/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2015 6WIND S.A. * Copyright 2015 Mellanox Technologies, Ltd */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mlx5_defs.h" #include "mlx5.h" #include "mlx5_rx.h" #include "mlx5_utils.h" #include "mlx5_autoconf.h" #include "mlx5_devx.h" /* Default RSS hash key also used for ConnectX-3. */ uint8_t rss_hash_default_key[] = { 0x2c, 0xc6, 0x81, 0xd1, 0x5b, 0xdb, 0xf4, 0xf7, 0xfc, 0xa2, 0x83, 0x19, 0xdb, 0x1a, 0x3e, 0x94, 0x6b, 0x9e, 0x38, 0xd9, 0x2c, 0x9c, 0x03, 0xd1, 0xad, 0x99, 0x44, 0xa7, 0xd9, 0x56, 0x3d, 0x59, 0x06, 0x3c, 0x25, 0xf3, 0xfc, 0x1f, 0xdc, 0x2a, }; /* Length of the default RSS hash key. */ static_assert(MLX5_RSS_HASH_KEY_LEN == (unsigned int)sizeof(rss_hash_default_key), "wrong RSS default key size."); /** * Calculate the number of CQEs in CQ for the Rx queue. * * @param rxq_data * Pointer to receive queue structure. * * @return * Number of CQEs in CQ. */ unsigned int mlx5_rxq_cqe_num(struct mlx5_rxq_data *rxq_data) { unsigned int cqe_n; unsigned int wqe_n = 1 << rxq_data->elts_n; if (mlx5_rxq_mprq_enabled(rxq_data)) cqe_n = wqe_n * RTE_BIT32(rxq_data->log_strd_num) - 1; else cqe_n = wqe_n - 1; return cqe_n; } /** * Allocate RX queue elements for Multi-Packet RQ. * * @param rxq_ctrl * Pointer to RX queue structure. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int rxq_alloc_elts_mprq(struct mlx5_rxq_ctrl *rxq_ctrl) { struct mlx5_rxq_data *rxq = &rxq_ctrl->rxq; unsigned int wqe_n = 1 << rxq->elts_n; unsigned int i; int err; /* Iterate on segments. */ for (i = 0; i <= wqe_n; ++i) { struct mlx5_mprq_buf *buf; if (rte_mempool_get(rxq->mprq_mp, (void **)&buf) < 0) { DRV_LOG(ERR, "port %u empty mbuf pool", rxq->port_id); rte_errno = ENOMEM; goto error; } if (i < wqe_n) (*rxq->mprq_bufs)[i] = buf; else rxq->mprq_repl = buf; } DRV_LOG(DEBUG, "port %u MPRQ queue %u allocated and configured %u segments", rxq->port_id, rxq->idx, wqe_n); return 0; error: err = rte_errno; /* Save rte_errno before cleanup. */ wqe_n = i; for (i = 0; (i != wqe_n); ++i) { if ((*rxq->mprq_bufs)[i] != NULL) rte_mempool_put(rxq->mprq_mp, (*rxq->mprq_bufs)[i]); (*rxq->mprq_bufs)[i] = NULL; } DRV_LOG(DEBUG, "port %u MPRQ queue %u failed, freed everything", rxq->port_id, rxq->idx); rte_errno = err; /* Restore rte_errno. */ return -rte_errno; } /** * Allocate RX queue elements for Single-Packet RQ. * * @param rxq_ctrl * Pointer to RX queue structure. * * @return * 0 on success, negative errno value on failure. */ static int rxq_alloc_elts_sprq(struct mlx5_rxq_ctrl *rxq_ctrl) { const unsigned int sges_n = 1 << rxq_ctrl->rxq.sges_n; unsigned int elts_n = mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq) ? RTE_BIT32(rxq_ctrl->rxq.elts_n) * RTE_BIT32(rxq_ctrl->rxq.log_strd_num) : RTE_BIT32(rxq_ctrl->rxq.elts_n); bool has_vec_support = mlx5_rxq_check_vec_support(&rxq_ctrl->rxq) > 0; unsigned int i; int err; /* Iterate on segments. */ for (i = 0; (i != elts_n); ++i) { struct mlx5_eth_rxseg *seg = &rxq_ctrl->rxq.rxseg[i % sges_n]; struct rte_mbuf *buf; buf = rte_pktmbuf_alloc(seg->mp); if (buf == NULL) { if (rxq_ctrl->share_group == 0) DRV_LOG(ERR, "port %u queue %u empty mbuf pool", RXQ_PORT_ID(rxq_ctrl), rxq_ctrl->rxq.idx); else DRV_LOG(ERR, "share group %u queue %u empty mbuf pool", rxq_ctrl->share_group, rxq_ctrl->share_qid); rte_errno = ENOMEM; goto error; } /* Only vectored Rx routines rely on headroom size. */ MLX5_ASSERT(!has_vec_support || DATA_OFF(buf) >= RTE_PKTMBUF_HEADROOM); /* Buffer is supposed to be empty. */ MLX5_ASSERT(rte_pktmbuf_data_len(buf) == 0); MLX5_ASSERT(rte_pktmbuf_pkt_len(buf) == 0); MLX5_ASSERT(!buf->next); SET_DATA_OFF(buf, seg->offset); PORT(buf) = rxq_ctrl->rxq.port_id; DATA_LEN(buf) = seg->length; PKT_LEN(buf) = seg->length; NB_SEGS(buf) = 1; (*rxq_ctrl->rxq.elts)[i] = buf; } /* If Rx vector is activated. */ if (has_vec_support) { struct mlx5_rxq_data *rxq = &rxq_ctrl->rxq; struct rte_mbuf *mbuf_init = &rxq->fake_mbuf; struct rte_pktmbuf_pool_private *priv = (struct rte_pktmbuf_pool_private *) rte_mempool_get_priv(rxq_ctrl->rxq.mp); int j; /* Initialize default rearm_data for vPMD. */ mbuf_init->data_off = RTE_PKTMBUF_HEADROOM; rte_mbuf_refcnt_set(mbuf_init, 1); mbuf_init->nb_segs = 1; /* For shared queues port is provided in CQE */ mbuf_init->port = rxq->shared ? 0 : rxq->port_id; if (priv->flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) mbuf_init->ol_flags = RTE_MBUF_F_EXTERNAL; /* * prevent compiler reordering: * rearm_data covers previous fields. */ rte_compiler_barrier(); rxq->mbuf_initializer = *(rte_xmm_t *)&mbuf_init->rearm_data; /* Padding with a fake mbuf for vectorized Rx. */ for (j = 0; j < MLX5_VPMD_DESCS_PER_LOOP; ++j) (*rxq->elts)[elts_n + j] = &rxq->fake_mbuf; } if (rxq_ctrl->share_group == 0) DRV_LOG(DEBUG, "port %u SPRQ queue %u allocated and configured %u segments (max %u packets)", RXQ_PORT_ID(rxq_ctrl), rxq_ctrl->rxq.idx, elts_n, elts_n / (1 << rxq_ctrl->rxq.sges_n)); else DRV_LOG(DEBUG, "share group %u SPRQ queue %u allocated and configured %u segments (max %u packets)", rxq_ctrl->share_group, rxq_ctrl->share_qid, elts_n, elts_n / (1 << rxq_ctrl->rxq.sges_n)); return 0; error: err = rte_errno; /* Save rte_errno before cleanup. */ elts_n = i; for (i = 0; (i != elts_n); ++i) { if ((*rxq_ctrl->rxq.elts)[i] != NULL) rte_pktmbuf_free_seg((*rxq_ctrl->rxq.elts)[i]); (*rxq_ctrl->rxq.elts)[i] = NULL; } if (rxq_ctrl->share_group == 0) DRV_LOG(DEBUG, "port %u SPRQ queue %u failed, freed everything", RXQ_PORT_ID(rxq_ctrl), rxq_ctrl->rxq.idx); else DRV_LOG(DEBUG, "share group %u SPRQ queue %u failed, freed everything", rxq_ctrl->share_group, rxq_ctrl->share_qid); rte_errno = err; /* Restore rte_errno. */ return -rte_errno; } /** * Allocate RX queue elements. * * @param rxq_ctrl * Pointer to RX queue structure. * * @return * 0 on success, negative errno value on failure. */ int rxq_alloc_elts(struct mlx5_rxq_ctrl *rxq_ctrl) { int ret = 0; /** * For MPRQ we need to allocate both MPRQ buffers * for WQEs and simple mbufs for vector processing. */ if (mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq)) ret = rxq_alloc_elts_mprq(rxq_ctrl); if (ret == 0) ret = rxq_alloc_elts_sprq(rxq_ctrl); return ret; } /** * Free RX queue elements for Multi-Packet RQ. * * @param rxq_ctrl * Pointer to RX queue structure. */ static void rxq_free_elts_mprq(struct mlx5_rxq_ctrl *rxq_ctrl) { struct mlx5_rxq_data *rxq = &rxq_ctrl->rxq; uint16_t i; DRV_LOG(DEBUG, "port %u Multi-Packet Rx queue %u freeing %d WRs", rxq->port_id, rxq->idx, (1u << rxq->elts_n)); if (rxq->mprq_bufs == NULL) return; for (i = 0; (i != (1u << rxq->elts_n)); ++i) { if ((*rxq->mprq_bufs)[i] != NULL) mlx5_mprq_buf_free((*rxq->mprq_bufs)[i]); (*rxq->mprq_bufs)[i] = NULL; } if (rxq->mprq_repl != NULL) { mlx5_mprq_buf_free(rxq->mprq_repl); rxq->mprq_repl = NULL; } } /** * Free RX queue elements for Single-Packet RQ. * * @param rxq_ctrl * Pointer to RX queue structure. */ static void rxq_free_elts_sprq(struct mlx5_rxq_ctrl *rxq_ctrl) { struct mlx5_rxq_data *rxq = &rxq_ctrl->rxq; const uint16_t q_n = mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq) ? RTE_BIT32(rxq->elts_n) * RTE_BIT32(rxq->log_strd_num) : RTE_BIT32(rxq->elts_n); const uint16_t q_mask = q_n - 1; uint16_t elts_ci = mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq) ? rxq->elts_ci : rxq->rq_ci; uint16_t used = q_n - (elts_ci - rxq->rq_pi); uint16_t i; if (rxq_ctrl->share_group == 0) DRV_LOG(DEBUG, "port %u Rx queue %u freeing %d WRs", RXQ_PORT_ID(rxq_ctrl), rxq->idx, q_n); else DRV_LOG(DEBUG, "share group %u Rx queue %u freeing %d WRs", rxq_ctrl->share_group, rxq_ctrl->share_qid, q_n); if (rxq->elts == NULL) return; /** * Some mbuf in the Ring belongs to the application. * They cannot be freed. */ if (mlx5_rxq_check_vec_support(rxq) > 0) { for (i = 0; i < used; ++i) (*rxq->elts)[(elts_ci + i) & q_mask] = NULL; rxq->rq_pi = elts_ci; } for (i = 0; i != q_n; ++i) { if ((*rxq->elts)[i] != NULL) rte_pktmbuf_free_seg((*rxq->elts)[i]); (*rxq->elts)[i] = NULL; } } /** * Free RX queue elements. * * @param rxq_ctrl * Pointer to RX queue structure. */ static void rxq_free_elts(struct mlx5_rxq_ctrl *rxq_ctrl) { /* * For MPRQ we need to allocate both MPRQ buffers * for WQEs and simple mbufs for vector processing. */ if (mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq)) rxq_free_elts_mprq(rxq_ctrl); rxq_free_elts_sprq(rxq_ctrl); } /** * Returns the per-queue supported offloads. * * @param dev * Pointer to Ethernet device. * * @return * Supported Rx offloads. */ uint64_t mlx5_get_rx_queue_offloads(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_dev_config *config = &priv->config; uint64_t offloads = (RTE_ETH_RX_OFFLOAD_SCATTER | RTE_ETH_RX_OFFLOAD_TIMESTAMP | RTE_ETH_RX_OFFLOAD_RSS_HASH); if (!config->mprq.enabled) offloads |= RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT; if (config->hw_fcs_strip) offloads |= RTE_ETH_RX_OFFLOAD_KEEP_CRC; if (config->hw_csum) offloads |= (RTE_ETH_RX_OFFLOAD_IPV4_CKSUM | RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM); if (config->hw_vlan_strip) offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP; if (MLX5_LRO_SUPPORTED(dev)) offloads |= RTE_ETH_RX_OFFLOAD_TCP_LRO; return offloads; } /** * Returns the per-port supported offloads. * * @return * Supported Rx offloads. */ uint64_t mlx5_get_rx_port_offloads(void) { uint64_t offloads = RTE_ETH_RX_OFFLOAD_VLAN_FILTER; return offloads; } /** * Verify if the queue can be released. * * @param dev * Pointer to Ethernet device. * @param idx * RX queue index. * * @return * 1 if the queue can be released * 0 if the queue can not be released, there are references to it. * Negative errno and rte_errno is set if queue doesn't exist. */ static int mlx5_rxq_releasable(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, idx); if (rxq == NULL) { rte_errno = EINVAL; return -rte_errno; } return (__atomic_load_n(&rxq->refcnt, __ATOMIC_RELAXED) == 1); } /* Fetches and drops all SW-owned and error CQEs to synchronize CQ. */ static void rxq_sync_cq(struct mlx5_rxq_data *rxq) { const uint16_t cqe_n = 1 << rxq->cqe_n; const uint16_t cqe_mask = cqe_n - 1; volatile struct mlx5_cqe *cqe; int ret, i; i = cqe_n; do { cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_mask]; ret = check_cqe(cqe, cqe_n, rxq->cq_ci); if (ret == MLX5_CQE_STATUS_HW_OWN) break; if (ret == MLX5_CQE_STATUS_ERR) { rxq->cq_ci++; continue; } MLX5_ASSERT(ret == MLX5_CQE_STATUS_SW_OWN); if (MLX5_CQE_FORMAT(cqe->op_own) != MLX5_COMPRESSED) { rxq->cq_ci++; continue; } /* Compute the next non compressed CQE. */ rxq->cq_ci += rte_be_to_cpu_32(cqe->byte_cnt); } while (--i); /* Move all CQEs to HW ownership, including possible MiniCQEs. */ for (i = 0; i < cqe_n; i++) { cqe = &(*rxq->cqes)[i]; cqe->op_own = MLX5_CQE_INVALIDATE; } /* Resync CQE and WQE (WQ in RESET state). */ rte_io_wmb(); *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci); rte_io_wmb(); *rxq->rq_db = rte_cpu_to_be_32(0); rte_io_wmb(); } /** * Rx queue stop. Device queue goes to the RESET state, * all involved mbufs are freed from WQ. * * @param dev * Pointer to Ethernet device structure. * @param idx * RX queue index. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_rx_queue_stop_primary(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, idx); struct mlx5_rxq_ctrl *rxq_ctrl = rxq->ctrl; int ret; MLX5_ASSERT(rxq != NULL && rxq_ctrl != NULL); MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); ret = priv->obj_ops.rxq_obj_modify(rxq, MLX5_RXQ_MOD_RDY2RST); if (ret) { DRV_LOG(ERR, "Cannot change Rx WQ state to RESET: %s", strerror(errno)); rte_errno = errno; return ret; } /* Remove all processes CQEs. */ rxq_sync_cq(&rxq_ctrl->rxq); /* Free all involved mbufs. */ rxq_free_elts(rxq_ctrl); /* Set the actual queue state. */ dev->data->rx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } /** * Rx queue stop. Device queue goes to the RESET state, * all involved mbufs are freed from WQ. * * @param dev * Pointer to Ethernet device structure. * @param idx * RX queue index. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_rx_queue_stop(struct rte_eth_dev *dev, uint16_t idx) { eth_rx_burst_t pkt_burst = dev->rx_pkt_burst; int ret; if (rte_eth_dev_is_rx_hairpin_queue(dev, idx)) { DRV_LOG(ERR, "Hairpin queue can't be stopped"); rte_errno = EINVAL; return -EINVAL; } if (dev->data->rx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STOPPED) return 0; /* * Vectorized Rx burst requires the CQ and RQ indices * synchronized, that might be broken on RQ restart * and cause Rx malfunction, so queue stopping is * not supported if vectorized Rx burst is engaged. * The routine pointer depends on the process type, * should perform check there. MPRQ is not supported as well. */ if (pkt_burst != mlx5_rx_burst) { DRV_LOG(ERR, "Rx queue stop is only supported " "for non-vectorized single-packet Rx"); rte_errno = EINVAL; return -EINVAL; } if (rte_eal_process_type() == RTE_PROC_SECONDARY) { ret = mlx5_mp_os_req_queue_control(dev, idx, MLX5_MP_REQ_QUEUE_RX_STOP); } else { ret = mlx5_rx_queue_stop_primary(dev, idx); } return ret; } /** * Rx queue start. Device queue goes to the ready state, * all required mbufs are allocated and WQ is replenished. * * @param dev * Pointer to Ethernet device structure. * @param idx * RX queue index. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_rx_queue_start_primary(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, idx); struct mlx5_rxq_data *rxq_data = &rxq->ctrl->rxq; int ret; MLX5_ASSERT(rxq != NULL && rxq->ctrl != NULL); MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); /* Allocate needed buffers. */ ret = rxq_alloc_elts(rxq->ctrl); if (ret) { DRV_LOG(ERR, "Cannot reallocate buffers for Rx WQ"); rte_errno = errno; return ret; } rte_io_wmb(); *rxq_data->cq_db = rte_cpu_to_be_32(rxq_data->cq_ci); rte_io_wmb(); /* Reset RQ consumer before moving queue to READY state. */ *rxq_data->rq_db = rte_cpu_to_be_32(0); rte_io_wmb(); ret = priv->obj_ops.rxq_obj_modify(rxq, MLX5_RXQ_MOD_RST2RDY); if (ret) { DRV_LOG(ERR, "Cannot change Rx WQ state to READY: %s", strerror(errno)); rte_errno = errno; return ret; } /* Reinitialize RQ - set WQEs. */ mlx5_rxq_initialize(rxq_data); rxq_data->err_state = MLX5_RXQ_ERR_STATE_NO_ERROR; /* Set actual queue state. */ dev->data->rx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STARTED; return 0; } /** * Rx queue start. Device queue goes to the ready state, * all required mbufs are allocated and WQ is replenished. * * @param dev * Pointer to Ethernet device structure. * @param idx * RX queue index. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_rx_queue_start(struct rte_eth_dev *dev, uint16_t idx) { int ret; if (rte_eth_dev_is_rx_hairpin_queue(dev, idx)) { DRV_LOG(ERR, "Hairpin queue can't be started"); rte_errno = EINVAL; return -EINVAL; } if (dev->data->rx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STARTED) return 0; if (rte_eal_process_type() == RTE_PROC_SECONDARY) { ret = mlx5_mp_os_req_queue_control(dev, idx, MLX5_MP_REQ_QUEUE_RX_START); } else { ret = mlx5_rx_queue_start_primary(dev, idx); } return ret; } /** * Rx queue presetup checks. * * @param dev * Pointer to Ethernet device structure. * @param idx * RX queue index. * @param desc * Number of descriptors to configure in queue. * @param[out] rxq_ctrl * Address of pointer to shared Rx queue control. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_rx_queue_pre_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t *desc, struct mlx5_rxq_ctrl **rxq_ctrl) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_rxq_priv *rxq; bool empty; if (!rte_is_power_of_2(*desc)) { *desc = 1 << log2above(*desc); DRV_LOG(WARNING, "port %u increased number of descriptors in Rx queue %u" " to the next power of two (%d)", dev->data->port_id, idx, *desc); } DRV_LOG(DEBUG, "port %u configuring Rx queue %u for %u descriptors", dev->data->port_id, idx, *desc); if (idx >= priv->rxqs_n) { DRV_LOG(ERR, "port %u Rx queue index out of range (%u >= %u)", dev->data->port_id, idx, priv->rxqs_n); rte_errno = EOVERFLOW; return -rte_errno; } if (rxq_ctrl == NULL || *rxq_ctrl == NULL) return 0; if (!(*rxq_ctrl)->rxq.shared) { if (!mlx5_rxq_releasable(dev, idx)) { DRV_LOG(ERR, "port %u unable to release queue index %u", dev->data->port_id, idx); rte_errno = EBUSY; return -rte_errno; } mlx5_rxq_release(dev, idx); } else { if ((*rxq_ctrl)->obj != NULL) /* Some port using shared Rx queue has been started. */ return 0; /* Release all owner RxQ to reconfigure Shared RxQ. */ do { rxq = LIST_FIRST(&(*rxq_ctrl)->owners); LIST_REMOVE(rxq, owner_entry); empty = LIST_EMPTY(&(*rxq_ctrl)->owners); mlx5_rxq_release(ETH_DEV(rxq->priv), rxq->idx); } while (!empty); *rxq_ctrl = NULL; } return 0; } /** * Get the shared Rx queue object that matches group and queue index. * * @param dev * Pointer to Ethernet device structure. * @param group * Shared RXQ group. * @param share_qid * Shared RX queue index. * * @return * Shared RXQ object that matching, or NULL if not found. */ static struct mlx5_rxq_ctrl * mlx5_shared_rxq_get(struct rte_eth_dev *dev, uint32_t group, uint16_t share_qid) { struct mlx5_rxq_ctrl *rxq_ctrl; struct mlx5_priv *priv = dev->data->dev_private; LIST_FOREACH(rxq_ctrl, &priv->sh->shared_rxqs, share_entry) { if (rxq_ctrl->share_group == group && rxq_ctrl->share_qid == share_qid) return rxq_ctrl; } return NULL; } /** * Check whether requested Rx queue configuration matches shared RXQ. * * @param rxq_ctrl * Pointer to shared RXQ. * @param dev * Pointer to Ethernet device structure. * @param idx * Queue index. * @param desc * Number of descriptors to configure in queue. * @param socket * NUMA socket on which memory must be allocated. * @param[in] conf * Thresholds parameters. * @param mp * Memory pool for buffer allocations. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static bool mlx5_shared_rxq_match(struct mlx5_rxq_ctrl *rxq_ctrl, struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, unsigned int socket, const struct rte_eth_rxconf *conf, struct rte_mempool *mp) { struct mlx5_priv *spriv = LIST_FIRST(&rxq_ctrl->owners)->priv; struct mlx5_priv *priv = dev->data->dev_private; unsigned int i; RTE_SET_USED(conf); if (rxq_ctrl->socket != socket) { DRV_LOG(ERR, "port %u queue index %u failed to join shared group: socket mismatch", dev->data->port_id, idx); return false; } if (rxq_ctrl->rxq.elts_n != log2above(desc)) { DRV_LOG(ERR, "port %u queue index %u failed to join shared group: descriptor number mismatch", dev->data->port_id, idx); return false; } if (priv->mtu != spriv->mtu) { DRV_LOG(ERR, "port %u queue index %u failed to join shared group: mtu mismatch", dev->data->port_id, idx); return false; } if (priv->dev_data->dev_conf.intr_conf.rxq != spriv->dev_data->dev_conf.intr_conf.rxq) { DRV_LOG(ERR, "port %u queue index %u failed to join shared group: interrupt mismatch", dev->data->port_id, idx); return false; } if (mp != NULL && rxq_ctrl->rxq.mp != mp) { DRV_LOG(ERR, "port %u queue index %u failed to join shared group: mempool mismatch", dev->data->port_id, idx); return false; } else if (mp == NULL) { if (conf->rx_nseg != rxq_ctrl->rxseg_n) { DRV_LOG(ERR, "port %u queue index %u failed to join shared group: segment number mismatch", dev->data->port_id, idx); return false; } for (i = 0; i < conf->rx_nseg; i++) { if (memcmp(&conf->rx_seg[i].split, &rxq_ctrl->rxseg[i], sizeof(struct rte_eth_rxseg_split))) { DRV_LOG(ERR, "port %u queue index %u failed to join shared group: segment %u configuration mismatch", dev->data->port_id, idx, i); return false; } } } if (priv->config.hw_padding != spriv->config.hw_padding) { DRV_LOG(ERR, "port %u queue index %u failed to join shared group: padding mismatch", dev->data->port_id, idx); return false; } if (priv->config.cqe_comp != spriv->config.cqe_comp || (priv->config.cqe_comp && priv->config.cqe_comp_fmt != spriv->config.cqe_comp_fmt)) { DRV_LOG(ERR, "port %u queue index %u failed to join shared group: CQE compression mismatch", dev->data->port_id, idx); return false; } return true; } /** * * @param dev * Pointer to Ethernet device structure. * @param idx * RX queue index. * @param desc * Number of descriptors to configure in queue. * @param socket * NUMA socket on which memory must be allocated. * @param[in] conf * Thresholds parameters. * @param mp * Memory pool for buffer allocations. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, unsigned int socket, const struct rte_eth_rxconf *conf, struct rte_mempool *mp) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_rxq_priv *rxq; struct mlx5_rxq_ctrl *rxq_ctrl = NULL; struct rte_eth_rxseg_split *rx_seg = (struct rte_eth_rxseg_split *)conf->rx_seg; struct rte_eth_rxseg_split rx_single = {.mp = mp}; uint16_t n_seg = conf->rx_nseg; int res; uint64_t offloads = conf->offloads | dev->data->dev_conf.rxmode.offloads; if ((offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO) && !priv->config.lro.supported) { DRV_LOG(ERR, "Port %u queue %u LRO is configured but not supported.", dev->data->port_id, idx); rte_errno = EINVAL; return -rte_errno; } if (mp) { /* * The parameters should be checked on rte_eth_dev layer. * If mp is specified it means the compatible configuration * without buffer split feature tuning. */ rx_seg = &rx_single; n_seg = 1; } if (n_seg > 1) { /* The offloads should be checked on rte_eth_dev layer. */ MLX5_ASSERT(offloads & RTE_ETH_RX_OFFLOAD_SCATTER); if (!(offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) { DRV_LOG(ERR, "port %u queue index %u split " "offload not configured", dev->data->port_id, idx); rte_errno = ENOSPC; return -rte_errno; } MLX5_ASSERT(n_seg < MLX5_MAX_RXQ_NSEG); } if (conf->share_group > 0) { if (!priv->config.hca_attr.mem_rq_rmp) { DRV_LOG(ERR, "port %u queue index %u shared Rx queue not supported by fw", dev->data->port_id, idx); rte_errno = EINVAL; return -rte_errno; } if (priv->obj_ops.rxq_obj_new != devx_obj_ops.rxq_obj_new) { DRV_LOG(ERR, "port %u queue index %u shared Rx queue needs DevX api", dev->data->port_id, idx); rte_errno = EINVAL; return -rte_errno; } if (conf->share_qid >= priv->rxqs_n) { DRV_LOG(ERR, "port %u shared Rx queue index %u > number of Rx queues %u", dev->data->port_id, conf->share_qid, priv->rxqs_n); rte_errno = EINVAL; return -rte_errno; } if (priv->config.mprq.enabled) { DRV_LOG(ERR, "port %u shared Rx queue index %u: not supported when MPRQ enabled", dev->data->port_id, conf->share_qid); rte_errno = EINVAL; return -rte_errno; } /* Try to reuse shared RXQ. */ rxq_ctrl = mlx5_shared_rxq_get(dev, conf->share_group, conf->share_qid); res = mlx5_rx_queue_pre_setup(dev, idx, &desc, &rxq_ctrl); if (res) return res; if (rxq_ctrl != NULL && !mlx5_shared_rxq_match(rxq_ctrl, dev, idx, desc, socket, conf, mp)) { rte_errno = EINVAL; return -rte_errno; } } else { res = mlx5_rx_queue_pre_setup(dev, idx, &desc, &rxq_ctrl); if (res) return res; } /* Allocate RXQ. */ rxq = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(*rxq), 0, SOCKET_ID_ANY); if (!rxq) { DRV_LOG(ERR, "port %u unable to allocate rx queue index %u private data", dev->data->port_id, idx); rte_errno = ENOMEM; return -rte_errno; } rxq->priv = priv; rxq->idx = idx; (*priv->rxq_privs)[idx] = rxq; if (rxq_ctrl != NULL) { /* Join owner list. */ LIST_INSERT_HEAD(&rxq_ctrl->owners, rxq, owner_entry); rxq->ctrl = rxq_ctrl; } else { rxq_ctrl = mlx5_rxq_new(dev, rxq, desc, socket, conf, rx_seg, n_seg); if (rxq_ctrl == NULL) { DRV_LOG(ERR, "port %u unable to allocate rx queue index %u", dev->data->port_id, idx); mlx5_free(rxq); (*priv->rxq_privs)[idx] = NULL; rte_errno = ENOMEM; return -rte_errno; } } mlx5_rxq_ref(dev, idx); DRV_LOG(DEBUG, "port %u adding Rx queue %u to list", dev->data->port_id, idx); dev->data->rx_queues[idx] = &rxq_ctrl->rxq; return 0; } /** * * @param dev * Pointer to Ethernet device structure. * @param idx * RX queue index. * @param desc * Number of descriptors to configure in queue. * @param hairpin_conf * Hairpin configuration parameters. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_rx_hairpin_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, const struct rte_eth_hairpin_conf *hairpin_conf) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_rxq_priv *rxq; struct mlx5_rxq_ctrl *rxq_ctrl; int res; res = mlx5_rx_queue_pre_setup(dev, idx, &desc, NULL); if (res) return res; if (hairpin_conf->peer_count != 1) { rte_errno = EINVAL; DRV_LOG(ERR, "port %u unable to setup Rx hairpin queue index %u" " peer count is %u", dev->data->port_id, idx, hairpin_conf->peer_count); return -rte_errno; } if (hairpin_conf->peers[0].port == dev->data->port_id) { if (hairpin_conf->peers[0].queue >= priv->txqs_n) { rte_errno = EINVAL; DRV_LOG(ERR, "port %u unable to setup Rx hairpin queue" " index %u, Tx %u is larger than %u", dev->data->port_id, idx, hairpin_conf->peers[0].queue, priv->txqs_n); return -rte_errno; } } else { if (hairpin_conf->manual_bind == 0 || hairpin_conf->tx_explicit == 0) { rte_errno = EINVAL; DRV_LOG(ERR, "port %u unable to setup Rx hairpin queue" " index %u peer port %u with attributes %u %u", dev->data->port_id, idx, hairpin_conf->peers[0].port, hairpin_conf->manual_bind, hairpin_conf->tx_explicit); return -rte_errno; } } rxq = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(*rxq), 0, SOCKET_ID_ANY); if (!rxq) { DRV_LOG(ERR, "port %u unable to allocate hairpin rx queue index %u private data", dev->data->port_id, idx); rte_errno = ENOMEM; return -rte_errno; } rxq->priv = priv; rxq->idx = idx; (*priv->rxq_privs)[idx] = rxq; rxq_ctrl = mlx5_rxq_hairpin_new(dev, rxq, desc, hairpin_conf); if (!rxq_ctrl) { DRV_LOG(ERR, "port %u unable to allocate hairpin queue index %u", dev->data->port_id, idx); mlx5_free(rxq); (*priv->rxq_privs)[idx] = NULL; rte_errno = ENOMEM; return -rte_errno; } DRV_LOG(DEBUG, "port %u adding hairpin Rx queue %u to list", dev->data->port_id, idx); dev->data->rx_queues[idx] = &rxq_ctrl->rxq; return 0; } /** * DPDK callback to release a RX queue. * * @param dev * Pointer to Ethernet device structure. * @param qid * Receive queue index. */ void mlx5_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid) { struct mlx5_rxq_data *rxq = dev->data->rx_queues[qid]; if (rxq == NULL) return; if (!mlx5_rxq_releasable(dev, qid)) rte_panic("port %u Rx queue %u is still used by a flow and" " cannot be removed\n", dev->data->port_id, qid); mlx5_rxq_release(dev, qid); } /** * Allocate queue vector and fill epoll fd list for Rx interrupts. * * @param dev * Pointer to Ethernet device. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_rx_intr_vec_enable(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; unsigned int i; unsigned int rxqs_n = priv->rxqs_n; unsigned int n = RTE_MIN(rxqs_n, (uint32_t)RTE_MAX_RXTX_INTR_VEC_ID); unsigned int count = 0; struct rte_intr_handle *intr_handle = dev->intr_handle; if (!dev->data->dev_conf.intr_conf.rxq) return 0; mlx5_rx_intr_vec_disable(dev); if (rte_intr_vec_list_alloc(intr_handle, NULL, n)) { DRV_LOG(ERR, "port %u failed to allocate memory for interrupt" " vector, Rx interrupts will not be supported", dev->data->port_id); rte_errno = ENOMEM; return -rte_errno; } if (rte_intr_type_set(intr_handle, RTE_INTR_HANDLE_EXT)) return -rte_errno; for (i = 0; i != n; ++i) { /* This rxq obj must not be released in this function. */ struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, i); struct mlx5_rxq_obj *rxq_obj = rxq ? rxq->ctrl->obj : NULL; int rc; /* Skip queues that cannot request interrupts. */ if (!rxq_obj || (!rxq_obj->ibv_channel && !rxq_obj->devx_channel)) { /* Use invalid intr_vec[] index to disable entry. */ if (rte_intr_vec_list_index_set(intr_handle, i, RTE_INTR_VEC_RXTX_OFFSET + RTE_MAX_RXTX_INTR_VEC_ID)) return -rte_errno; continue; } mlx5_rxq_ref(dev, i); if (count >= RTE_MAX_RXTX_INTR_VEC_ID) { DRV_LOG(ERR, "port %u too many Rx queues for interrupt" " vector size (%d), Rx interrupts cannot be" " enabled", dev->data->port_id, RTE_MAX_RXTX_INTR_VEC_ID); mlx5_rx_intr_vec_disable(dev); rte_errno = ENOMEM; return -rte_errno; } rc = mlx5_os_set_nonblock_channel_fd(rxq_obj->fd); if (rc < 0) { rte_errno = errno; DRV_LOG(ERR, "port %u failed to make Rx interrupt file" " descriptor %d non-blocking for queue index" " %d", dev->data->port_id, rxq_obj->fd, i); mlx5_rx_intr_vec_disable(dev); return -rte_errno; } if (rte_intr_vec_list_index_set(intr_handle, i, RTE_INTR_VEC_RXTX_OFFSET + count)) return -rte_errno; if (rte_intr_efds_index_set(intr_handle, count, rxq_obj->fd)) return -rte_errno; count++; } if (!count) mlx5_rx_intr_vec_disable(dev); else if (rte_intr_nb_efd_set(intr_handle, count)) return -rte_errno; return 0; } /** * Clean up Rx interrupts handler. * * @param dev * Pointer to Ethernet device. */ void mlx5_rx_intr_vec_disable(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct rte_intr_handle *intr_handle = dev->intr_handle; unsigned int i; unsigned int rxqs_n = priv->rxqs_n; unsigned int n = RTE_MIN(rxqs_n, (uint32_t)RTE_MAX_RXTX_INTR_VEC_ID); if (!dev->data->dev_conf.intr_conf.rxq) return; if (rte_intr_vec_list_index_get(intr_handle, 0) < 0) goto free; for (i = 0; i != n; ++i) { if (rte_intr_vec_list_index_get(intr_handle, i) == RTE_INTR_VEC_RXTX_OFFSET + RTE_MAX_RXTX_INTR_VEC_ID) continue; /** * Need to access directly the queue to release the reference * kept in mlx5_rx_intr_vec_enable(). */ mlx5_rxq_deref(dev, i); } free: rte_intr_free_epoll_fd(intr_handle); rte_intr_vec_list_free(intr_handle); rte_intr_nb_efd_set(intr_handle, 0); } /** * MLX5 CQ notification . * * @param rxq * Pointer to receive queue structure. * @param sq_n_rxq * Sequence number per receive queue . */ static inline void mlx5_arm_cq(struct mlx5_rxq_data *rxq, int sq_n_rxq) { int sq_n = 0; uint32_t doorbell_hi; uint64_t doorbell; sq_n = sq_n_rxq & MLX5_CQ_SQN_MASK; doorbell_hi = sq_n << MLX5_CQ_SQN_OFFSET | (rxq->cq_ci & MLX5_CI_MASK); doorbell = (uint64_t)doorbell_hi << 32; doorbell |= rxq->cqn; mlx5_doorbell_ring(&rxq->uar_data, rte_cpu_to_be_64(doorbell), doorbell_hi, &rxq->cq_db[MLX5_CQ_ARM_DB], 0); } /** * DPDK callback for Rx queue interrupt enable. * * @param dev * Pointer to Ethernet device structure. * @param rx_queue_id * Rx queue number. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_rx_intr_enable(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, rx_queue_id); if (!rxq) goto error; if (rxq->ctrl->irq) { if (!rxq->ctrl->obj) goto error; mlx5_arm_cq(&rxq->ctrl->rxq, rxq->ctrl->rxq.cq_arm_sn); } return 0; error: rte_errno = EINVAL; return -rte_errno; } /** * DPDK callback for Rx queue interrupt disable. * * @param dev * Pointer to Ethernet device structure. * @param rx_queue_id * Rx queue number. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_rx_intr_disable(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, rx_queue_id); int ret = 0; if (!rxq) { rte_errno = EINVAL; return -rte_errno; } if (!rxq->ctrl->obj) goto error; if (rxq->ctrl->irq) { ret = priv->obj_ops.rxq_event_get(rxq->ctrl->obj); if (ret < 0) goto error; rxq->ctrl->rxq.cq_arm_sn++; } return 0; error: /** * The ret variable may be EAGAIN which means the get_event function was * called before receiving one. */ if (ret < 0) rte_errno = errno; else rte_errno = EINVAL; if (rte_errno != EAGAIN) DRV_LOG(WARNING, "port %u unable to disable interrupt on Rx queue %d", dev->data->port_id, rx_queue_id); return -rte_errno; } /** * Verify the Rx queue objects list is empty * * @param dev * Pointer to Ethernet device. * * @return * The number of objects not released. */ int mlx5_rxq_obj_verify(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; int ret = 0; struct mlx5_rxq_obj *rxq_obj; LIST_FOREACH(rxq_obj, &priv->rxqsobj, next) { if (rxq_obj->rxq_ctrl == NULL) continue; if (rxq_obj->rxq_ctrl->rxq.shared && !LIST_EMPTY(&rxq_obj->rxq_ctrl->owners)) continue; DRV_LOG(DEBUG, "port %u Rx queue %u still referenced", dev->data->port_id, rxq_obj->rxq_ctrl->rxq.idx); ++ret; } return ret; } /** * Callback function to initialize mbufs for Multi-Packet RQ. */ static inline void mlx5_mprq_buf_init(struct rte_mempool *mp, void *opaque_arg, void *_m, unsigned int i __rte_unused) { struct mlx5_mprq_buf *buf = _m; struct rte_mbuf_ext_shared_info *shinfo; unsigned int strd_n = (unsigned int)(uintptr_t)opaque_arg; unsigned int j; memset(_m, 0, sizeof(*buf)); buf->mp = mp; __atomic_store_n(&buf->refcnt, 1, __ATOMIC_RELAXED); for (j = 0; j != strd_n; ++j) { shinfo = &buf->shinfos[j]; shinfo->free_cb = mlx5_mprq_buf_free_cb; shinfo->fcb_opaque = buf; } } /** * Free mempool of Multi-Packet RQ. * * @param dev * Pointer to Ethernet device. * * @return * 0 on success, negative errno value on failure. */ int mlx5_mprq_free_mp(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct rte_mempool *mp = priv->mprq_mp; unsigned int i; if (mp == NULL) return 0; DRV_LOG(DEBUG, "port %u freeing mempool (%s) for Multi-Packet RQ", dev->data->port_id, mp->name); /* * If a buffer in the pool has been externally attached to a mbuf and it * is still in use by application, destroying the Rx queue can spoil * the packet. It is unlikely to happen but if application dynamically * creates and destroys with holding Rx packets, this can happen. * * TODO: It is unavoidable for now because the mempool for Multi-Packet * RQ isn't provided by application but managed by PMD. */ if (!rte_mempool_full(mp)) { DRV_LOG(ERR, "port %u mempool for Multi-Packet RQ is still in use", dev->data->port_id); rte_errno = EBUSY; return -rte_errno; } rte_mempool_free(mp); /* Unset mempool for each Rx queue. */ for (i = 0; i != priv->rxqs_n; ++i) { struct mlx5_rxq_data *rxq = mlx5_rxq_data_get(dev, i); if (rxq == NULL) continue; rxq->mprq_mp = NULL; } priv->mprq_mp = NULL; return 0; } /** * Allocate a mempool for Multi-Packet RQ. All configured Rx queues share the * mempool. If already allocated, reuse it if there're enough elements. * Otherwise, resize it. * * @param dev * Pointer to Ethernet device. * * @return * 0 on success, negative errno value on failure. */ int mlx5_mprq_alloc_mp(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct rte_mempool *mp = priv->mprq_mp; char name[RTE_MEMPOOL_NAMESIZE]; unsigned int desc = 0; unsigned int buf_len; unsigned int obj_num; unsigned int obj_size; unsigned int log_strd_num = 0; unsigned int log_strd_sz = 0; unsigned int i; unsigned int n_ibv = 0; int ret; if (!mlx5_mprq_enabled(dev)) return 0; /* Count the total number of descriptors configured. */ for (i = 0; i != priv->rxqs_n; ++i) { struct mlx5_rxq_ctrl *rxq_ctrl = mlx5_rxq_ctrl_get(dev, i); struct mlx5_rxq_data *rxq; if (rxq_ctrl == NULL || rxq_ctrl->type != MLX5_RXQ_TYPE_STANDARD) continue; rxq = &rxq_ctrl->rxq; n_ibv++; desc += 1 << rxq->elts_n; /* Get the max number of strides. */ if (log_strd_num < rxq->log_strd_num) log_strd_num = rxq->log_strd_num; /* Get the max size of a stride. */ if (log_strd_sz < rxq->log_strd_sz) log_strd_sz = rxq->log_strd_sz; } MLX5_ASSERT(log_strd_num && log_strd_sz); buf_len = RTE_BIT32(log_strd_num) * RTE_BIT32(log_strd_sz); obj_size = sizeof(struct mlx5_mprq_buf) + buf_len + RTE_BIT32(log_strd_num) * sizeof(struct rte_mbuf_ext_shared_info) + RTE_PKTMBUF_HEADROOM; /* * Received packets can be either memcpy'd or externally referenced. In * case that the packet is attached to an mbuf as an external buffer, as * it isn't possible to predict how the buffers will be queued by * application, there's no option to exactly pre-allocate needed buffers * in advance but to speculatively prepares enough buffers. * * In the data path, if this Mempool is depleted, PMD will try to memcpy * received packets to buffers provided by application (rxq->mp) until * this Mempool gets available again. */ desc *= 4; obj_num = desc + MLX5_MPRQ_MP_CACHE_SZ * n_ibv; /* * rte_mempool_create_empty() has sanity check to refuse large cache * size compared to the number of elements. * CACHE_FLUSHTHRESH_MULTIPLIER is defined in a C file, so using a * constant number 2 instead. */ obj_num = RTE_MAX(obj_num, MLX5_MPRQ_MP_CACHE_SZ * 2); /* Check a mempool is already allocated and if it can be resued. */ if (mp != NULL && mp->elt_size >= obj_size && mp->size >= obj_num) { DRV_LOG(DEBUG, "port %u mempool %s is being reused", dev->data->port_id, mp->name); /* Reuse. */ goto exit; } else if (mp != NULL) { DRV_LOG(DEBUG, "port %u mempool %s should be resized, freeing it", dev->data->port_id, mp->name); /* * If failed to free, which means it may be still in use, no way * but to keep using the existing one. On buffer underrun, * packets will be memcpy'd instead of external buffer * attachment. */ if (mlx5_mprq_free_mp(dev)) { if (mp->elt_size >= obj_size) goto exit; else return -rte_errno; } } snprintf(name, sizeof(name), "port-%u-mprq", dev->data->port_id); mp = rte_mempool_create(name, obj_num, obj_size, MLX5_MPRQ_MP_CACHE_SZ, 0, NULL, NULL, mlx5_mprq_buf_init, (void *)((uintptr_t)1 << log_strd_num), dev->device->numa_node, 0); if (mp == NULL) { DRV_LOG(ERR, "port %u failed to allocate a mempool for" " Multi-Packet RQ, count=%u, size=%u", dev->data->port_id, obj_num, obj_size); rte_errno = ENOMEM; return -rte_errno; } ret = mlx5_mr_mempool_register(priv->sh->cdev, mp, false); if (ret < 0 && rte_errno != EEXIST) { ret = rte_errno; DRV_LOG(ERR, "port %u failed to register a mempool for Multi-Packet RQ", dev->data->port_id); rte_mempool_free(mp); rte_errno = ret; return -rte_errno; } priv->mprq_mp = mp; exit: /* Set mempool for each Rx queue. */ for (i = 0; i != priv->rxqs_n; ++i) { struct mlx5_rxq_ctrl *rxq_ctrl = mlx5_rxq_ctrl_get(dev, i); if (rxq_ctrl == NULL || rxq_ctrl->type != MLX5_RXQ_TYPE_STANDARD) continue; rxq_ctrl->rxq.mprq_mp = mp; } DRV_LOG(INFO, "port %u Multi-Packet RQ is configured", dev->data->port_id); return 0; } #define MLX5_MAX_TCP_HDR_OFFSET ((unsigned int)(sizeof(struct rte_ether_hdr) + \ sizeof(struct rte_vlan_hdr) * 2 + \ sizeof(struct rte_ipv6_hdr))) #define MAX_TCP_OPTION_SIZE 40u #define MLX5_MAX_LRO_HEADER_FIX ((unsigned int)(MLX5_MAX_TCP_HDR_OFFSET + \ sizeof(struct rte_tcp_hdr) + \ MAX_TCP_OPTION_SIZE)) /** * Adjust the maximum LRO massage size. * * @param dev * Pointer to Ethernet device. * @param idx * RX queue index. * @param max_lro_size * The maximum size for LRO packet. */ static void mlx5_max_lro_msg_size_adjust(struct rte_eth_dev *dev, uint16_t idx, uint32_t max_lro_size) { struct mlx5_priv *priv = dev->data->dev_private; if (priv->config.hca_attr.lro_max_msg_sz_mode == MLX5_LRO_MAX_MSG_SIZE_START_FROM_L4 && max_lro_size > MLX5_MAX_TCP_HDR_OFFSET) max_lro_size -= MLX5_MAX_TCP_HDR_OFFSET; max_lro_size = RTE_MIN(max_lro_size, MLX5_MAX_LRO_SIZE); if (priv->max_lro_msg_size) priv->max_lro_msg_size = RTE_MIN((uint32_t)priv->max_lro_msg_size, max_lro_size); else priv->max_lro_msg_size = max_lro_size; DRV_LOG(DEBUG, "port %u Rx Queue %u max LRO message size adjusted to %u bytes", dev->data->port_id, idx, priv->max_lro_msg_size); } /** * Prepare both size and number of stride for Multi-Packet RQ. * * @param dev * Pointer to Ethernet device. * @param idx * RX queue index. * @param desc * Number of descriptors to configure in queue. * @param rx_seg_en * Indicator if Rx segment enables, if so Multi-Packet RQ doesn't enable. * @param min_mbuf_size * Non scatter min mbuf size, max_rx_pktlen plus overhead. * @param actual_log_stride_num * Log number of strides to configure for this queue. * @param actual_log_stride_size * Log stride size to configure for this queue. * * @return * 0 if Multi-Packet RQ is supported, otherwise -1. */ static int mlx5_mprq_prepare(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, bool rx_seg_en, uint32_t min_mbuf_size, uint32_t *actual_log_stride_num, uint32_t *actual_log_stride_size) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_dev_config *config = &priv->config; uint32_t log_min_stride_num = config->mprq.log_min_stride_num; uint32_t log_max_stride_num = config->mprq.log_max_stride_num; uint32_t log_def_stride_num = RTE_MIN(RTE_MAX(MLX5_MPRQ_DEFAULT_LOG_STRIDE_NUM, log_min_stride_num), log_max_stride_num); uint32_t log_min_stride_size = config->mprq.log_min_stride_size; uint32_t log_max_stride_size = config->mprq.log_max_stride_size; uint32_t log_def_stride_size = RTE_MIN(RTE_MAX(MLX5_MPRQ_DEFAULT_LOG_STRIDE_SIZE, log_min_stride_size), log_max_stride_size); uint32_t log_stride_wqe_size; if (mlx5_check_mprq_support(dev) != 1 || rx_seg_en) goto unsupport; /* Checks if chosen number of strides is in supported range. */ if (config->mprq.log_stride_num > log_max_stride_num || config->mprq.log_stride_num < log_min_stride_num) { *actual_log_stride_num = log_def_stride_num; DRV_LOG(WARNING, "Port %u Rx queue %u number of strides for Multi-Packet RQ is out of range, setting default value (%u)", dev->data->port_id, idx, RTE_BIT32(log_def_stride_num)); } else { *actual_log_stride_num = config->mprq.log_stride_num; } if (config->mprq.log_stride_size) { /* Checks if chosen size of stride is in supported range. */ if (config->mprq.log_stride_size > log_max_stride_size || config->mprq.log_stride_size < log_min_stride_size) { *actual_log_stride_size = log_def_stride_size; DRV_LOG(WARNING, "Port %u Rx queue %u size of a stride for Multi-Packet RQ is out of range, setting default value (%u)", dev->data->port_id, idx, RTE_BIT32(log_def_stride_size)); } else { *actual_log_stride_size = config->mprq.log_stride_size; } } else { if (min_mbuf_size <= RTE_BIT32(log_max_stride_size)) *actual_log_stride_size = log2above(min_mbuf_size); else goto unsupport; } log_stride_wqe_size = *actual_log_stride_num + *actual_log_stride_size; /* Check if WQE buffer size is supported by hardware. */ if (log_stride_wqe_size < config->mprq.log_min_stride_wqe_size) { *actual_log_stride_num = log_def_stride_num; *actual_log_stride_size = log_def_stride_size; DRV_LOG(WARNING, "Port %u Rx queue %u size of WQE buffer for Multi-Packet RQ is too small, setting default values (stride_num_n=%u, stride_size_n=%u)", dev->data->port_id, idx, RTE_BIT32(log_def_stride_num), RTE_BIT32(log_def_stride_size)); log_stride_wqe_size = log_def_stride_num + log_def_stride_size; } MLX5_ASSERT(log_stride_wqe_size >= config->mprq.log_min_stride_wqe_size); if (desc <= RTE_BIT32(*actual_log_stride_num)) goto unsupport; if (min_mbuf_size > RTE_BIT32(log_stride_wqe_size)) { DRV_LOG(WARNING, "Port %u Rx queue %u " "Multi-Packet RQ is unsupported, WQE buffer size (%u) " "is smaller than min mbuf size (%u)", dev->data->port_id, idx, RTE_BIT32(log_stride_wqe_size), min_mbuf_size); goto unsupport; } DRV_LOG(DEBUG, "Port %u Rx queue %u " "Multi-Packet RQ is enabled strd_num_n = %u, strd_sz_n = %u", dev->data->port_id, idx, RTE_BIT32(*actual_log_stride_num), RTE_BIT32(*actual_log_stride_size)); return 0; unsupport: if (config->mprq.enabled) DRV_LOG(WARNING, "Port %u MPRQ is requested but cannot be enabled\n" " (requested: pkt_sz = %u, desc_num = %u," " rxq_num = %u, stride_sz = %u, stride_num = %u\n" " supported: min_rxqs_num = %u, min_buf_wqe_sz = %u" " min_stride_sz = %u, max_stride_sz = %u).\n" "Rx segment is %senable.", dev->data->port_id, min_mbuf_size, desc, priv->rxqs_n, RTE_BIT32(config->mprq.log_stride_size), RTE_BIT32(config->mprq.log_stride_num), config->mprq.min_rxqs_num, RTE_BIT32(config->mprq.log_min_stride_wqe_size), RTE_BIT32(config->mprq.log_min_stride_size), RTE_BIT32(config->mprq.log_max_stride_size), rx_seg_en ? "" : "not "); return -1; } /** * Create a DPDK Rx queue. * * @param dev * Pointer to Ethernet device. * @param rxq * RX queue private data. * @param desc * Number of descriptors to configure in queue. * @param socket * NUMA socket on which memory must be allocated. * * @return * A DPDK queue object on success, NULL otherwise and rte_errno is set. */ struct mlx5_rxq_ctrl * mlx5_rxq_new(struct rte_eth_dev *dev, struct mlx5_rxq_priv *rxq, uint16_t desc, unsigned int socket, const struct rte_eth_rxconf *conf, const struct rte_eth_rxseg_split *rx_seg, uint16_t n_seg) { uint16_t idx = rxq->idx; struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_rxq_ctrl *tmpl; unsigned int mb_len = rte_pktmbuf_data_room_size(rx_seg[0].mp); struct mlx5_dev_config *config = &priv->config; uint64_t offloads = conf->offloads | dev->data->dev_conf.rxmode.offloads; unsigned int lro_on_queue = !!(offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO); unsigned int max_rx_pktlen = lro_on_queue ? dev->data->dev_conf.rxmode.max_lro_pkt_size : dev->data->mtu + (unsigned int)RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN; unsigned int non_scatter_min_mbuf_size = max_rx_pktlen + RTE_PKTMBUF_HEADROOM; unsigned int max_lro_size = 0; unsigned int first_mb_free_size = mb_len - RTE_PKTMBUF_HEADROOM; uint32_t mprq_log_actual_stride_num = 0; uint32_t mprq_log_actual_stride_size = 0; bool rx_seg_en = n_seg != 1 || rx_seg[0].offset || rx_seg[0].length; const int mprq_en = !mlx5_mprq_prepare(dev, idx, desc, rx_seg_en, non_scatter_min_mbuf_size, &mprq_log_actual_stride_num, &mprq_log_actual_stride_size); /* * Always allocate extra slots, even if eventually * the vector Rx will not be used. */ uint16_t desc_n = desc + config->rx_vec_en * MLX5_VPMD_DESCS_PER_LOOP; size_t alloc_size = sizeof(*tmpl) + desc_n * sizeof(struct rte_mbuf *); const struct rte_eth_rxseg_split *qs_seg = rx_seg; unsigned int tail_len; if (mprq_en) { /* Trim the number of descs needed. */ desc >>= mprq_log_actual_stride_num; alloc_size += desc * sizeof(struct mlx5_mprq_buf *); } tmpl = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, alloc_size, 0, socket); if (!tmpl) { rte_errno = ENOMEM; return NULL; } LIST_INIT(&tmpl->owners); rxq->ctrl = tmpl; LIST_INSERT_HEAD(&tmpl->owners, rxq, owner_entry); MLX5_ASSERT(n_seg && n_seg <= MLX5_MAX_RXQ_NSEG); /* * Save the original segment configuration in the shared queue * descriptor for the later check on the sibling queue creation. */ tmpl->rxseg_n = n_seg; rte_memcpy(tmpl->rxseg, qs_seg, sizeof(struct rte_eth_rxseg_split) * n_seg); /* * Build the array of actual buffer offsets and lengths. * Pad with the buffers from the last memory pool if * needed to handle max size packets, replace zero length * with the buffer length from the pool. */ tail_len = max_rx_pktlen; do { struct mlx5_eth_rxseg *hw_seg = &tmpl->rxq.rxseg[tmpl->rxq.rxseg_n]; uint32_t buf_len, offset, seg_len; /* * For the buffers beyond descriptions offset is zero, * the first buffer contains head room. */ buf_len = rte_pktmbuf_data_room_size(qs_seg->mp); offset = (tmpl->rxq.rxseg_n >= n_seg ? 0 : qs_seg->offset) + (tmpl->rxq.rxseg_n ? 0 : RTE_PKTMBUF_HEADROOM); /* * For the buffers beyond descriptions the length is * pool buffer length, zero lengths are replaced with * pool buffer length either. */ seg_len = tmpl->rxq.rxseg_n >= n_seg ? buf_len : qs_seg->length ? qs_seg->length : (buf_len - offset); /* Check is done in long int, now overflows. */ if (buf_len < seg_len + offset) { DRV_LOG(ERR, "port %u Rx queue %u: Split offset/length " "%u/%u can't be satisfied", dev->data->port_id, idx, qs_seg->length, qs_seg->offset); rte_errno = EINVAL; goto error; } if (seg_len > tail_len) seg_len = buf_len - offset; if (++tmpl->rxq.rxseg_n > MLX5_MAX_RXQ_NSEG) { DRV_LOG(ERR, "port %u too many SGEs (%u) needed to handle" " requested maximum packet size %u, the maximum" " supported are %u", dev->data->port_id, tmpl->rxq.rxseg_n, max_rx_pktlen, MLX5_MAX_RXQ_NSEG); rte_errno = ENOTSUP; goto error; } /* Build the actual scattering element in the queue object. */ hw_seg->mp = qs_seg->mp; MLX5_ASSERT(offset <= UINT16_MAX); MLX5_ASSERT(seg_len <= UINT16_MAX); hw_seg->offset = (uint16_t)offset; hw_seg->length = (uint16_t)seg_len; /* * Advance the segment descriptor, the padding is the based * on the attributes of the last descriptor. */ if (tmpl->rxq.rxseg_n < n_seg) qs_seg++; tail_len -= RTE_MIN(tail_len, seg_len); } while (tail_len || !rte_is_power_of_2(tmpl->rxq.rxseg_n)); MLX5_ASSERT(tmpl->rxq.rxseg_n && tmpl->rxq.rxseg_n <= MLX5_MAX_RXQ_NSEG); if (tmpl->rxq.rxseg_n > 1 && !(offloads & RTE_ETH_RX_OFFLOAD_SCATTER)) { DRV_LOG(ERR, "port %u Rx queue %u: Scatter offload is not" " configured and no enough mbuf space(%u) to contain " "the maximum RX packet length(%u) with head-room(%u)", dev->data->port_id, idx, mb_len, max_rx_pktlen, RTE_PKTMBUF_HEADROOM); rte_errno = ENOSPC; goto error; } tmpl->type = MLX5_RXQ_TYPE_STANDARD; if (mlx5_mr_ctrl_init(&tmpl->rxq.mr_ctrl, &priv->sh->cdev->mr_scache.dev_gen, socket)) { /* rte_errno is already set. */ goto error; } tmpl->socket = socket; if (dev->data->dev_conf.intr_conf.rxq) tmpl->irq = 1; if (mprq_en) { /* TODO: Rx scatter isn't supported yet. */ tmpl->rxq.sges_n = 0; tmpl->rxq.log_strd_num = mprq_log_actual_stride_num; tmpl->rxq.log_strd_sz = mprq_log_actual_stride_size; tmpl->rxq.strd_shift_en = MLX5_MPRQ_TWO_BYTE_SHIFT; tmpl->rxq.strd_scatter_en = !!(offloads & RTE_ETH_RX_OFFLOAD_SCATTER); tmpl->rxq.mprq_max_memcpy_len = RTE_MIN(first_mb_free_size, config->mprq.max_memcpy_len); max_lro_size = RTE_MIN(max_rx_pktlen, RTE_BIT32(tmpl->rxq.log_strd_num) * RTE_BIT32(tmpl->rxq.log_strd_sz)); } else if (tmpl->rxq.rxseg_n == 1) { MLX5_ASSERT(max_rx_pktlen <= first_mb_free_size); tmpl->rxq.sges_n = 0; max_lro_size = max_rx_pktlen; } else if (offloads & RTE_ETH_RX_OFFLOAD_SCATTER) { unsigned int sges_n; if (lro_on_queue && first_mb_free_size < MLX5_MAX_LRO_HEADER_FIX) { DRV_LOG(ERR, "Not enough space in the first segment(%u)" " to include the max header size(%u) for LRO", first_mb_free_size, MLX5_MAX_LRO_HEADER_FIX); rte_errno = ENOTSUP; goto error; } /* * Determine the number of SGEs needed for a full packet * and round it to the next power of two. */ sges_n = log2above(tmpl->rxq.rxseg_n); if (sges_n > MLX5_MAX_LOG_RQ_SEGS) { DRV_LOG(ERR, "port %u too many SGEs (%u) needed to handle" " requested maximum packet size %u, the maximum" " supported are %u", dev->data->port_id, 1 << sges_n, max_rx_pktlen, 1u << MLX5_MAX_LOG_RQ_SEGS); rte_errno = ENOTSUP; goto error; } tmpl->rxq.sges_n = sges_n; max_lro_size = max_rx_pktlen; } DRV_LOG(DEBUG, "port %u maximum number of segments per packet: %u", dev->data->port_id, 1 << tmpl->rxq.sges_n); if (desc % (1 << tmpl->rxq.sges_n)) { DRV_LOG(ERR, "port %u number of Rx queue descriptors (%u) is not a" " multiple of SGEs per packet (%u)", dev->data->port_id, desc, 1 << tmpl->rxq.sges_n); rte_errno = EINVAL; goto error; } mlx5_max_lro_msg_size_adjust(dev, idx, max_lro_size); /* Toggle RX checksum offload if hardware supports it. */ tmpl->rxq.csum = !!(offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM); /* Configure Rx timestamp. */ tmpl->rxq.hw_timestamp = !!(offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP); tmpl->rxq.timestamp_rx_flag = 0; if (tmpl->rxq.hw_timestamp && rte_mbuf_dyn_rx_timestamp_register( &tmpl->rxq.timestamp_offset, &tmpl->rxq.timestamp_rx_flag) != 0) { DRV_LOG(ERR, "Cannot register Rx timestamp field/flag"); goto error; } /* Configure VLAN stripping. */ tmpl->rxq.vlan_strip = !!(offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP); /* By default, FCS (CRC) is stripped by hardware. */ tmpl->rxq.crc_present = 0; tmpl->rxq.lro = lro_on_queue; if (offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC) { if (config->hw_fcs_strip) { /* * RQs used for LRO-enabled TIRs should not be * configured to scatter the FCS. */ if (lro_on_queue) DRV_LOG(WARNING, "port %u CRC stripping has been " "disabled but will still be performed " "by hardware, because LRO is enabled", dev->data->port_id); else tmpl->rxq.crc_present = 1; } else { DRV_LOG(WARNING, "port %u CRC stripping has been disabled but will" " still be performed by hardware, make sure MLNX_OFED" " and firmware are up to date", dev->data->port_id); } } DRV_LOG(DEBUG, "port %u CRC stripping is %s, %u bytes will be subtracted from" " incoming frames to hide it", dev->data->port_id, tmpl->rxq.crc_present ? "disabled" : "enabled", tmpl->rxq.crc_present << 2); tmpl->rxq.rss_hash = !!priv->rss_conf.rss_hf && (!!(dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS)); /* Save port ID. */ tmpl->rxq.port_id = dev->data->port_id; tmpl->sh = priv->sh; tmpl->rxq.mp = rx_seg[0].mp; tmpl->rxq.elts_n = log2above(desc); tmpl->rxq.rq_repl_thresh = MLX5_VPMD_RXQ_RPLNSH_THRESH(desc_n); tmpl->rxq.elts = (struct rte_mbuf *(*)[desc_n])(tmpl + 1); tmpl->rxq.mprq_bufs = (struct mlx5_mprq_buf *(*)[desc])(*tmpl->rxq.elts + desc_n); tmpl->rxq.idx = idx; if (conf->share_group > 0) { tmpl->rxq.shared = 1; tmpl->share_group = conf->share_group; tmpl->share_qid = conf->share_qid; LIST_INSERT_HEAD(&priv->sh->shared_rxqs, tmpl, share_entry); } LIST_INSERT_HEAD(&priv->rxqsctrl, tmpl, next); return tmpl; error: mlx5_mr_btree_free(&tmpl->rxq.mr_ctrl.cache_bh); mlx5_free(tmpl); return NULL; } /** * Create a DPDK Rx hairpin queue. * * @param dev * Pointer to Ethernet device. * @param rxq * RX queue. * @param desc * Number of descriptors to configure in queue. * @param hairpin_conf * The hairpin binding configuration. * * @return * A DPDK queue object on success, NULL otherwise and rte_errno is set. */ struct mlx5_rxq_ctrl * mlx5_rxq_hairpin_new(struct rte_eth_dev *dev, struct mlx5_rxq_priv *rxq, uint16_t desc, const struct rte_eth_hairpin_conf *hairpin_conf) { uint16_t idx = rxq->idx; struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_rxq_ctrl *tmpl; tmpl = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(*tmpl), 0, SOCKET_ID_ANY); if (!tmpl) { rte_errno = ENOMEM; return NULL; } LIST_INIT(&tmpl->owners); rxq->ctrl = tmpl; LIST_INSERT_HEAD(&tmpl->owners, rxq, owner_entry); tmpl->type = MLX5_RXQ_TYPE_HAIRPIN; tmpl->socket = SOCKET_ID_ANY; tmpl->rxq.rss_hash = 0; tmpl->rxq.port_id = dev->data->port_id; tmpl->sh = priv->sh; tmpl->rxq.mp = NULL; tmpl->rxq.elts_n = log2above(desc); tmpl->rxq.elts = NULL; tmpl->rxq.mr_ctrl.cache_bh = (struct mlx5_mr_btree) { 0 }; tmpl->rxq.idx = idx; rxq->hairpin_conf = *hairpin_conf; mlx5_rxq_ref(dev, idx); LIST_INSERT_HEAD(&priv->rxqsctrl, tmpl, next); return tmpl; } /** * Increase Rx queue reference count. * * @param dev * Pointer to Ethernet device. * @param idx * RX queue index. * * @return * A pointer to the queue if it exists, NULL otherwise. */ struct mlx5_rxq_priv * mlx5_rxq_ref(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, idx); if (rxq != NULL) __atomic_fetch_add(&rxq->refcnt, 1, __ATOMIC_RELAXED); return rxq; } /** * Dereference a Rx queue. * * @param dev * Pointer to Ethernet device. * @param idx * RX queue index. * * @return * Updated reference count. */ uint32_t mlx5_rxq_deref(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, idx); if (rxq == NULL) return 0; return __atomic_sub_fetch(&rxq->refcnt, 1, __ATOMIC_RELAXED); } /** * Get a Rx queue. * * @param dev * Pointer to Ethernet device. * @param idx * RX queue index. * * @return * A pointer to the queue if it exists, NULL otherwise. */ struct mlx5_rxq_priv * mlx5_rxq_get(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_priv *priv = dev->data->dev_private; if (idx >= priv->rxqs_n) return NULL; MLX5_ASSERT(priv->rxq_privs != NULL); return (*priv->rxq_privs)[idx]; } /** * Get Rx queue shareable control. * * @param dev * Pointer to Ethernet device. * @param idx * RX queue index. * * @return * A pointer to the queue control if it exists, NULL otherwise. */ struct mlx5_rxq_ctrl * mlx5_rxq_ctrl_get(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, idx); return rxq == NULL ? NULL : rxq->ctrl; } /** * Get Rx queue shareable data. * * @param dev * Pointer to Ethernet device. * @param idx * RX queue index. * * @return * A pointer to the queue data if it exists, NULL otherwise. */ struct mlx5_rxq_data * mlx5_rxq_data_get(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, idx); return rxq == NULL ? NULL : &rxq->ctrl->rxq; } /** * Release a Rx queue. * * @param dev * Pointer to Ethernet device. * @param idx * RX queue index. * * @return * 1 while a reference on it exists, 0 when freed. */ int mlx5_rxq_release(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_rxq_priv *rxq; struct mlx5_rxq_ctrl *rxq_ctrl; uint32_t refcnt; if (priv->rxq_privs == NULL) return 0; rxq = mlx5_rxq_get(dev, idx); if (rxq == NULL || rxq->refcnt == 0) return 0; rxq_ctrl = rxq->ctrl; refcnt = mlx5_rxq_deref(dev, idx); if (refcnt > 1) { return 1; } else if (refcnt == 1) { /* RxQ stopped. */ priv->obj_ops.rxq_obj_release(rxq); if (!rxq_ctrl->started && rxq_ctrl->obj != NULL) { LIST_REMOVE(rxq_ctrl->obj, next); mlx5_free(rxq_ctrl->obj); rxq_ctrl->obj = NULL; } if (rxq_ctrl->type == MLX5_RXQ_TYPE_STANDARD) { if (!rxq_ctrl->started) rxq_free_elts(rxq_ctrl); dev->data->rx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STOPPED; } } else { /* Refcnt zero, closing device. */ LIST_REMOVE(rxq, owner_entry); if (LIST_EMPTY(&rxq_ctrl->owners)) { if (rxq_ctrl->type == MLX5_RXQ_TYPE_STANDARD) mlx5_mr_btree_free (&rxq_ctrl->rxq.mr_ctrl.cache_bh); if (rxq_ctrl->rxq.shared) LIST_REMOVE(rxq_ctrl, share_entry); LIST_REMOVE(rxq_ctrl, next); mlx5_free(rxq_ctrl); } dev->data->rx_queues[idx] = NULL; mlx5_free(rxq); (*priv->rxq_privs)[idx] = NULL; } return 0; } /** * Verify the Rx Queue list is empty * * @param dev * Pointer to Ethernet device. * * @return * The number of object not released. */ int mlx5_rxq_verify(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_rxq_ctrl *rxq_ctrl; int ret = 0; LIST_FOREACH(rxq_ctrl, &priv->rxqsctrl, next) { DRV_LOG(DEBUG, "port %u Rx Queue %u still referenced", dev->data->port_id, rxq_ctrl->rxq.idx); ++ret; } return ret; } /** * Get a Rx queue type. * * @param dev * Pointer to Ethernet device. * @param idx * Rx queue index. * * @return * The Rx queue type. */ enum mlx5_rxq_type mlx5_rxq_get_type(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_rxq_ctrl *rxq_ctrl = mlx5_rxq_ctrl_get(dev, idx); if (idx < priv->rxqs_n && rxq_ctrl != NULL) return rxq_ctrl->type; return MLX5_RXQ_TYPE_UNDEFINED; } /* * Get a Rx hairpin queue configuration. * * @param dev * Pointer to Ethernet device. * @param idx * Rx queue index. * * @return * Pointer to the configuration if a hairpin RX queue, otherwise NULL. */ const struct rte_eth_hairpin_conf * mlx5_rxq_get_hairpin_conf(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, idx); if (idx < priv->rxqs_n && rxq != NULL) { if (rxq->ctrl->type == MLX5_RXQ_TYPE_HAIRPIN) return &rxq->hairpin_conf; } return NULL; } /** * Match queues listed in arguments to queues contained in indirection table * object. * * @param ind_tbl * Pointer to indirection table to match. * @param queues * Queues to match to ques in indirection table. * @param queues_n * Number of queues in the array. * * @return * 1 if all queues in indirection table match 0 otherwise. */ static int mlx5_ind_table_obj_match_queues(const struct mlx5_ind_table_obj *ind_tbl, const uint16_t *queues, uint32_t queues_n) { return (ind_tbl->queues_n == queues_n) && (!memcmp(ind_tbl->queues, queues, ind_tbl->queues_n * sizeof(ind_tbl->queues[0]))); } /** * Get an indirection table. * * @param dev * Pointer to Ethernet device. * @param queues * Queues entering in the indirection table. * @param queues_n * Number of queues in the array. * * @return * An indirection table if found. */ struct mlx5_ind_table_obj * mlx5_ind_table_obj_get(struct rte_eth_dev *dev, const uint16_t *queues, uint32_t queues_n) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_ind_table_obj *ind_tbl; rte_rwlock_read_lock(&priv->ind_tbls_lock); LIST_FOREACH(ind_tbl, &priv->ind_tbls, next) { if ((ind_tbl->queues_n == queues_n) && (memcmp(ind_tbl->queues, queues, ind_tbl->queues_n * sizeof(ind_tbl->queues[0])) == 0)) { __atomic_fetch_add(&ind_tbl->refcnt, 1, __ATOMIC_RELAXED); break; } } rte_rwlock_read_unlock(&priv->ind_tbls_lock); return ind_tbl; } /** * Release an indirection table. * * @param dev * Pointer to Ethernet device. * @param ind_table * Indirection table to release. * @param standalone * Indirection table for Standalone queue. * @param deref_rxqs * If true, then dereference RX queues related to indirection table. * Otherwise, no additional action will be taken. * * @return * 1 while a reference on it exists, 0 when freed. */ int mlx5_ind_table_obj_release(struct rte_eth_dev *dev, struct mlx5_ind_table_obj *ind_tbl, bool standalone, bool deref_rxqs) { struct mlx5_priv *priv = dev->data->dev_private; unsigned int i, ret; rte_rwlock_write_lock(&priv->ind_tbls_lock); ret = __atomic_sub_fetch(&ind_tbl->refcnt, 1, __ATOMIC_RELAXED); if (!ret && !standalone) LIST_REMOVE(ind_tbl, next); rte_rwlock_write_unlock(&priv->ind_tbls_lock); if (ret) return 1; priv->obj_ops.ind_table_destroy(ind_tbl); if (deref_rxqs) { for (i = 0; i != ind_tbl->queues_n; ++i) claim_nonzero(mlx5_rxq_deref(dev, ind_tbl->queues[i])); } mlx5_free(ind_tbl); return 0; } /** * Verify the Rx Queue list is empty * * @param dev * Pointer to Ethernet device. * * @return * The number of object not released. */ int mlx5_ind_table_obj_verify(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_ind_table_obj *ind_tbl; int ret = 0; rte_rwlock_read_lock(&priv->ind_tbls_lock); LIST_FOREACH(ind_tbl, &priv->ind_tbls, next) { DRV_LOG(DEBUG, "port %u indirection table obj %p still referenced", dev->data->port_id, (void *)ind_tbl); ++ret; } rte_rwlock_read_unlock(&priv->ind_tbls_lock); return ret; } /** * Setup an indirection table structure fields. * * @param dev * Pointer to Ethernet device. * @param ind_table * Indirection table to modify. * @param ref_qs * Whether to increment RxQ reference counters. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_ind_table_obj_setup(struct rte_eth_dev *dev, struct mlx5_ind_table_obj *ind_tbl, bool ref_qs) { struct mlx5_priv *priv = dev->data->dev_private; uint32_t queues_n = ind_tbl->queues_n; uint16_t *queues = ind_tbl->queues; unsigned int i = 0, j; int ret = 0, err; const unsigned int n = rte_is_power_of_2(queues_n) ? log2above(queues_n) : log2above(priv->config.ind_table_max_size); if (ref_qs) for (i = 0; i != queues_n; ++i) { if (mlx5_rxq_ref(dev, queues[i]) == NULL) { ret = -rte_errno; goto error; } } ret = priv->obj_ops.ind_table_new(dev, n, ind_tbl); if (ret) goto error; __atomic_fetch_add(&ind_tbl->refcnt, 1, __ATOMIC_RELAXED); return 0; error: if (ref_qs) { err = rte_errno; for (j = 0; j < i; j++) mlx5_rxq_deref(dev, queues[j]); rte_errno = err; } DRV_LOG(DEBUG, "Port %u cannot setup indirection table.", dev->data->port_id); return ret; } /** * Create an indirection table. * * @param dev * Pointer to Ethernet device. * @param queues * Queues entering in the indirection table. * @param queues_n * Number of queues in the array. * @param standalone * Indirection table for Standalone queue. * @param ref_qs * Whether to increment RxQ reference counters. * * @return * The Verbs/DevX object initialized, NULL otherwise and rte_errno is set. */ static struct mlx5_ind_table_obj * mlx5_ind_table_obj_new(struct rte_eth_dev *dev, const uint16_t *queues, uint32_t queues_n, bool standalone, bool ref_qs) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_ind_table_obj *ind_tbl; int ret; ind_tbl = mlx5_malloc(MLX5_MEM_ZERO, sizeof(*ind_tbl) + queues_n * sizeof(uint16_t), 0, SOCKET_ID_ANY); if (!ind_tbl) { rte_errno = ENOMEM; return NULL; } ind_tbl->queues_n = queues_n; ind_tbl->queues = (uint16_t *)(ind_tbl + 1); memcpy(ind_tbl->queues, queues, queues_n * sizeof(*queues)); ret = mlx5_ind_table_obj_setup(dev, ind_tbl, ref_qs); if (ret < 0) { mlx5_free(ind_tbl); return NULL; } if (!standalone) { rte_rwlock_write_lock(&priv->ind_tbls_lock); LIST_INSERT_HEAD(&priv->ind_tbls, ind_tbl, next); rte_rwlock_write_unlock(&priv->ind_tbls_lock); } return ind_tbl; } static int mlx5_ind_table_obj_check_standalone(struct rte_eth_dev *dev __rte_unused, struct mlx5_ind_table_obj *ind_tbl) { uint32_t refcnt; refcnt = __atomic_load_n(&ind_tbl->refcnt, __ATOMIC_RELAXED); if (refcnt <= 1) return 0; /* * Modification of indirection tables having more than 1 * reference is unsupported. */ DRV_LOG(DEBUG, "Port %u cannot modify indirection table %p (refcnt %u > 1).", dev->data->port_id, (void *)ind_tbl, refcnt); rte_errno = EINVAL; return -rte_errno; } /** * Modify an indirection table. * * @param dev * Pointer to Ethernet device. * @param ind_table * Indirection table to modify. * @param queues * Queues replacement for the indirection table. * @param queues_n * Number of queues in the array. * @param standalone * Indirection table for Standalone queue. * @param ref_new_qs * Whether to increment new RxQ set reference counters. * @param deref_old_qs * Whether to decrement old RxQ set reference counters. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_ind_table_obj_modify(struct rte_eth_dev *dev, struct mlx5_ind_table_obj *ind_tbl, uint16_t *queues, const uint32_t queues_n, bool standalone, bool ref_new_qs, bool deref_old_qs) { struct mlx5_priv *priv = dev->data->dev_private; unsigned int i = 0, j; int ret = 0, err; const unsigned int n = rte_is_power_of_2(queues_n) ? log2above(queues_n) : log2above(priv->config.ind_table_max_size); MLX5_ASSERT(standalone); RTE_SET_USED(standalone); if (mlx5_ind_table_obj_check_standalone(dev, ind_tbl) < 0) return -rte_errno; if (ref_new_qs) for (i = 0; i != queues_n; ++i) { if (!mlx5_rxq_ref(dev, queues[i])) { ret = -rte_errno; goto error; } } MLX5_ASSERT(priv->obj_ops.ind_table_modify); ret = priv->obj_ops.ind_table_modify(dev, n, queues, queues_n, ind_tbl); if (ret) goto error; if (deref_old_qs) for (i = 0; i < ind_tbl->queues_n; i++) claim_nonzero(mlx5_rxq_deref(dev, ind_tbl->queues[i])); ind_tbl->queues_n = queues_n; ind_tbl->queues = queues; return 0; error: if (ref_new_qs) { err = rte_errno; for (j = 0; j < i; j++) mlx5_rxq_deref(dev, queues[j]); rte_errno = err; } DRV_LOG(DEBUG, "Port %u cannot setup indirection table.", dev->data->port_id); return ret; } /** * Attach an indirection table to its queues. * * @param dev * Pointer to Ethernet device. * @param ind_table * Indirection table to attach. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_ind_table_obj_attach(struct rte_eth_dev *dev, struct mlx5_ind_table_obj *ind_tbl) { int ret; ret = mlx5_ind_table_obj_modify(dev, ind_tbl, ind_tbl->queues, ind_tbl->queues_n, true /* standalone */, true /* ref_new_qs */, false /* deref_old_qs */); if (ret != 0) DRV_LOG(ERR, "Port %u could not modify indirect table obj %p", dev->data->port_id, (void *)ind_tbl); return ret; } /** * Detach an indirection table from its queues. * * @param dev * Pointer to Ethernet device. * @param ind_table * Indirection table to detach. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_ind_table_obj_detach(struct rte_eth_dev *dev, struct mlx5_ind_table_obj *ind_tbl) { struct mlx5_priv *priv = dev->data->dev_private; const unsigned int n = rte_is_power_of_2(ind_tbl->queues_n) ? log2above(ind_tbl->queues_n) : log2above(priv->config.ind_table_max_size); unsigned int i; int ret; ret = mlx5_ind_table_obj_check_standalone(dev, ind_tbl); if (ret != 0) return ret; MLX5_ASSERT(priv->obj_ops.ind_table_modify); ret = priv->obj_ops.ind_table_modify(dev, n, NULL, 0, ind_tbl); if (ret != 0) { DRV_LOG(ERR, "Port %u could not modify indirect table obj %p", dev->data->port_id, (void *)ind_tbl); return ret; } for (i = 0; i < ind_tbl->queues_n; i++) mlx5_rxq_release(dev, ind_tbl->queues[i]); return ret; } int mlx5_hrxq_match_cb(void *tool_ctx __rte_unused, struct mlx5_list_entry *entry, void *cb_ctx) { struct mlx5_flow_cb_ctx *ctx = cb_ctx; struct mlx5_flow_rss_desc *rss_desc = ctx->data; struct mlx5_hrxq *hrxq = container_of(entry, typeof(*hrxq), entry); return (hrxq->rss_key_len != rss_desc->key_len || memcmp(hrxq->rss_key, rss_desc->key, rss_desc->key_len) || hrxq->hash_fields != rss_desc->hash_fields || hrxq->ind_table->queues_n != rss_desc->queue_num || memcmp(hrxq->ind_table->queues, rss_desc->queue, rss_desc->queue_num * sizeof(rss_desc->queue[0]))); } /** * Modify an Rx Hash queue configuration. * * @param dev * Pointer to Ethernet device. * @param hrxq * Index to Hash Rx queue to modify. * @param rss_key * RSS key for the Rx hash queue. * @param rss_key_len * RSS key length. * @param hash_fields * Verbs protocol hash field to make the RSS on. * @param queues * Queues entering in hash queue. In case of empty hash_fields only the * first queue index will be taken for the indirection table. * @param queues_n * Number of queues. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_hrxq_modify(struct rte_eth_dev *dev, uint32_t hrxq_idx, const uint8_t *rss_key, uint32_t rss_key_len, uint64_t hash_fields, const uint16_t *queues, uint32_t queues_n) { int err; struct mlx5_ind_table_obj *ind_tbl = NULL; struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_hrxq *hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], hrxq_idx); bool dev_started = !!dev->data->dev_started; int ret; if (!hrxq) { rte_errno = EINVAL; return -rte_errno; } /* validations */ if (hrxq->rss_key_len != rss_key_len) { /* rss_key_len is fixed size 40 byte & not supposed to change */ rte_errno = EINVAL; return -rte_errno; } queues_n = hash_fields ? queues_n : 1; if (mlx5_ind_table_obj_match_queues(hrxq->ind_table, queues, queues_n)) { ind_tbl = hrxq->ind_table; } else { if (hrxq->standalone) { /* * Replacement of indirection table unsupported for * standalone hrxq objects (used by shared RSS). */ rte_errno = ENOTSUP; return -rte_errno; } ind_tbl = mlx5_ind_table_obj_get(dev, queues, queues_n); if (!ind_tbl) ind_tbl = mlx5_ind_table_obj_new(dev, queues, queues_n, hrxq->standalone, dev_started); } if (!ind_tbl) { rte_errno = ENOMEM; return -rte_errno; } MLX5_ASSERT(priv->obj_ops.hrxq_modify); ret = priv->obj_ops.hrxq_modify(dev, hrxq, rss_key, hash_fields, ind_tbl); if (ret) { rte_errno = errno; goto error; } if (ind_tbl != hrxq->ind_table) { MLX5_ASSERT(!hrxq->standalone); mlx5_ind_table_obj_release(dev, hrxq->ind_table, hrxq->standalone, true); hrxq->ind_table = ind_tbl; } hrxq->hash_fields = hash_fields; memcpy(hrxq->rss_key, rss_key, rss_key_len); return 0; error: err = rte_errno; if (ind_tbl != hrxq->ind_table) { MLX5_ASSERT(!hrxq->standalone); mlx5_ind_table_obj_release(dev, ind_tbl, hrxq->standalone, true); } rte_errno = err; return -rte_errno; } static void __mlx5_hrxq_remove(struct rte_eth_dev *dev, struct mlx5_hrxq *hrxq) { struct mlx5_priv *priv = dev->data->dev_private; #ifdef HAVE_IBV_FLOW_DV_SUPPORT mlx5_glue->destroy_flow_action(hrxq->action); #endif priv->obj_ops.hrxq_destroy(hrxq); if (!hrxq->standalone) { mlx5_ind_table_obj_release(dev, hrxq->ind_table, hrxq->standalone, true); } mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_HRXQ], hrxq->idx); } /** * Release the hash Rx queue. * * @param dev * Pointer to Ethernet device. * @param hrxq * Index to Hash Rx queue to release. * * @param list * mlx5 list pointer. * @param entry * Hash queue entry pointer. */ void mlx5_hrxq_remove_cb(void *tool_ctx, struct mlx5_list_entry *entry) { struct rte_eth_dev *dev = tool_ctx; struct mlx5_hrxq *hrxq = container_of(entry, typeof(*hrxq), entry); __mlx5_hrxq_remove(dev, hrxq); } static struct mlx5_hrxq * __mlx5_hrxq_create(struct rte_eth_dev *dev, struct mlx5_flow_rss_desc *rss_desc) { struct mlx5_priv *priv = dev->data->dev_private; const uint8_t *rss_key = rss_desc->key; uint32_t rss_key_len = rss_desc->key_len; bool standalone = !!rss_desc->shared_rss; const uint16_t *queues = standalone ? rss_desc->const_q : rss_desc->queue; uint32_t queues_n = rss_desc->queue_num; struct mlx5_hrxq *hrxq = NULL; uint32_t hrxq_idx = 0; struct mlx5_ind_table_obj *ind_tbl = rss_desc->ind_tbl; int ret; queues_n = rss_desc->hash_fields ? queues_n : 1; if (!ind_tbl) ind_tbl = mlx5_ind_table_obj_get(dev, queues, queues_n); if (!ind_tbl) ind_tbl = mlx5_ind_table_obj_new(dev, queues, queues_n, standalone, !!dev->data->dev_started); if (!ind_tbl) return NULL; hrxq = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_HRXQ], &hrxq_idx); if (!hrxq) goto error; hrxq->standalone = standalone; hrxq->idx = hrxq_idx; hrxq->ind_table = ind_tbl; hrxq->rss_key_len = rss_key_len; hrxq->hash_fields = rss_desc->hash_fields; memcpy(hrxq->rss_key, rss_key, rss_key_len); ret = priv->obj_ops.hrxq_new(dev, hrxq, rss_desc->tunnel); if (ret < 0) goto error; return hrxq; error: if (!rss_desc->ind_tbl) mlx5_ind_table_obj_release(dev, ind_tbl, standalone, true); if (hrxq) mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_HRXQ], hrxq_idx); return NULL; } struct mlx5_list_entry * mlx5_hrxq_create_cb(void *tool_ctx, void *cb_ctx) { struct rte_eth_dev *dev = tool_ctx; struct mlx5_flow_cb_ctx *ctx = cb_ctx; struct mlx5_flow_rss_desc *rss_desc = ctx->data; struct mlx5_hrxq *hrxq; hrxq = __mlx5_hrxq_create(dev, rss_desc); return hrxq ? &hrxq->entry : NULL; } struct mlx5_list_entry * mlx5_hrxq_clone_cb(void *tool_ctx, struct mlx5_list_entry *entry, void *cb_ctx __rte_unused) { struct rte_eth_dev *dev = tool_ctx; struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_hrxq *hrxq; uint32_t hrxq_idx = 0; hrxq = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_HRXQ], &hrxq_idx); if (!hrxq) return NULL; memcpy(hrxq, entry, sizeof(*hrxq) + MLX5_RSS_HASH_KEY_LEN); hrxq->idx = hrxq_idx; return &hrxq->entry; } void mlx5_hrxq_clone_free_cb(void *tool_ctx, struct mlx5_list_entry *entry) { struct rte_eth_dev *dev = tool_ctx; struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_hrxq *hrxq = container_of(entry, typeof(*hrxq), entry); mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_HRXQ], hrxq->idx); } /** * Get an Rx Hash queue. * * @param dev * Pointer to Ethernet device. * @param rss_desc * RSS configuration for the Rx hash queue. * * @return * An hash Rx queue index on success. */ uint32_t mlx5_hrxq_get(struct rte_eth_dev *dev, struct mlx5_flow_rss_desc *rss_desc) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_hrxq *hrxq; struct mlx5_list_entry *entry; struct mlx5_flow_cb_ctx ctx = { .data = rss_desc, }; if (rss_desc->shared_rss) { hrxq = __mlx5_hrxq_create(dev, rss_desc); } else { entry = mlx5_list_register(priv->hrxqs, &ctx); if (!entry) return 0; hrxq = container_of(entry, typeof(*hrxq), entry); } if (hrxq) return hrxq->idx; return 0; } /** * Release the hash Rx queue. * * @param dev * Pointer to Ethernet device. * @param hrxq_idx * Index to Hash Rx queue to release. * * @return * 1 while a reference on it exists, 0 when freed. */ int mlx5_hrxq_release(struct rte_eth_dev *dev, uint32_t hrxq_idx) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_hrxq *hrxq; hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], hrxq_idx); if (!hrxq) return 0; if (!hrxq->standalone) return mlx5_list_unregister(priv->hrxqs, &hrxq->entry); __mlx5_hrxq_remove(dev, hrxq); return 0; } /** * Create a drop Rx Hash queue. * * @param dev * Pointer to Ethernet device. * * @return * The Verbs/DevX object initialized, NULL otherwise and rte_errno is set. */ struct mlx5_hrxq * mlx5_drop_action_create(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_hrxq *hrxq = NULL; int ret; if (priv->drop_queue.hrxq) return priv->drop_queue.hrxq; hrxq = mlx5_malloc(MLX5_MEM_ZERO, sizeof(*hrxq) + MLX5_RSS_HASH_KEY_LEN, 0, SOCKET_ID_ANY); if (!hrxq) { DRV_LOG(WARNING, "Port %u cannot allocate memory for drop queue.", dev->data->port_id); rte_errno = ENOMEM; goto error; } priv->drop_queue.hrxq = hrxq; hrxq->ind_table = mlx5_malloc(MLX5_MEM_ZERO, sizeof(*hrxq->ind_table), 0, SOCKET_ID_ANY); if (!hrxq->ind_table) { rte_errno = ENOMEM; goto error; } ret = priv->obj_ops.drop_action_create(dev); if (ret < 0) goto error; return hrxq; error: if (hrxq) { if (hrxq->ind_table) mlx5_free(hrxq->ind_table); priv->drop_queue.hrxq = NULL; mlx5_free(hrxq); } return NULL; } /** * Release a drop hash Rx queue. * * @param dev * Pointer to Ethernet device. */ void mlx5_drop_action_destroy(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_hrxq *hrxq = priv->drop_queue.hrxq; if (!priv->drop_queue.hrxq) return; priv->obj_ops.drop_action_destroy(dev); mlx5_free(priv->drop_queue.rxq); mlx5_free(hrxq->ind_table); mlx5_free(hrxq); priv->drop_queue.rxq = NULL; priv->drop_queue.hrxq = NULL; } /** * Verify the Rx Queue list is empty * * @param dev * Pointer to Ethernet device. * * @return * The number of object not released. */ uint32_t mlx5_hrxq_verify(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; return mlx5_list_get_entry_num(priv->hrxqs); } /** * Set the Rx queue timestamp conversion parameters * * @param[in] dev * Pointer to the Ethernet device structure. */ void mlx5_rxq_timestamp_set(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_dev_ctx_shared *sh = priv->sh; unsigned int i; for (i = 0; i != priv->rxqs_n; ++i) { struct mlx5_rxq_data *data = mlx5_rxq_data_get(dev, i); if (data == NULL) continue; data->sh = sh; data->rt_timestamp = priv->config.rt_timestamp; } }