFERRED, RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, inner_type), offsetof(struct rte_flow_item_vlan, inner_type), }, }; static int sfc_mae_rule_parse_item_vlan(const struct rte_flow_item *item, struct sfc_flow_parse_ctx *ctx, struct rte_flow_error *error) { struct sfc_mae_parse_ctx *ctx_mae = ctx->mae; struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data; boolean_t *has_vlan_mp_by_nb_tags[SFC_MAE_MATCH_VLAN_MAX_NTAGS] = { &pdata->has_ovlan_mask, &pdata->has_ivlan_mask, }; boolean_t *has_vlan_vp_by_nb_tags[SFC_MAE_MATCH_VLAN_MAX_NTAGS] = { &pdata->has_ovlan_value, &pdata->has_ivlan_value, }; boolean_t *cur_tag_presence_bit_mp; boolean_t *cur_tag_presence_bit_vp; const struct sfc_mae_field_locator *flocs; struct rte_flow_item_vlan supp_mask; const uint8_t *spec = NULL; const uint8_t *mask = NULL; unsigned int nb_flocs; int rc; RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2); if (pdata->nb_vlan_tags == SFC_MAE_MATCH_VLAN_MAX_NTAGS) { return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "Can't match that many VLAN tags"); } cur_tag_presence_bit_mp = has_vlan_mp_by_nb_tags[pdata->nb_vlan_tags]; cur_tag_presence_bit_vp = has_vlan_vp_by_nb_tags[pdata->nb_vlan_tags]; if (*cur_tag_presence_bit_mp == B_TRUE && *cur_tag_presence_bit_vp == B_FALSE) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "The previous item enforces no (more) VLAN, " "so the current item (VLAN) must not exist"); } nb_flocs = RTE_DIM(flocs_vlan) / SFC_MAE_MATCH_VLAN_MAX_NTAGS; flocs = flocs_vlan + pdata->nb_vlan_tags * nb_flocs; sfc_mae_item_build_supp_mask(flocs, nb_flocs, &supp_mask, sizeof(supp_mask)); /* * This only means that the field is supported by the driver and libefx. * Support on NIC level will be checked when all items have been parsed. */ supp_mask.has_more_vlan = 1; rc = sfc_flow_parse_init(item, (const void **)&spec, (const void **)&mask, (const void *)&supp_mask, &rte_flow_item_vlan_mask, sizeof(struct rte_flow_item_vlan), error); if (rc != 0) return rc; if (spec != NULL) { struct sfc_mae_ethertype *et = pdata->ethertypes; const struct rte_flow_item_vlan *item_spec; const struct rte_flow_item_vlan *item_mask; item_spec = (const struct rte_flow_item_vlan *)spec; item_mask = (const struct rte_flow_item_vlan *)mask; /* * Remember various match criteria in the parsing context. * sfc_mae_rule_process_pattern_data() will consider them * altogether when the rest of the items have been parsed. */ et[pdata->nb_vlan_tags + 1].value = item_spec->inner_type; et[pdata->nb_vlan_tags + 1].mask = item_mask->inner_type; pdata->tci_masks[pdata->nb_vlan_tags] = item_mask->tci; if (item_mask->has_more_vlan) { if (pdata->nb_vlan_tags == SFC_MAE_MATCH_VLAN_MAX_NTAGS) { return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "Can't use 'has_more_vlan' in " "the second item VLAN"); } pdata->has_ivlan_mask = B_TRUE; if (item_spec->has_more_vlan) pdata->has_ivlan_value = B_TRUE; } /* Convert TCI to MAE representation right now. */ rc = sfc_mae_parse_item(flocs, nb_flocs, spec, mask, ctx_mae, error); if (rc != 0) return rc; } ++(pdata->nb_vlan_tags); return 0; } static const struct sfc_mae_field_locator flocs_ipv4[] = { { EFX_MAE_FIELD_SRC_IP4_BE, RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.src_addr), offsetof(struct rte_flow_item_ipv4, hdr.src_addr), }, { EFX_MAE_FIELD_DST_IP4_BE, RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.dst_addr), offsetof(struct rte_flow_item_ipv4, hdr.dst_addr), }, { /* * This locator is used only for building supported fields mask. * The field is handled by sfc_mae_rule_process_pattern_data(). */ SFC_MAE_FIELD_HANDLING_DEFERRED, RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.next_proto_id), offsetof(struct rte_flow_item_ipv4, hdr.next_proto_id), }, { EFX_MAE_FIELD_IP_TOS, RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.type_of_service), offsetof(struct rte_flow_item_ipv4, hdr.type_of_service), }, { EFX_MAE_FIELD_IP_TTL, RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.time_to_live), offsetof(struct rte_flow_item_ipv4, hdr.time_to_live), }, }; static int sfc_mae_rule_parse_item_ipv4(const struct rte_flow_item *item, struct sfc_flow_parse_ctx *ctx, struct rte_flow_error *error) { rte_be16_t ethertype_ipv4_be = RTE_BE16(RTE_ETHER_TYPE_IPV4); struct sfc_mae_parse_ctx *ctx_mae = ctx->mae; struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data; struct rte_flow_item_ipv4 supp_mask; const uint8_t *spec = NULL; const uint8_t *mask = NULL; int rc; sfc_mae_item_build_supp_mask(flocs_ipv4, RTE_DIM(flocs_ipv4), &supp_mask, sizeof(supp_mask)); rc = sfc_flow_parse_init(item, (const void **)&spec, (const void **)&mask, (const void *)&supp_mask, &rte_flow_item_ipv4_mask, sizeof(struct rte_flow_item_ipv4), error); if (rc != 0) return rc; pdata->innermost_ethertype_restriction.value = ethertype_ipv4_be; pdata->innermost_ethertype_restriction.mask = RTE_BE16(0xffff); if (spec != NULL) { const struct rte_flow_item_ipv4 *item_spec; const struct rte_flow_item_ipv4 *item_mask; item_spec = (const struct rte_flow_item_ipv4 *)spec; item_mask = (const struct rte_flow_item_ipv4 *)mask; pdata->l3_next_proto_value = item_spec->hdr.next_proto_id; pdata->l3_next_proto_mask = item_mask->hdr.next_proto_id; } else { return 0; } return sfc_mae_parse_item(flocs_ipv4, RTE_DIM(flocs_ipv4), spec, mask, ctx_mae, error); } static const struct sfc_mae_field_locator flocs_ipv6[] = { { EFX_MAE_FIELD_SRC_IP6_BE, RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.src_addr), offsetof(struct rte_flow_item_ipv6, hdr.src_addr), }, { EFX_MAE_FIELD_DST_IP6_BE, RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.dst_addr), offsetof(struct rte_flow_item_ipv6, hdr.dst_addr), }, { /* * This locator is used only for building supported fields mask. * The field is handled by sfc_mae_rule_process_pattern_data(). */ SFC_MAE_FIELD_HANDLING_DEFERRED, RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.proto), offsetof(struct rte_flow_item_ipv6, hdr.proto), }, { EFX_MAE_FIELD_IP_TTL, RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.hop_limits), offsetof(struct rte_flow_item_ipv6, hdr.hop_limits), }, }; static int sfc_mae_rule_parse_item_ipv6(const struct rte_flow_item *item, struct sfc_flow_parse_ctx *ctx, struct rte_flow_error *error) { rte_be16_t ethertype_ipv6_be = RTE_BE16(RTE_ETHER_TYPE_IPV6); struct sfc_mae_parse_ctx *ctx_mae = ctx->mae; const efx_mae_field_id_t *fremap = ctx_mae->field_ids_remap; struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data; struct rte_flow_item_ipv6 supp_mask; const uint8_t *spec = NULL; const uint8_t *mask = NULL; rte_be32_t vtc_flow_be; uint32_t vtc_flow; uint8_t tc_value; uint8_t tc_mask; int rc; sfc_mae_item_build_supp_mask(flocs_ipv6, RTE_DIM(flocs_ipv6), &supp_mask, sizeof(supp_mask)); vtc_flow_be = RTE_BE32(RTE_IPV6_HDR_TC_MASK); memcpy(&supp_mask, &vtc_flow_be, sizeof(vtc_flow_be)); rc = sfc_flow_parse_init(item, (const void **)&spec, (const void **)&mask, (const void *)&supp_mask, &rte_flow_item_ipv6_mask, sizeof(struct rte_flow_item_ipv6), error); if (rc != 0) return rc; pdata->innermost_ethertype_restriction.value = ethertype_ipv6_be; pdata->innermost_ethertype_restriction.mask = RTE_BE16(0xffff); if (spec != NULL) { const struct rte_flow_item_ipv6 *item_spec; const struct rte_flow_item_ipv6 *item_mask; item_spec = (const struct rte_flow_item_ipv6 *)spec; item_mask = (const struct rte_flow_item_ipv6 *)mask; pdata->l3_next_proto_value = item_spec->hdr.proto; pdata->l3_next_proto_mask = item_mask->hdr.proto; } else { return 0; } rc = sfc_mae_parse_item(flocs_ipv6, RTE_DIM(flocs_ipv6), spec, mask, ctx_mae, error); if (rc != 0) return rc; memcpy(&vtc_flow_be, spec, sizeof(vtc_flow_be)); vtc_flow = rte_be_to_cpu_32(vtc_flow_be); tc_value = (vtc_flow & RTE_IPV6_HDR_TC_MASK) >> RTE_IPV6_HDR_TC_SHIFT; memcpy(&vtc_flow_be, mask, sizeof(vtc_flow_be)); vtc_flow = rte_be_to_cpu_32(vtc_flow_be); tc_mask = (vtc_flow & RTE_IPV6_HDR_TC_MASK) >> RTE_IPV6_HDR_TC_SHIFT; rc = efx_mae_match_spec_field_set(ctx_mae->match_spec, fremap[EFX_MAE_FIELD_IP_TOS], sizeof(tc_value), &tc_value, sizeof(tc_mask), &tc_mask); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Failed to process item fields"); } return 0; } static const struct sfc_mae_field_locator flocs_tcp[] = { { EFX_MAE_FIELD_L4_SPORT_BE, RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.src_port), offsetof(struct rte_flow_item_tcp, hdr.src_port), }, { EFX_MAE_FIELD_L4_DPORT_BE, RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.dst_port), offsetof(struct rte_flow_item_tcp, hdr.dst_port), }, { EFX_MAE_FIELD_TCP_FLAGS_BE, /* * The values have been picked intentionally since the * target MAE field is oversize (16 bit). This mapping * relies on the fact that the MAE field is big-endian. */ RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.data_off) + RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.tcp_flags), offsetof(struct rte_flow_item_tcp, hdr.data_off), }, }; static int sfc_mae_rule_parse_item_tcp(const struct rte_flow_item *item, struct sfc_flow_parse_ctx *ctx, struct rte_flow_error *error) { struct sfc_mae_parse_ctx *ctx_mae = ctx->mae; struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data; struct rte_flow_item_tcp supp_mask; const uint8_t *spec = NULL; const uint8_t *mask = NULL; int rc; /* * When encountered among outermost items, item TCP is invalid. * Check which match specification is being constructed now. */ if (ctx_mae->match_spec != ctx_mae->match_spec_action) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "TCP in outer frame is invalid"); } sfc_mae_item_build_supp_mask(flocs_tcp, RTE_DIM(flocs_tcp), &supp_mask, sizeof(supp_mask)); rc = sfc_flow_parse_init(item, (const void **)&spec, (const void **)&mask, (const void *)&supp_mask, &rte_flow_item_tcp_mask, sizeof(struct rte_flow_item_tcp), error); if (rc != 0) return rc; pdata->l3_next_proto_restriction_value = IPPROTO_TCP; pdata->l3_next_proto_restriction_mask = 0xff; if (spec == NULL) return 0; return sfc_mae_parse_item(flocs_tcp, RTE_DIM(flocs_tcp), spec, mask, ctx_mae, error); } static const struct sfc_mae_field_locator flocs_udp[] = { { EFX_MAE_FIELD_L4_SPORT_BE, RTE_SIZEOF_FIELD(struct rte_flow_item_udp, hdr.src_port), offsetof(struct rte_flow_item_udp, hdr.src_port), }, { EFX_MAE_FIELD_L4_DPORT_BE, RTE_SIZEOF_FIELD(struct rte_flow_item_udp, hdr.dst_port), offsetof(struct rte_flow_item_udp, hdr.dst_port), }, }; static int sfc_mae_rule_parse_item_udp(const struct rte_flow_item *item, struct sfc_flow_parse_ctx *ctx, struct rte_flow_error *error) { struct sfc_mae_parse_ctx *ctx_mae = ctx->mae; struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data; struct rte_flow_item_udp supp_mask; const uint8_t *spec = NULL; const uint8_t *mask = NULL; int rc; sfc_mae_item_build_supp_mask(flocs_udp, RTE_DIM(flocs_udp), &supp_mask, sizeof(supp_mask)); rc = sfc_flow_parse_init(item, (const void **)&spec, (const void **)&mask, (const void *)&supp_mask, &rte_flow_item_udp_mask, sizeof(struct rte_flow_item_udp), error); if (rc != 0) return rc; pdata->l3_next_proto_restriction_value = IPPROTO_UDP; pdata->l3_next_proto_restriction_mask = 0xff; if (spec == NULL) return 0; return sfc_mae_parse_item(flocs_udp, RTE_DIM(flocs_udp), spec, mask, ctx_mae, error); } static const struct sfc_mae_field_locator flocs_tunnel[] = { { /* * The size and offset values are relevant * for Geneve and NVGRE, too. */ .size = RTE_SIZEOF_FIELD(struct rte_flow_item_vxlan, vni), .ofst = offsetof(struct rte_flow_item_vxlan, vni), }, }; /* * An auxiliary registry which allows using non-encap. field IDs * directly when building a match specification of type ACTION. * * See sfc_mae_rule_parse_pattern() and sfc_mae_rule_parse_item_tunnel(). */ static const efx_mae_field_id_t field_ids_no_remap[] = { #define FIELD_ID_NO_REMAP(_field) \ [EFX_MAE_FIELD_##_field] = EFX_MAE_FIELD_##_field FIELD_ID_NO_REMAP(ETHER_TYPE_BE), FIELD_ID_NO_REMAP(ETH_SADDR_BE), FIELD_ID_NO_REMAP(ETH_DADDR_BE), FIELD_ID_NO_REMAP(VLAN0_TCI_BE), FIELD_ID_NO_REMAP(VLAN0_PROTO_BE), FIELD_ID_NO_REMAP(VLAN1_TCI_BE), FIELD_ID_NO_REMAP(VLAN1_PROTO_BE), FIELD_ID_NO_REMAP(SRC_IP4_BE), FIELD_ID_NO_REMAP(DST_IP4_BE), FIELD_ID_NO_REMAP(IP_PROTO), FIELD_ID_NO_REMAP(IP_TOS), FIELD_ID_NO_REMAP(IP_TTL), FIELD_ID_NO_REMAP(SRC_IP6_BE), FIELD_ID_NO_REMAP(DST_IP6_BE), FIELD_ID_NO_REMAP(L4_SPORT_BE), FIELD_ID_NO_REMAP(L4_DPORT_BE), FIELD_ID_NO_REMAP(TCP_FLAGS_BE), FIELD_ID_NO_REMAP(HAS_OVLAN), FIELD_ID_NO_REMAP(HAS_IVLAN), #undef FIELD_ID_NO_REMAP }; /* * An auxiliary registry which allows using "ENC" field IDs * when building a match specification of type OUTER. * * See sfc_mae_rule_encap_parse_init(). */ static const efx_mae_field_id_t field_ids_remap_to_encap[] = { #define FIELD_ID_REMAP_TO_ENCAP(_field) \ [EFX_MAE_FIELD_##_field] = EFX_MAE_FIELD_ENC_##_field FIELD_ID_REMAP_TO_ENCAP(ETHER_TYPE_BE), FIELD_ID_REMAP_TO_ENCAP(ETH_SADDR_BE), FIELD_ID_REMAP_TO_ENCAP(ETH_DADDR_BE), FIELD_ID_REMAP_TO_ENCAP(VLAN0_TCI_BE), FIELD_ID_REMAP_TO_ENCAP(VLAN0_PROTO_BE), FIELD_ID_REMAP_TO_ENCAP(VLAN1_TCI_BE), FIELD_ID_REMAP_TO_ENCAP(VLAN1_PROTO_BE), FIELD_ID_REMAP_TO_ENCAP(SRC_IP4_BE), FIELD_ID_REMAP_TO_ENCAP(DST_IP4_BE), FIELD_ID_REMAP_TO_ENCAP(IP_PROTO), FIELD_ID_REMAP_TO_ENCAP(IP_TOS), FIELD_ID_REMAP_TO_ENCAP(IP_TTL), FIELD_ID_REMAP_TO_ENCAP(SRC_IP6_BE), FIELD_ID_REMAP_TO_ENCAP(DST_IP6_BE), FIELD_ID_REMAP_TO_ENCAP(L4_SPORT_BE), FIELD_ID_REMAP_TO_ENCAP(L4_DPORT_BE), FIELD_ID_REMAP_TO_ENCAP(HAS_OVLAN), FIELD_ID_REMAP_TO_ENCAP(HAS_IVLAN), #undef FIELD_ID_REMAP_TO_ENCAP }; static int sfc_mae_rule_parse_item_tunnel(const struct rte_flow_item *item, struct sfc_flow_parse_ctx *ctx, struct rte_flow_error *error) { struct sfc_mae_parse_ctx *ctx_mae = ctx->mae; uint8_t vnet_id_v[sizeof(uint32_t)] = {0}; uint8_t vnet_id_m[sizeof(uint32_t)] = {0}; const struct rte_flow_item_vxlan *vxp; uint8_t supp_mask[sizeof(uint64_t)]; const uint8_t *spec = NULL; const uint8_t *mask = NULL; int rc; if (ctx_mae->ft_rule_type == SFC_FT_RULE_GROUP) { /* * As a workaround, pattern processing has started from * this (tunnel) item. No pattern data to process yet. */ } else { /* * We're about to start processing inner frame items. * Process pattern data that has been deferred so far * and reset pattern data storage. */ rc = sfc_mae_rule_process_pattern_data(ctx_mae, error); if (rc != 0) return rc; } memset(&ctx_mae->pattern_data, 0, sizeof(ctx_mae->pattern_data)); sfc_mae_item_build_supp_mask(flocs_tunnel, RTE_DIM(flocs_tunnel), &supp_mask, sizeof(supp_mask)); /* * This tunnel item was preliminarily detected by * sfc_mae_rule_encap_parse_init(). Default mask * was also picked by that helper. Use it here. */ rc = sfc_flow_parse_init(item, (const void **)&spec, (const void **)&mask, (const void *)&supp_mask, ctx_mae->tunnel_def_mask, ctx_mae->tunnel_def_mask_size, error); if (rc != 0) return rc; /* * This item and later ones comprise a * match specification of type ACTION. */ ctx_mae->match_spec = ctx_mae->match_spec_action; /* This item and later ones use non-encap. EFX MAE field IDs. */ ctx_mae->field_ids_remap = field_ids_no_remap; if (spec == NULL) return 0; /* * Field EFX_MAE_FIELD_ENC_VNET_ID_BE is a 32-bit one. * Copy 24-bit VNI, which is BE, at offset 1 in it. * The extra byte is 0 both in the mask and in the value. */ vxp = (const struct rte_flow_item_vxlan *)spec; memcpy(vnet_id_v + 1, &vxp->vni, sizeof(vxp->vni)); vxp = (const struct rte_flow_item_vxlan *)mask; memcpy(vnet_id_m + 1, &vxp->vni, sizeof(vxp->vni)); rc = efx_mae_match_spec_field_set(ctx_mae->match_spec, EFX_MAE_FIELD_ENC_VNET_ID_BE, sizeof(vnet_id_v), vnet_id_v, sizeof(vnet_id_m), vnet_id_m); if (rc != 0) { rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, item, "Failed to set VXLAN VNI"); } return rc; } static const struct sfc_flow_item sfc_flow_items[] = { { .type = RTE_FLOW_ITEM_TYPE_MARK, .name = "MARK", .prev_layer = SFC_FLOW_ITEM_ANY_LAYER, .layer = SFC_FLOW_ITEM_ANY_LAYER, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_mark, }, { .type = RTE_FLOW_ITEM_TYPE_PORT_ID, .name = "PORT_ID", /* * In terms of RTE flow, this item is a META one, * and its position in the pattern is don't care. */ .prev_layer = SFC_FLOW_ITEM_ANY_LAYER, .layer = SFC_FLOW_ITEM_ANY_LAYER, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_port_id, }, { .type = RTE_FLOW_ITEM_TYPE_PORT_REPRESENTOR, .name = "PORT_REPRESENTOR", /* * In terms of RTE flow, this item is a META one, * and its position in the pattern is don't care. */ .prev_layer = SFC_FLOW_ITEM_ANY_LAYER, .layer = SFC_FLOW_ITEM_ANY_LAYER, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_ethdev_based, }, { .type = RTE_FLOW_ITEM_TYPE_REPRESENTED_PORT, .name = "REPRESENTED_PORT", /* * In terms of RTE flow, this item is a META one, * and its position in the pattern is don't care. */ .prev_layer = SFC_FLOW_ITEM_ANY_LAYER, .layer = SFC_FLOW_ITEM_ANY_LAYER, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_ethdev_based, }, { .type = RTE_FLOW_ITEM_TYPE_PHY_PORT, .name = "PHY_PORT", /* * In terms of RTE flow, this item is a META one, * and its position in the pattern is don't care. */ .prev_layer = SFC_FLOW_ITEM_ANY_LAYER, .layer = SFC_FLOW_ITEM_ANY_LAYER, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_phy_port, }, { .type = RTE_FLOW_ITEM_TYPE_PF, .name = "PF", /* * In terms of RTE flow, this item is a META one, * and its position in the pattern is don't care. */ .prev_layer = SFC_FLOW_ITEM_ANY_LAYER, .layer = SFC_FLOW_ITEM_ANY_LAYER, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_pf, }, { .type = RTE_FLOW_ITEM_TYPE_VF, .name = "VF", /* * In terms of RTE flow, this item is a META one, * and its position in the pattern is don't care. */ .prev_layer = SFC_FLOW_ITEM_ANY_LAYER, .layer = SFC_FLOW_ITEM_ANY_LAYER, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_vf, }, { .type = RTE_FLOW_ITEM_TYPE_ETH, .name = "ETH", .prev_layer = SFC_FLOW_ITEM_START_LAYER, .layer = SFC_FLOW_ITEM_L2, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_eth, }, { .type = RTE_FLOW_ITEM_TYPE_VLAN, .name = "VLAN", .prev_layer = SFC_FLOW_ITEM_L2, .layer = SFC_FLOW_ITEM_L2, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_vlan, }, { .type = RTE_FLOW_ITEM_TYPE_IPV4, .name = "IPV4", .prev_layer = SFC_FLOW_ITEM_L2, .layer = SFC_FLOW_ITEM_L3, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_ipv4, }, { .type = RTE_FLOW_ITEM_TYPE_IPV6, .name = "IPV6", .prev_layer = SFC_FLOW_ITEM_L2, .layer = SFC_FLOW_ITEM_L3, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_ipv6, }, { .type = RTE_FLOW_ITEM_TYPE_TCP, .name = "TCP", .prev_layer = SFC_FLOW_ITEM_L3, .layer = SFC_FLOW_ITEM_L4, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_tcp, }, { .type = RTE_FLOW_ITEM_TYPE_UDP, .name = "UDP", .prev_layer = SFC_FLOW_ITEM_L3, .layer = SFC_FLOW_ITEM_L4, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_udp, }, { .type = RTE_FLOW_ITEM_TYPE_VXLAN, .name = "VXLAN", .prev_layer = SFC_FLOW_ITEM_L4, .layer = SFC_FLOW_ITEM_START_LAYER, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_tunnel, }, { .type = RTE_FLOW_ITEM_TYPE_GENEVE, .name = "GENEVE", .prev_layer = SFC_FLOW_ITEM_L4, .layer = SFC_FLOW_ITEM_START_LAYER, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_tunnel, }, { .type = RTE_FLOW_ITEM_TYPE_NVGRE, .name = "NVGRE", .prev_layer = SFC_FLOW_ITEM_L3, .layer = SFC_FLOW_ITEM_START_LAYER, .ctx_type = SFC_FLOW_PARSE_CTX_MAE, .parse = sfc_mae_rule_parse_item_tunnel, }, }; static int sfc_mae_rule_process_outer(struct sfc_adapter *sa, struct sfc_mae_parse_ctx *ctx, struct sfc_mae_outer_rule **rulep, struct rte_flow_error *error) { efx_mae_rule_id_t invalid_rule_id = { .id = EFX_MAE_RSRC_ID_INVALID }; int rc; if (ctx->encap_type == EFX_TUNNEL_PROTOCOL_NONE) { *rulep = NULL; goto no_or_id; } SFC_ASSERT(ctx->match_spec_outer != NULL); if (!efx_mae_match_spec_is_valid(sa->nic, ctx->match_spec_outer)) { return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Inconsistent pattern (outer)"); } *rulep = sfc_mae_outer_rule_attach(sa, ctx->match_spec_outer, ctx->encap_type); if (*rulep != NULL) { efx_mae_match_spec_fini(sa->nic, ctx->match_spec_outer); } else { rc = sfc_mae_outer_rule_add(sa, ctx->match_spec_outer, ctx->encap_type, rulep); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Failed to process the pattern"); } } /* The spec has now been tracked by the outer rule entry. */ ctx->match_spec_outer = NULL; no_or_id: switch (ctx->ft_rule_type) { case SFC_FT_RULE_NONE: break; case SFC_FT_RULE_JUMP: /* No action rule */ return 0; case SFC_FT_RULE_GROUP: /* * Match on recirculation ID rather than * on the outer rule allocation handle. */ rc = efx_mae_match_spec_recirc_id_set(ctx->match_spec_action, SFC_FT_ID_TO_TUNNEL_MARK(ctx->ft->id)); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "tunnel offload: GROUP: AR: failed to request match on RECIRC_ID"); } return 0; default: SFC_ASSERT(B_FALSE); } /* * In MAE, lookup sequence comprises outer parse, outer rule lookup, * inner parse (when some outer rule is hit) and action rule lookup. * If the currently processed flow does not come with an outer rule, * its action rule must be available only for packets which miss in * outer rule table. Set OR_ID match field to 0xffffffff/0xffffffff * in the action rule specification; this ensures correct behaviour. * * If, on the other hand, this flow does have an outer rule, its ID * may be unknown at the moment (not yet allocated), but OR_ID mask * has to be set to 0xffffffff anyway for correct class comparisons. * When the outer rule has been allocated, this match field will be * overridden by sfc_mae_outer_rule_enable() to use the right value. */ rc = efx_mae_match_spec_outer_rule_id_set(ctx->match_spec_action, &invalid_rule_id); if (rc != 0) { if (*rulep != NULL) sfc_mae_outer_rule_del(sa, *rulep); *rulep = NULL; return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Failed to process the pattern"); } return 0; } static int sfc_mae_rule_preparse_item_mark(const struct rte_flow_item_mark *spec, struct sfc_mae_parse_ctx *ctx) { struct sfc_flow_tunnel *ft; uint32_t user_mark; if (spec == NULL) { sfc_err(ctx->sa, "tunnel offload: GROUP: NULL spec in item MARK"); return EINVAL; } ft = sfc_flow_tunnel_pick(ctx->sa, spec->id); if (ft == NULL) { sfc_err(ctx->sa, "tunnel offload: GROUP: invalid tunnel"); return EINVAL; } if (ft->refcnt == 0) { sfc_err(ctx->sa, "tunnel offload: GROUP: tunnel=%u does not exist", ft->id); return ENOENT; } user_mark = SFC_FT_GET_USER_MARK(spec->id); if (user_mark != 0) { sfc_err(ctx->sa, "tunnel offload: GROUP: invalid item MARK"); return EINVAL; } sfc_dbg(ctx->sa, "tunnel offload: GROUP: detected"); ctx->ft_rule_type = SFC_FT_RULE_GROUP; ctx->ft = ft; return 0; } static int sfc_mae_rule_encap_parse_init(struct sfc_adapter *sa, struct sfc_mae_parse_ctx *ctx, struct rte_flow_error *error) { const struct rte_flow_item *pattern = ctx->pattern; struct sfc_mae *mae = &sa->mae; uint8_t recirc_id = 0; int rc; if (pattern == NULL) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, "NULL pattern"); return -rte_errno; } for (;;) { switch (pattern->type) { case RTE_FLOW_ITEM_TYPE_MARK: rc = sfc_mae_rule_preparse_item_mark(pattern->spec, ctx); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, pattern, "tunnel offload: GROUP: invalid item MARK"); } ++pattern; continue; case RTE_FLOW_ITEM_TYPE_VXLAN: ctx->encap_type = EFX_TUNNEL_PROTOCOL_VXLAN; ctx->tunnel_def_mask = &rte_flow_item_vxlan_mask; ctx->tunnel_def_mask_size = sizeof(rte_flow_item_vxlan_mask); break; case RTE_FLOW_ITEM_TYPE_GENEVE: ctx->encap_type = EFX_TUNNEL_PROTOCOL_GENEVE; ctx->tunnel_def_mask = &rte_flow_item_geneve_mask; ctx->tunnel_def_mask_size = sizeof(rte_flow_item_geneve_mask); break; case RTE_FLOW_ITEM_TYPE_NVGRE: ctx->encap_type = EFX_TUNNEL_PROTOCOL_NVGRE; ctx->tunnel_def_mask = &rte_flow_item_nvgre_mask; ctx->tunnel_def_mask_size = sizeof(rte_flow_item_nvgre_mask); break; case RTE_FLOW_ITEM_TYPE_END: break; default: ++pattern; continue; }; break; } switch (ctx->ft_rule_type) { case SFC_FT_RULE_NONE: if (pattern->type == RTE_FLOW_ITEM_TYPE_END) return 0; break; case SFC_FT_RULE_JUMP: if (pattern->type != RTE_FLOW_ITEM_TYPE_END) { return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, pattern, "tunnel offload: JUMP: invalid item"); } ctx->encap_type = ctx->ft->encap_type; break; case SFC_FT_RULE_GROUP: if (pattern->type == RTE_FLOW_ITEM_TYPE_END) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "tunnel offload: GROUP: missing tunnel item"); } else if (ctx->encap_type != ctx->ft->encap_type) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, pattern, "tunnel offload: GROUP: tunnel type mismatch"); } /* * The HW/FW hasn't got support for the use of "ENC" fields in * action rules (except the VNET_ID one) yet. As a workaround, * start parsing the pattern from the tunnel item. */ ctx->pattern = pattern; break; default: SFC_ASSERT(B_FALSE); break; } if ((mae->encap_types_supported & (1U << ctx->encap_type)) == 0) { return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "OR: unsupported tunnel type"); } switch (ctx->ft_rule_type) { case SFC_FT_RULE_JUMP: recirc_id = SFC_FT_ID_TO_TUNNEL_MARK(ctx->ft->id); /* FALLTHROUGH */ case SFC_FT_RULE_NONE: if (ctx->priority >= mae->nb_outer_rule_prios_max) { return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, NULL, "OR: unsupported priority level"); } rc = efx_mae_match_spec_init(sa->nic, EFX_MAE_RULE_OUTER, ctx->priority, &ctx->match_spec_outer); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "OR: failed to initialise the match specification"); } /* * Outermost items comprise a match * specification of type OUTER. */ ctx->match_spec = ctx->match_spec_outer; /* Outermost items use "ENC" EFX MAE field IDs. */ ctx->field_ids_remap = field_ids_remap_to_encap; rc = efx_mae_outer_rule_recirc_id_set(ctx->match_spec, recirc_id); if (rc != 0) { return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "OR: failed to initialise RECIRC_ID"); } break; case SFC_FT_RULE_GROUP: /* Outermost items -> "ENC" match fields in the action rule. */ ctx->field_ids_remap = field_ids_remap_to_encap; ctx->match_spec = ctx->match_spec_action; /* No own outer rule; match on JUMP OR's RECIRC_ID is used. */ ctx->encap_type = EFX_TUNNEL_PROTOCOL_NONE; break; default: SFC_ASSERT(B_FALSE); break; } return 0; } static void sfc_mae_rule_encap_parse_fini(struct sfc_adapter *sa, struct sfc_mae_parse_ctx *ctx) { if (ctx->encap_type == EFX_TUNNEL_PROTOCOL_NONE) return; if (ctx->match_spec_outer != NULL) efx_mae_match_spec_fini(sa->nic, ctx->match_spec_outer); } int sfc_mae_rule_parse_pattern(struct sfc_adapter *sa, const struct rte_flow_item pattern[], struct sfc_flow_spec_mae *spec, struct rte_flow_error *error) { struct sfc_mae_parse_ctx ctx_mae; unsigned int priority_shift = 0; struct sfc_flow_parse_ctx ctx; int rc; memset(&ctx_mae, 0, sizeof(ctx_mae)); ctx_mae.ft_rule_type = spec->ft_rule_type; ctx_mae.priority = spec->priority; ctx_mae.ft = spec->ft; ctx_mae.sa = sa; switch (ctx_mae.ft_rule_type) { case SFC_FT_RULE_JUMP: /* * By design, this flow should be represented solely by the * outer rule. But the HW/FW hasn't got support for setting * Rx mark from RECIRC_ID on outer rule lookup yet. Neither * does it support outer rule counters. As a workaround, an * action rule of lower priority is used to do the job. */ priority_shift = 1; /* FALLTHROUGH */ case SFC_FT_RULE_GROUP: if (ctx_mae.priority != 0) { /* * Because of the above workaround, deny the * use of priorities to JUMP and GROUP rules. */ rc = rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, NULL, "tunnel offload: priorities are not supported"); goto fail_priority_check; } /* FALLTHROUGH */ case SFC_FT_RULE_NONE: rc = efx_mae_match_spec_init(sa->nic, EFX_MAE_RULE_ACTION, spec->priority + priority_shift, &ctx_mae.match_spec_action); if (rc != 0) { rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "AR: failed to initialise the match specification"); goto fail_init_match_spec_action; } break; default: SFC_ASSERT(B_FALSE); break; } /* * As a preliminary setting, assume that there is no encapsulation * in the pattern. That is, pattern items are about to comprise a * match specification of type ACTION and use non-encap. field IDs. * * sfc_mae_rule_encap_parse_init() below may override this. */ ctx_mae.encap_type = EFX_TUNNEL_PROTOCOL_NONE; ctx_mae.match_spec = ctx_mae.match_spec_action; ctx_mae.field_ids_remap = field_ids_no_remap; ctx_mae.pattern = pattern; ctx.type = SFC_FLOW_PARSE_CTX_MAE; ctx.mae = &ctx_mae; rc = sfc_mae_rule_encap_parse_init(sa, &ctx_mae, error); if (rc != 0) goto fail_encap_parse_init; /* * sfc_mae_rule_encap_parse_init() may have detected tunnel offload * GROUP rule. Remember its properties for later use. */ spec->ft_rule_type = ctx_mae.ft_rule_type; spec->ft = ctx_mae.ft; rc = sfc_flow_parse_pattern(sa, sfc_flow_items, RTE_DIM(sfc_flow_items), ctx_mae.pattern, &ctx, error); if (rc != 0) goto fail_parse_pattern; rc = sfc_mae_rule_process_pattern_data(&ctx_mae, error); if (rc != 0) goto fail_process_pattern_data; rc = sfc_mae_rule_process_outer(sa, &ctx_mae, &spec->outer_rule, error); if (rc != 0) goto fail_process_outer; if (ctx_mae.match_spec_action != NULL && !efx_mae_match_spec_is_valid(sa->nic, ctx_mae.match_spec_action)) { rc = rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Inconsistent pattern"); goto fail_validate_match_spec_action; } spec->match_spec = ctx_mae.match_spec_action; return 0; fail_validate_match_spec_action: fail_process_outer: fail_process_pattern_data: fail_parse_pattern: sfc_mae_rule_encap_parse_fini(sa, &ctx_mae); fail_encap_parse_init: if (ctx_mae.match_spec_action != NULL) efx_mae_match_spec_fini(sa->nic, ctx_mae.match_spec_action); fail_init_match_spec_action: fail_priority_check: return rc; } static int sfc_mae_rule_parse_action_set_mac(struct sfc_adapter *sa, enum sfc_mae_mac_addr_type type, const struct rte_flow_action_set_mac *conf, struct sfc_mae_aset_ctx *ctx, struct rte_flow_error *error) { struct sfc_mae_mac_addr **mac_addrp; int rc; if (conf == NULL) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, "the MAC address entry definition is NULL"); } switch (type) { case SFC_MAE_MAC_ADDR_DST: rc = efx_mae_action_set_populate_set_dst_mac(ctx->spec); mac_addrp = &ctx->dst_mac; break; case SFC_MAE_MAC_ADDR_SRC: rc = efx_mae_action_set_populate_set_src_mac(ctx->spec); mac_addrp = &ctx->src_mac; break; default: rc = EINVAL; break; } if (rc != 0) goto error; *mac_addrp = sfc_mae_mac_addr_attach(sa, conf->mac_addr); if (*mac_addrp != NULL) return 0; rc = sfc_mae_mac_addr_add(sa, conf->mac_addr, mac_addrp); if (rc != 0) goto error; return 0; error: return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ACTION, NULL, "failed to request set MAC action"); } /* * An action supported by MAE may correspond to a bundle of RTE flow actions, * in example, VLAN_PUSH = OF_PUSH_VLAN + OF_VLAN_SET_VID + OF_VLAN_SET_PCP. * That is, related RTE flow actions need to be tracked as parts of a whole * so that they can be combined into a single action and submitted to MAE * representation of a given rule's action set. * * Each RTE flow action provided by an application gets classified as * one belonging to some bundle type. If an action is not supposed to * belong to any bundle, or if this action is END, it is described as * one belonging to a dummy bundle of type EMPTY. * * A currently tracked bundle will be submitted if a repeating * action or an action of different bundle type follows. */ enum sfc_mae_actions_bundle_type { SFC_MAE_ACTIONS_BUNDLE_EMPTY = 0, SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH, }; struct sfc_mae_actions_bundle { enum sfc_mae_actions_bundle_type type; /* Indicates actions already tracked by the current bundle */ uint64_t actions_mask; /* Parameters used by SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH */ rte_be16_t vlan_push_tpid; rte_be16_t vlan_push_tci; }; /* * Combine configuration of RTE flow actions tracked by the bundle into a * single action and submit the result to MAE action set specification. * Do nothing in the case of dummy action bundle. */ static int sfc_mae_actions_bundle_submit(const struct sfc_mae_actions_bundle *bundle, efx_mae_actions_t *spec) { int rc = 0; switch (bundle->type) { case SFC_MAE_ACTIONS_BUNDLE_EMPTY: break; case SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH: rc = efx_mae_action_set_populate_vlan_push( spec, bundle->vlan_push_tpid, bundle->vlan_push_tci); break; default: SFC_ASSERT(B_FALSE); break; } return rc; } /* * Given the type of the next RTE flow action in the line, decide * whether a new bundle is about to start, and, if this is the case, * submit and reset the current bundle. */ static int sfc_mae_actions_bundle_sync(const struct rte_flow_action *action, struct sfc_mae_actions_bundle *bundle, efx_mae_actions_t *spec, struct rte_flow_error *error) { enum sfc_mae_actions_bundle_type bundle_type_new; int rc; switch (action->type) { case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP: bundle_type_new = SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH; break; default: /* * Self-sufficient actions, including END, are handled in this * case. No checks for unsupported actions are needed here * because parsing doesn't occur at this point. */ bundle_type_new = SFC_MAE_ACTIONS_BUNDLE_EMPTY; break; } if (bundle_type_new != bundle->type || (bundle->actions_mask & (1ULL << action->type)) != 0) { rc = sfc_mae_actions_bundle_submit(bundle, spec); if (rc != 0) goto fail_submit; memset(bundle, 0, sizeof(*bundle)); } bundle->type = bundle_type_new; return 0; fail_submit: return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ACTION, NULL, "Failed to request the (group of) action(s)"); } static void sfc_mae_rule_parse_action_of_push_vlan( const struct rte_flow_action_of_push_vlan *conf, struct sfc_mae_actions_bundle *bundle) { bundle->vlan_push_tpid = conf->ethertype; } static void sfc_mae_rule_parse_action_of_set_vlan_vid( const struct rte_flow_action_of_set_vlan_vid *conf, struct sfc_mae_actions_bundle *bundle) { bundle->vlan_push_tci |= (conf->vlan_vid & rte_cpu_to_be_16(RTE_LEN2MASK(12, uint16_t))); } static void sfc_mae_rule_parse_action_of_set_vlan_pcp( const struct rte_flow_action_of_set_vlan_pcp *conf, struct sfc_mae_actions_bundle *bundle) { uint16_t vlan_tci_pcp = (uint16_t)(conf->vlan_pcp & RTE_LEN2MASK(3, uint8_t)) << 13; bundle->vlan_push_tci |= rte_cpu_to_be_16(vlan_tci_pcp); } struct sfc_mae_parsed_item { const struct rte_flow_item *item; size_t proto_header_ofst; size_t proto_header_size; }; /* * For each 16-bit word of the given header, override * bits enforced by the corresponding 16-bit mask. */ static void sfc_mae_header_force_item_masks(uint8_t *header_buf, const struct sfc_mae_parsed_item *parsed_items, unsigned int nb_parsed_items) { unsigned int item_idx; for (item_idx = 0; item_idx < nb_parsed_items; ++item_idx) { const struct sfc_mae_parsed_item *parsed_item; const struct rte_flow_item *item; size_t proto_header_size; size_t ofst; parsed_item = &parsed_items[item_idx]; proto_header_size = parsed_item->proto_header_size; item = parsed_item->item; for (ofst = 0; ofst < proto_header_size; ofst += sizeof(rte_be16_t)) { rte_be16_t *wp = RTE_PTR_ADD(header_buf, ofst); const rte_be16_t *w_maskp; const rte_be16_t *w_specp; w_maskp = RTE_PTR_ADD(item->mask, ofst); w_specp = RTE_PTR_ADD(item->spec, ofst); *wp &= ~(*w_maskp); *wp |= (*w_specp & *w_maskp); } header_buf += proto_header_size; } } #define SFC_IPV4_TTL_DEF 0x40 #define SFC_IPV6_VTC_FLOW_DEF 0x60000000 #define SFC_IPV6_HOP_LIMITS_DEF 0xff #define SFC_VXLAN_FLAGS_DEF 0x08000000 static int sfc_mae_rule_parse_action_vxlan_encap( struct sfc_mae *mae, const struct rte_flow_action_vxlan_encap *conf, efx_mae_actions_t *spec, struct rte_flow_error *error) { struct sfc_mae_bounce_eh *bounce_eh = &mae->bounce_eh; struct rte_flow_item *pattern = conf->definition; uint8_t *buf = bounce_eh->buf; /* This array will keep track of non-VOID pattern items. */ struct sfc_mae_parsed_item parsed_items[1 /* Ethernet */ + 2 /* VLAN tags */ + 1 /* IPv4 or IPv6 */ + 1 /* UDP */ + 1 /* VXLAN */]; unsigned int nb_parsed_items = 0; size_t eth_ethertype_ofst = offsetof(struct rte_ether_hdr, ether_type); uint8_t dummy_buf[RTE_MAX(sizeof(struct rte_ipv4_hdr), sizeof(struct rte_ipv6_hdr))]; struct rte_ipv4_hdr *ipv4 = (void *)dummy_buf; struct rte_ipv6_hdr *ipv6 = (void *)dummy_buf; struct rte_vxlan_hdr *vxlan = NULL; struct rte_udp_hdr *udp = NULL; unsigned int nb_vlan_tags = 0; size_t next_proto_ofst = 0; size_t ethertype_ofst = 0; uint64_t exp_items; int rc; if (pattern == NULL) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, "The encap. header definition is NULL"); } bounce_eh->type = EFX_TUNNEL_PROTOCOL_VXLAN; bounce_eh->size = 0; /* * Process pattern items and remember non-VOID ones. * Defer applying masks until after the complete header * has been built from the pattern items. */ exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_ETH); for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; ++pattern) { struct sfc_mae_parsed_item *parsed_item; const uint64_t exp_items_extra_vlan[] = { RTE_BIT64(RTE_FLOW_ITEM_TYPE_VLAN), 0 }; size_t proto_header_size; rte_be16_t *ethertypep; uint8_t *next_protop; uint8_t *buf_cur; if (pattern->spec == NULL) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, "NULL item spec in the encap. header"); } if (pattern->mask == NULL) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, "NULL item mask in the encap. header"); } if (pattern->last != NULL) { /* This is not a match pattern, so disallow range. */ return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, "Range item in the encap. header"); } if (pattern->type == RTE_FLOW_ITEM_TYPE_VOID) { /* Handle VOID separately, for clarity. */ continue; } if ((exp_items & RTE_BIT64(pattern->type)) == 0) { return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, "Unexpected item in the encap. header"); } parsed_item = &parsed_items[nb_parsed_items]; buf_cur = buf + bounce_eh->size; switch (pattern->type) { case RTE_FLOW_ITEM_TYPE_ETH: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_ETH, exp_items); RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_eth, hdr) != 0); proto_header_size = sizeof(struct rte_ether_hdr); ethertype_ofst = eth_ethertype_ofst; exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_VLAN) | RTE_BIT64(RTE_FLOW_ITEM_TYPE_IPV4) | RTE_BIT64(RTE_FLOW_ITEM_TYPE_IPV6); break; case RTE_FLOW_ITEM_TYPE_VLAN: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_VLAN, exp_items); RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_vlan, hdr) != 0); proto_header_size = sizeof(struct rte_vlan_hdr); ethertypep = RTE_PTR_ADD(buf, eth_ethertype_ofst); *ethertypep = RTE_BE16(RTE_ETHER_TYPE_QINQ); ethertypep = RTE_PTR_ADD(buf, ethertype_ofst); *ethertypep = RTE_BE16(RTE_ETHER_TYPE_VLAN); ethertype_ofst = bounce_eh->size + offsetof(struct rte_vlan_hdr, eth_proto); exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_IPV4) | RTE_BIT64(RTE_FLOW_ITEM_TYPE_IPV6); exp_items |= exp_items_extra_vlan[nb_vlan_tags]; ++nb_vlan_tags; break; case RTE_FLOW_ITEM_TYPE_IPV4: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_IPV4, exp_items); RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_ipv4, hdr) != 0); proto_header_size = sizeof(struct rte_ipv4_hdr); ethertypep = RTE_PTR_ADD(buf, ethertype_ofst); *ethertypep = RTE_BE16(RTE_ETHER_TYPE_IPV4); next_proto_ofst = bounce_eh->size + offsetof(struct rte_ipv4_hdr, next_proto_id); ipv4 = (struct rte_ipv4_hdr *)buf_cur; exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_UDP); break; case RTE_FLOW_ITEM_TYPE_IPV6: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_IPV6, exp_items); RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_ipv6, hdr) != 0); proto_header_size = sizeof(struct rte_ipv6_hdr); ethertypep = RTE_PTR_ADD(buf, ethertype_ofst); *ethertypep = RTE_BE16(RTE_ETHER_TYPE_IPV6); next_proto_ofst = bounce_eh->size + offsetof(struct rte_ipv6_hdr, proto); ipv6 = (struct rte_ipv6_hdr *)buf_cur; exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_UDP); break; case RTE_FLOW_ITEM_TYPE_UDP: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_UDP, exp_items); RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_udp, hdr) != 0); proto_header_size = sizeof(struct rte_udp_hdr); next_protop = RTE_PTR_ADD(buf, next_proto_ofst); *next_protop = IPPROTO_UDP; udp = (struct rte_udp_hdr *)buf_cur; exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_VXLAN); break; case RTE_FLOW_ITEM_TYPE_VXLAN: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_VXLAN, exp_items); RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_vxlan, hdr) != 0); proto_header_size = sizeof(struct rte_vxlan_hdr); vxlan = (struct rte_vxlan_hdr *)buf_cur; udp->dst_port = RTE_BE16(RTE_VXLAN_DEFAULT_PORT); udp->dgram_len = RTE_BE16(sizeof(*udp) + sizeof(*vxlan)); udp->dgram_cksum = 0; exp_items = 0; break; default: return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, "Unknown item in the encap. header"); } if (bounce_eh->size + proto_header_size > bounce_eh->buf_size) { return rte_flow_error_set(error, E2BIG, RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, "The encap. header is too big"); } if ((proto_header_size & 1) != 0) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, "Odd layer size in the encap. header"); } rte_memcpy(buf_cur, pattern->spec, proto_header_size); bounce_eh->size += proto_header_size; parsed_item->item = pattern; parsed_item->proto_header_size = proto_header_size; ++nb_parsed_items; } if (exp_items != 0) { /* Parsing item VXLAN would have reset exp_items to 0. */ return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, "No item VXLAN in the encap. header"); } /* One of the pointers (ipv4, ipv6) refers to a dummy area. */ ipv4->version_ihl = RTE_IPV4_VHL_DEF; ipv4->time_to_live = SFC_IPV4_TTL_DEF; ipv4->total_length = RTE_BE16(sizeof(*ipv4) + sizeof(*udp) + sizeof(*vxlan)); /* The HW cannot compute this checksum. */ ipv4->hdr_checksum = 0; ipv4->hdr_checksum = rte_ipv4_cksum(ipv4); ipv6->vtc_flow = RTE_BE32(SFC_IPV6_VTC_FLOW_DEF); ipv6->hop_limits = SFC_IPV6_HOP_LIMITS_DEF; ipv6->payload_len = udp->dgram_len; vxlan->vx_flags = RTE_BE32(SFC_VXLAN_FLAGS_DEF); /* Take care of the masks. */ sfc_mae_header_force_item_masks(buf, parsed_items, nb_parsed_items); rc = efx_mae_action_set_populate_encap(spec); if (rc != 0) { rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ACTION, NULL, "failed to request action ENCAP"); } return rc; } static int sfc_mae_rule_parse_action_mark(struct sfc_adapter *sa, const struct rte_flow_action_mark *conf, const struct sfc_flow_spec_mae *spec_mae, efx_mae_actions_t *spec) { int rc; if (spec_mae->ft_rule_type == SFC_FT_RULE_JUMP) { /* Workaround. See sfc_flow_parse_rte_to_mae() */ } else if (conf->id > SFC_FT_USER_MARK_MASK) { sfc_err(sa, "the mark value is too large"); return EINVAL; } rc = efx_mae_action_set_populate_mark(spec, conf->id); if (rc != 0) sfc_err(sa, "failed to request action MARK: %s", strerror(rc)); return rc; } static int sfc_mae_rule_parse_action_count(struct sfc_adapter *sa, const struct rte_flow_action_count *conf __rte_unused, efx_mae_actions_t *spec) { int rc; if ((sa->counter_rxq.state & SFC_COUNTER_RXQ_INITIALIZED) == 0) { sfc_err(sa, "counter queue is not configured for COUNT action"); rc = EINVAL; goto fail_counter_queue_uninit; } if (sfc_get_service_lcore(SOCKET_ID_ANY) == RTE_MAX_LCORE) { rc = EINVAL; goto fail_no_service_core; } rc = efx_mae_action_set_populate_count(spec); if (rc != 0) { sfc_err(sa, "failed to populate counters in MAE action set: %s", rte_strerror(rc)); goto fail_populate_count; } return 0; fail_populate_count: fail_no_service_core: fail_counter_queue_uninit: return rc; } static int sfc_mae_rule_parse_action_phy_port(struct sfc_adapter *sa, const struct rte_flow_action_phy_port *conf, efx_mae_actions_t *spec) { efx_mport_sel_t mport; uint32_t phy_port; int rc; if (conf->original != 0) phy_port = efx_nic_cfg_get(sa->nic)->enc_assigned_port; else phy_port = conf->index; rc = efx_mae_mport_by_phy_port(phy_port, &mport); if (rc != 0) { sfc_err(sa, "failed to convert phys. port ID %u to m-port selector: %s", phy_port, strerror(rc)); return rc; } rc = efx_mae_action_set_populate_deliver(spec, &mport); if (rc != 0) { sfc_err(sa, "failed to request action DELIVER with m-port selector 0x%08x: %s", mport.sel, strerror(rc)); } return rc; } static int sfc_mae_rule_parse_action_pf_vf(struct sfc_adapter *sa, const struct rte_flow_action_vf *vf_conf, efx_mae_actions_t *spec) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); efx_mport_sel_t mport; uint32_t vf; int rc; if (vf_conf == NULL) vf = EFX_PCI_VF_INVALID; else if (vf_conf->original != 0) vf = encp->enc_vf; else vf = vf_conf->id; rc = efx_mae_mport_by_pcie_function(encp->enc_pf, vf, &mport); if (rc != 0) { sfc_err(sa, "failed to convert PF %u VF %d to m-port: %s", encp->enc_pf, (vf != EFX_PCI_VF_INVALID) ? (int)vf : -1, strerror(rc)); return rc; } rc = efx_mae_action_set_populate_deliver(spec, &mport); if (rc != 0) { sfc_err(sa, "failed to request action DELIVER with m-port selector 0x%08x: %s", mport.sel, strerror(rc)); } return rc; } static int sfc_mae_rule_parse_action_port_id(struct sfc_adapter *sa, const struct rte_flow_action_port_id *conf, efx_mae_actions_t *spec) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); struct sfc_mae *mae = &sa->mae; efx_mport_sel_t mport; uint16_t port_id; int rc; if (conf->id > UINT16_MAX) return EOVERFLOW; port_id = (conf->original != 0) ? sas->port_id : conf->id; rc = sfc_mae_switch_get_ethdev_mport(mae->switch_domain_id, port_id, &mport); if (rc != 0) { sfc_err(sa, "failed to get m-port for the given ethdev (port_id=%u): %s", port_id, strerror(rc)); return rc; } rc = efx_mae_action_set_populate_deliver(spec, &mport); if (rc != 0) { sfc_err(sa, "failed to request action DELIVER with m-port selector 0x%08x: %s", mport.sel, strerror(rc)); } return rc; } static int sfc_mae_rule_parse_action_port_representor(struct sfc_adapter *sa, const struct rte_flow_action_ethdev *conf, efx_mae_actions_t *spec) { struct sfc_mae *mae = &sa->mae; efx_mport_sel_t mport; int rc; rc = sfc_mae_switch_get_ethdev_mport(mae->switch_domain_id, conf->port_id, &mport); if (rc != 0) { sfc_err(sa, "failed to get m-port for the given ethdev (port_id=%u): %s", conf->port_id, strerror(rc)); return rc; } rc = efx_mae_action_set_populate_deliver(spec, &mport); if (rc != 0) { sfc_err(sa, "failed to request action DELIVER with m-port selector 0x%08x: %s", mport.sel, strerror(rc)); } return rc; } static int sfc_mae_rule_parse_action_represented_port(struct sfc_adapter *sa, const struct rte_flow_action_ethdev *conf, efx_mae_actions_t *spec) { struct sfc_mae *mae = &sa->mae; efx_mport_sel_t mport; int rc; rc = sfc_mae_switch_get_entity_mport(mae->switch_domain_id, conf->port_id, &mport); if (rc != 0) { sfc_err(sa, "failed to get m-port for the given ethdev (port_id=%u): %s", conf->port_id, strerror(rc)); return rc; } rc = efx_mae_action_set_populate_deliver(spec, &mport); if (rc != 0) { sfc_err(sa, "failed to request action DELIVER with m-port selector 0x%08x: %s", mport.sel, strerror(rc)); } return rc; } static const char * const action_names[] = { [RTE_FLOW_ACTION_TYPE_VXLAN_DECAP] = "VXLAN_DECAP", [RTE_FLOW_ACTION_TYPE_OF_POP_VLAN] = "OF_POP_VLAN", [RTE_FLOW_ACTION_TYPE_SET_MAC_DST] = "SET_MAC_DST", [RTE_FLOW_ACTION_TYPE_SET_MAC_SRC] = "SET_MAC_SRC", [RTE_FLOW_ACTION_TYPE_OF_DEC_NW_TTL] = "OF_DEC_NW_TTL", [RTE_FLOW_ACTION_TYPE_DEC_TTL] = "DEC_TTL", [RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN] = "OF_PUSH_VLAN", [RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID] = "OF_SET_VLAN_VID", [RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP] = "OF_SET_VLAN_PCP", [RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP] = "VXLAN_ENCAP", [RTE_FLOW_ACTION_TYPE_COUNT] = "COUNT", [RTE_FLOW_ACTION_TYPE_FLAG] = "FLAG", [RTE_FLOW_ACTION_TYPE_MARK] = "MARK", [RTE_FLOW_ACTION_TYPE_PHY_PORT] = "PHY_PORT", [RTE_FLOW_ACTION_TYPE_PF] = "PF", [RTE_FLOW_ACTION_TYPE_VF] = "VF", [RTE_FLOW_ACTION_TYPE_PORT_ID] = "PORT_ID", [RTE_FLOW_ACTION_TYPE_PORT_REPRESENTOR] = "PORT_REPRESENTOR", [RTE_FLOW_ACTION_TYPE_REPRESENTED_PORT] = "REPRESENTED_PORT", [RTE_FLOW_ACTION_TYPE_DROP] = "DROP", [RTE_FLOW_ACTION_TYPE_JUMP] = "JUMP", }; static int sfc_mae_rule_parse_action(struct sfc_adapter *sa, const struct rte_flow_action *action, const struct sfc_flow_spec_mae *spec_mae, struct sfc_mae_actions_bundle *bundle, struct sfc_mae_aset_ctx *ctx, struct rte_flow_error *error) { const struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule; const uint64_t rx_metadata = sa->negotiated_rx_metadata; efx_mae_actions_t *spec = ctx->spec; bool custom_error = B_FALSE; int rc = 0; switch (action->type) { case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VXLAN_DECAP, bundle->actions_mask); if (outer_rule == NULL || outer_rule->encap_type != EFX_TUNNEL_PROTOCOL_VXLAN) rc = EINVAL; else rc = efx_mae_action_set_populate_decap(spec); break; case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_POP_VLAN, bundle->actions_mask); rc = efx_mae_action_set_populate_vlan_pop(spec); break; case RTE_FLOW_ACTION_TYPE_SET_MAC_DST: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_SET_MAC_DST, bundle->actions_mask); rc = sfc_mae_rule_parse_action_set_mac(sa, SFC_MAE_MAC_ADDR_DST, action->conf, ctx, error); custom_error = B_TRUE; break; case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_SET_MAC_SRC, bundle->actions_mask); rc = sfc_mae_rule_parse_action_set_mac(sa, SFC_MAE_MAC_ADDR_SRC, action->conf, ctx, error); custom_error = B_TRUE; break; case RTE_FLOW_ACTION_TYPE_OF_DEC_NW_TTL: case RTE_FLOW_ACTION_TYPE_DEC_TTL: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_DEC_NW_TTL, bundle->actions_mask); SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DEC_TTL, bundle->actions_mask); rc = efx_mae_action_set_populate_decr_ip_ttl(spec); break; case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN, bundle->actions_mask); sfc_mae_rule_parse_action_of_push_vlan(action->conf, bundle); break; case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID, bundle->actions_mask); sfc_mae_rule_parse_action_of_set_vlan_vid(action->conf, bundle); break; case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP, bundle->actions_mask); sfc_mae_rule_parse_action_of_set_vlan_pcp(action->conf, bundle); break; case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP, bundle->actions_mask); rc = sfc_mae_rule_parse_action_vxlan_encap(&sa->mae, action->conf, spec, error); custom_error = B_TRUE; break; case RTE_FLOW_ACTION_TYPE_COUNT: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_COUNT, bundle->actions_mask); rc = sfc_mae_rule_parse_action_count(sa, action->conf, spec); break; case RTE_FLOW_ACTION_TYPE_FLAG: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG, bundle->actions_mask); if ((rx_metadata & RTE_ETH_RX_METADATA_USER_FLAG) != 0) { rc = efx_mae_action_set_populate_flag(spec); } else { rc = rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, action, "flag delivery has not been negotiated"); custom_error = B_TRUE; } break; case RTE_FLOW_ACTION_TYPE_MARK: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK, bundle->actions_mask); if ((rx_metadata & RTE_ETH_RX_METADATA_USER_MARK) != 0 || spec_mae->ft_rule_type == SFC_FT_RULE_JUMP) { rc = sfc_mae_rule_parse_action_mark(sa, action->conf, spec_mae, spec); } else { rc = rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, action, "mark delivery has not been negotiated"); custom_error = B_TRUE; } break; case RTE_FLOW_ACTION_TYPE_PHY_PORT: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PHY_PORT, bundle->actions_mask); rc = sfc_mae_rule_parse_action_phy_port(sa, action->conf, spec); break; case RTE_FLOW_ACTION_TYPE_PF: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PF, bundle->actions_mask); rc = sfc_mae_rule_parse_action_pf_vf(sa, NULL, spec); break; case RTE_FLOW_ACTION_TYPE_VF: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VF, bundle->actions_mask); rc = sfc_mae_rule_parse_action_pf_vf(sa, action->conf, spec); break; case RTE_FLOW_ACTION_TYPE_PORT_ID: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PORT_ID, bundle->actions_mask); rc = sfc_mae_rule_parse_action_port_id(sa, action->conf, spec); break; case RTE_FLOW_ACTION_TYPE_PORT_REPRESENTOR: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PORT_REPRESENTOR, bundle->actions_mask); rc = sfc_mae_rule_parse_action_port_representor(sa, action->conf, spec); break; case RTE_FLOW_ACTION_TYPE_REPRESENTED_PORT: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_REPRESENTED_PORT, bundle->actions_mask); rc = sfc_mae_rule_parse_action_represented_port(sa, action->conf, spec); break; case RTE_FLOW_ACTION_TYPE_DROP: SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP, bundle->actions_mask); rc = efx_mae_action_set_populate_drop(spec); break; case RTE_FLOW_ACTION_TYPE_JUMP: if (spec_mae->ft_rule_type == SFC_FT_RULE_JUMP) { /* Workaround. See sfc_flow_parse_rte_to_mae() */ break; } /* FALLTHROUGH */ default: return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, NULL, "Unsupported action"); } if (rc == 0) { bundle->actions_mask |= (1ULL << action->type); } else if (!custom_error) { if (action->type < RTE_DIM(action_names)) { const char *action_name = action_names[action->type]; if (action_name != NULL) { sfc_err(sa, "action %s was rejected: %s", action_name, strerror(rc)); } } rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ACTION, NULL, "Failed to request the action"); } return rc; } static void sfc_mae_bounce_eh_invalidate(struct sfc_mae_bounce_eh *bounce_eh) { bounce_eh->type = EFX_TUNNEL_PROTOCOL_NONE; } static int sfc_mae_process_encap_header(struct sfc_adapter *sa, const struct sfc_mae_bounce_eh *bounce_eh, struct sfc_mae_encap_header **encap_headerp) { if (bounce_eh->type == EFX_TUNNEL_PROTOCOL_NONE) { encap_headerp = NULL; return 0; } *encap_headerp = sfc_mae_encap_header_attach(sa, bounce_eh); if (*encap_headerp != NULL) return 0; return sfc_mae_encap_header_add(sa, bounce_eh, encap_headerp); } int sfc_mae_rule_parse_actions(struct sfc_adapter *sa, const struct rte_flow_action actions[], struct sfc_flow_spec_mae *spec_mae, struct rte_flow_error *error) { struct sfc_mae_actions_bundle bundle = {0}; const struct rte_flow_action *action; struct sfc_mae_aset_ctx ctx = {0}; struct sfc_mae *mae = &sa->mae; int rc; rte_errno = 0; if (actions == NULL) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, "NULL actions"); } rc = efx_mae_action_set_spec_init(sa->nic, &ctx.spec); if (rc != 0) goto fail_action_set_spec_init; for (action = actions; action->type != RTE_FLOW_ACTION_TYPE_END; ++action) { if (action->type == RTE_FLOW_ACTION_TYPE_COUNT) ++(ctx.n_counters); } if (spec_mae->ft_rule_type == SFC_FT_RULE_GROUP) { /* JUMP rules don't decapsulate packets. GROUP rules do. */ rc = efx_mae_action_set_populate_decap(ctx.spec); if (rc != 0) goto fail_enforce_ft_decap; if (ctx.n_counters == 0 && sfc_mae_counter_stream_enabled(sa)) { /* * The user opted not to use action COUNT in this rule, * but the counter should be enabled implicitly because * packets hitting this rule contribute to the tunnel's * total number of hits. See sfc_mae_counter_get(). */ rc = efx_mae_action_set_populate_count(ctx.spec); if (rc != 0) goto fail_enforce_ft_count; ctx.n_counters = 1; } } /* Cleanup after previous encap. header bounce buffer usage. */ sfc_mae_bounce_eh_invalidate(&mae->bounce_eh); for (action = actions; action->type != RTE_FLOW_ACTION_TYPE_END; ++action) { rc = sfc_mae_actions_bundle_sync(action, &bundle, ctx.spec, error); if (rc != 0) goto fail_rule_parse_action; rc = sfc_mae_rule_parse_action(sa, action, spec_mae, &bundle, &ctx, error); if (rc != 0) goto fail_rule_parse_action; } rc = sfc_mae_actions_bundle_sync(action, &bundle, ctx.spec, error); if (rc != 0) goto fail_rule_parse_action; rc = sfc_mae_process_encap_header(sa, &mae->bounce_eh, &ctx.encap_header); if (rc != 0) goto fail_process_encap_header; if (ctx.n_counters > 1) { rc = ENOTSUP; sfc_err(sa, "too many count actions requested: %u", ctx.n_counters); goto fail_nb_count; } switch (spec_mae->ft_rule_type) { case SFC_FT_RULE_NONE: break; case SFC_FT_RULE_JUMP: /* Workaround. See sfc_flow_parse_rte_to_mae() */ rc = sfc_mae_rule_parse_action_pf_vf(sa, NULL, ctx.spec); if (rc != 0) goto fail_workaround_jump_delivery; ctx.counter_ft = spec_mae->ft; break; case SFC_FT_RULE_GROUP: /* * Packets that go to the rule's AR have FT mark set (from * the JUMP rule OR's RECIRC_ID). Reset the mark to zero. */ efx_mae_action_set_populate_mark_reset(ctx.spec); ctx.ft_group_hit_counter = &spec_mae->ft->group_hit_counter; break; default: SFC_ASSERT(B_FALSE); } /* * A DPDK flow entry must specify a fate action, which the parser * converts into a DELIVER action in a libefx action set. An * attempt to replace the action in the action set should * fail. If it succeeds then report an error, as the * parsed flow entry did not contain a fate action. */ rc = efx_mae_action_set_populate_drop(ctx.spec); if (rc == 0) { rc = rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, NULL, "no fate action found"); goto fail_check_fate_action; } spec_mae->action_set = sfc_mae_action_set_attach(sa, &ctx); if (spec_mae->action_set != NULL) { sfc_mae_mac_addr_del(sa, ctx.src_mac); sfc_mae_mac_addr_del(sa, ctx.dst_mac); sfc_mae_encap_header_del(sa, ctx.encap_header); efx_mae_action_set_spec_fini(sa->nic, ctx.spec); return 0; } rc = sfc_mae_action_set_add(sa, actions, &ctx, &spec_mae->action_set); if (rc != 0) goto fail_action_set_add; return 0; fail_action_set_add: fail_check_fate_action: fail_workaround_jump_delivery: fail_nb_count: sfc_mae_encap_header_del(sa, ctx.encap_header); fail_process_encap_header: fail_rule_parse_action: sfc_mae_mac_addr_del(sa, ctx.src_mac); sfc_mae_mac_addr_del(sa, ctx.dst_mac); efx_mae_action_set_spec_fini(sa->nic, ctx.spec); fail_enforce_ft_count: fail_enforce_ft_decap: fail_action_set_spec_init: if (rc > 0 && rte_errno == 0) { rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "Failed to process the action"); } return rc; } static bool sfc_mae_rules_class_cmp(struct sfc_adapter *sa, const efx_mae_match_spec_t *left, const efx_mae_match_spec_t *right) { bool have_same_class; int rc; rc = efx_mae_match_specs_class_cmp(sa->nic, left, right, &have_same_class); return (rc == 0) ? have_same_class : false; } static int sfc_mae_outer_rule_class_verify(struct sfc_adapter *sa, struct sfc_mae_outer_rule *rule) { struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc; struct sfc_mae_outer_rule *entry; struct sfc_mae *mae = &sa->mae; if (fw_rsrc->rule_id.id != EFX_MAE_RSRC_ID_INVALID) { /* An active rule is reused. It's class is wittingly valid. */ return 0; } TAILQ_FOREACH_REVERSE(entry, &mae->outer_rules, sfc_mae_outer_rules, entries) { const efx_mae_match_spec_t *left = entry->match_spec; const efx_mae_match_spec_t *right = rule->match_spec; if (entry == rule) continue; if (sfc_mae_rules_class_cmp(sa, left, right)) return 0; } sfc_info(sa, "for now, the HW doesn't support rule validation, and HW " "support for outer frame pattern items is not guaranteed; " "other than that, the items are valid from SW standpoint"); return 0; } static int sfc_mae_action_rule_class_verify(struct sfc_adapter *sa, struct sfc_flow_spec_mae *spec) { const struct rte_flow *entry; if (spec->match_spec == NULL) return 0; TAILQ_FOREACH_REVERSE(entry, &sa->flow_list, sfc_flow_list, entries) { const struct sfc_flow_spec *entry_spec = &entry->spec; const struct sfc_flow_spec_mae *es_mae = &entry_spec->mae; const efx_mae_match_spec_t *left = es_mae->match_spec; const efx_mae_match_spec_t *right = spec->match_spec; switch (entry_spec->type) { case SFC_FLOW_SPEC_FILTER: /* Ignore VNIC-level flows */ break; case SFC_FLOW_SPEC_MAE: if (sfc_mae_rules_class_cmp(sa, left, right)) return 0; break; default: SFC_ASSERT(false); } } sfc_info(sa, "for now, the HW doesn't support rule validation, and HW " "support for inner frame pattern items is not guaranteed; " "other than that, the items are valid from SW standpoint"); return 0; } /** * Confirm that a given flow can be accepted by the FW. * * @param sa * Software adapter context * @param flow * Flow to be verified * @return * Zero on success and non-zero in the case of error. * A special value of EAGAIN indicates that the adapter is * not in started state. This state is compulsory because * it only makes sense to compare the rule class of the flow * being validated with classes of the active rules. * Such classes are wittingly supported by the FW. */ int sfc_mae_flow_verify(struct sfc_adapter *sa, struct rte_flow *flow) { struct sfc_flow_spec *spec = &flow->spec; struct sfc_flow_spec_mae *spec_mae = &spec->mae; struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule; int rc; SFC_ASSERT(sfc_adapter_is_locked(sa)); if (sa->state != SFC_ETHDEV_STARTED) return EAGAIN; if (outer_rule != NULL) { rc = sfc_mae_outer_rule_class_verify(sa, outer_rule); if (rc != 0) return rc; } return sfc_mae_action_rule_class_verify(sa, spec_mae); } int sfc_mae_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow) { struct sfc_flow_spec *spec = &flow->spec; struct sfc_flow_spec_mae *spec_mae = &spec->mae; struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule; struct sfc_mae_action_set *action_set = spec_mae->action_set; struct sfc_mae_fw_rsrc *fw_rsrc; int rc; SFC_ASSERT(spec_mae->rule_id.id == EFX_MAE_RSRC_ID_INVALID); if (outer_rule != NULL) { rc = sfc_mae_outer_rule_enable(sa, outer_rule, spec_mae->match_spec); if (rc != 0) goto fail_outer_rule_enable; } if (spec_mae->ft_rule_type == SFC_FT_RULE_JUMP) { spec_mae->ft->reset_jump_hit_counter = spec_mae->ft->group_hit_counter; } if (action_set == NULL) { sfc_dbg(sa, "enabled flow=%p (no AR)", flow); return 0; } rc = sfc_mae_action_set_enable(sa, action_set); if (rc != 0) goto fail_action_set_enable; if (action_set->n_counters > 0) { rc = sfc_mae_counter_start(sa); if (rc != 0) { sfc_err(sa, "failed to start MAE counters support: %s", rte_strerror(rc)); goto fail_mae_counter_start; } } fw_rsrc = &action_set->fw_rsrc; rc = efx_mae_action_rule_insert(sa->nic, spec_mae->match_spec, NULL, &fw_rsrc->aset_id, &spec_mae->rule_id); if (rc != 0) goto fail_action_rule_insert; sfc_dbg(sa, "enabled flow=%p: AR_ID=0x%08x", flow, spec_mae->rule_id.id); return 0; fail_action_rule_insert: fail_mae_counter_start: sfc_mae_action_set_disable(sa, action_set); fail_action_set_enable: if (outer_rule != NULL) sfc_mae_outer_rule_disable(sa, outer_rule); fail_outer_rule_enable: return rc; } int sfc_mae_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow) { struct sfc_flow_spec *spec = &flow->spec; struct sfc_flow_spec_mae *spec_mae = &spec->mae; struct sfc_mae_action_set *action_set = spec_mae->action_set; struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule; int rc; if (action_set == NULL) { sfc_dbg(sa, "disabled flow=%p (no AR)", flow); goto skip_action_rule; } SFC_ASSERT(spec_mae->rule_id.id != EFX_MAE_RSRC_ID_INVALID); rc = efx_mae_action_rule_remove(sa->nic, &spec_mae->rule_id); if (rc != 0) { sfc_err(sa, "failed to disable flow=%p with AR_ID=0x%08x: %s", flow, spec_mae->rule_id.id, strerror(rc)); } sfc_dbg(sa, "disabled flow=%p with AR_ID=0x%08x", flow, spec_mae->rule_id.id); spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID; sfc_mae_action_set_disable(sa, action_set); skip_action_rule: if (outer_rule != NULL) sfc_mae_outer_rule_disable(sa, outer_rule); return 0; } static int sfc_mae_query_counter(struct sfc_adapter *sa, struct sfc_flow_spec_mae *spec, const struct rte_flow_action *action, struct rte_flow_query_count *data, struct rte_flow_error *error) { struct sfc_mae_action_set *action_set = spec->action_set; const struct rte_flow_action_count *conf = action->conf; unsigned int i; int rc; if (action_set == NULL || action_set->n_counters == 0) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, action, "Queried flow rule does not have count actions"); } for (i = 0; i < action_set->n_counters; i++) { /* * Get the first available counter of the flow rule if * counter ID is not specified, provided that this * counter is not an automatic (implicit) one. */ if (conf != NULL && action_set->counters[i].rte_id != conf->id) continue; rc = sfc_mae_counter_get(&sa->mae.counter_registry.counters, &action_set->counters[i], data); if (rc != 0) { return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, action, "Queried flow rule counter action is invalid"); } return 0; } return rte_flow_error_set(error, ENOENT, RTE_FLOW_ERROR_TYPE_ACTION, action, "no such flow rule action or such count ID"); } int sfc_mae_flow_query(struct rte_eth_dev *dev, struct rte_flow *flow, const struct rte_flow_action *action, void *data, struct rte_flow_error *error) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct sfc_flow_spec *spec = &flow->spec; struct sfc_flow_spec_mae *spec_mae = &spec->mae; switch (action->type) { case RTE_FLOW_ACTION_TYPE_COUNT: return sfc_mae_query_counter(sa, spec_mae, action, data, error); default: return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, NULL, "Query for action of this type is not supported"); } } int sfc_mae_switchdev_init(struct sfc_adapter *sa) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); struct sfc_mae *mae = &sa->mae; efx_mport_sel_t pf; efx_mport_sel_t phy; int rc; sfc_log_init(sa, "entry"); if (!sa->switchdev) { sfc_log_init(sa, "switchdev is not enabled - skip"); return 0; } if (mae->status != SFC_MAE_STATUS_ADMIN) { rc = ENOTSUP; sfc_err(sa, "failed to init switchdev - no admin MAE privilege"); goto fail_no_mae; } rc = efx_mae_mport_by_pcie_function(encp->enc_pf, EFX_PCI_VF_INVALID, &pf); if (rc != 0) { sfc_err(sa, "failed get PF mport"); goto fail_pf_get; } rc = efx_mae_mport_by_phy_port(encp->enc_assigned_port, &phy); if (rc != 0) { sfc_err(sa, "failed get PHY mport"); goto fail_phy_get; } rc = sfc_mae_rule_add_mport_match_deliver(sa, &pf, &phy, SFC_MAE_RULE_PRIO_LOWEST, &mae->switchdev_rule_pf_to_ext); if (rc != 0) { sfc_err(sa, "failed add MAE rule to forward from PF to PHY"); goto fail_pf_add; } rc = sfc_mae_rule_add_mport_match_deliver(sa, &phy, &pf, SFC_MAE_RULE_PRIO_LOWEST, &mae->switchdev_rule_ext_to_pf); if (rc != 0) { sfc_err(sa, "failed add MAE rule to forward from PHY to PF"); goto fail_phy_add; } sfc_log_init(sa, "done"); return 0; fail_phy_add: sfc_mae_rule_del(sa, mae->switchdev_rule_pf_to_ext); fail_pf_add: fail_phy_get: fail_pf_get: fail_no_mae: sfc_log_init(sa, "failed: %s", rte_strerror(rc)); return rc; } void sfc_mae_switchdev_fini(struct sfc_adapter *sa) { struct sfc_mae *mae = &sa->mae; if (!sa->switchdev) return; sfc_mae_rule_del(sa, mae->switchdev_rule_pf_to_ext); sfc_mae_rule_del(sa, mae->switchdev_rule_ext_to_pf); }