/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010 - 2015 Intel Corporation * Copyright(c) 2017 IBM Corporation. */ #include #include #include #include "base/i40e_prototype.h" #include "base/i40e_type.h" #include "i40e_ethdev.h" #include "i40e_rxtx.h" #include "i40e_rxtx_vec_common.h" #include #pragma GCC diagnostic ignored "-Wcast-qual" static inline void i40e_rxq_rearm(struct i40e_rx_queue *rxq) { int i; uint16_t rx_id; volatile union i40e_rx_desc *rxdp; struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start]; struct rte_mbuf *mb0, *mb1; __vector unsigned long hdr_room = (__vector unsigned long){ RTE_PKTMBUF_HEADROOM, RTE_PKTMBUF_HEADROOM}; __vector unsigned long dma_addr0, dma_addr1; rxdp = rxq->rx_ring + rxq->rxrearm_start; /* Pull 'n' more MBUFs into the software ring */ if (rte_mempool_get_bulk(rxq->mp, (void *)rxep, RTE_I40E_RXQ_REARM_THRESH) < 0) { if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >= rxq->nb_rx_desc) { dma_addr0 = (__vector unsigned long){}; for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) { rxep[i].mbuf = &rxq->fake_mbuf; vec_st(dma_addr0, 0, (__vector unsigned long *)&rxdp[i].read); } } rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += RTE_I40E_RXQ_REARM_THRESH; return; } /* Initialize the mbufs in vector, process 2 mbufs in one loop */ for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) { __vector unsigned long vaddr0, vaddr1; uintptr_t p0, p1; mb0 = rxep[0].mbuf; mb1 = rxep[1].mbuf; /* Flush mbuf with pkt template. * Data to be rearmed is 6 bytes long. * Though, RX will overwrite ol_flags that are coming next * anyway. So overwrite whole 8 bytes with one load: * 6 bytes of rearm_data plus first 2 bytes of ol_flags. */ p0 = (uintptr_t)&mb0->rearm_data; *(uint64_t *)p0 = rxq->mbuf_initializer; p1 = (uintptr_t)&mb1->rearm_data; *(uint64_t *)p1 = rxq->mbuf_initializer; /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ vaddr0 = vec_ld(0, (__vector unsigned long *)&mb0->buf_addr); vaddr1 = vec_ld(0, (__vector unsigned long *)&mb1->buf_addr); /* convert pa to dma_addr hdr/data */ dma_addr0 = vec_mergel(vaddr0, vaddr0); dma_addr1 = vec_mergel(vaddr1, vaddr1); /* add headroom to pa values */ dma_addr0 = vec_add(dma_addr0, hdr_room); dma_addr1 = vec_add(dma_addr1, hdr_room); /* flush desc with pa dma_addr */ vec_st(dma_addr0, 0, (__vector unsigned long *)&rxdp++->read); vec_st(dma_addr1, 0, (__vector unsigned long *)&rxdp++->read); } rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH; if (rxq->rxrearm_start >= rxq->nb_rx_desc) rxq->rxrearm_start = 0; rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH; rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); /* Update the tail pointer on the NIC */ I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id); } static inline void desc_to_olflags_v(__vector unsigned long descs[4], struct rte_mbuf **rx_pkts) { __vector unsigned int vlan0, vlan1, rss, l3_l4e; /* mask everything except RSS, flow director and VLAN flags * bit2 is for VLAN tag, bit11 for flow director indication * bit13:12 for RSS indication. */ const __vector unsigned int rss_vlan_msk = (__vector unsigned int){ (int32_t)0x1c03804, (int32_t)0x1c03804, (int32_t)0x1c03804, (int32_t)0x1c03804}; /* map rss and vlan type to rss hash and vlan flag */ const __vector unsigned char vlan_flags = (__vector unsigned char){ 0, 0, 0, 0, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; const __vector unsigned char rss_flags = (__vector unsigned char){ 0, RTE_MBUF_F_RX_FDIR, 0, 0, 0, 0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR, 0, 0, 0, 0, 0, 0, 0, 0}; const __vector unsigned char l3_l4e_flags = (__vector unsigned char){ 0, RTE_MBUF_F_RX_IP_CKSUM_BAD, RTE_MBUF_F_RX_L4_CKSUM_BAD, RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD, RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD, RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD, RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD, RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD, 0, 0, 0, 0, 0, 0, 0, 0}; vlan0 = (__vector unsigned int)vec_mergel(descs[0], descs[1]); vlan1 = (__vector unsigned int)vec_mergel(descs[2], descs[3]); vlan0 = (__vector unsigned int)vec_mergeh(vlan0, vlan1); vlan1 = vec_and(vlan0, rss_vlan_msk); vlan0 = (__vector unsigned int)vec_perm(vlan_flags, (__vector unsigned char){}, *(__vector unsigned char *)&vlan1); rss = vec_sr(vlan1, (__vector unsigned int){11, 11, 11, 11}); rss = (__vector unsigned int)vec_perm(rss_flags, (__vector unsigned char){}, *(__vector unsigned char *)&rss); l3_l4e = vec_sr(vlan1, (__vector unsigned int){22, 22, 22, 22}); l3_l4e = (__vector unsigned int)vec_perm(l3_l4e_flags, (__vector unsigned char){}, *(__vector unsigned char *)&l3_l4e); vlan0 = vec_or(vlan0, rss); vlan0 = vec_or(vlan0, l3_l4e); rx_pkts[0]->ol_flags = (uint64_t)vlan0[2]; rx_pkts[1]->ol_flags = (uint64_t)vlan0[3]; rx_pkts[2]->ol_flags = (uint64_t)vlan0[0]; rx_pkts[3]->ol_flags = (uint64_t)vlan0[1]; } #define PKTLEN_SHIFT 10 static inline void desc_to_ptype_v(__vector unsigned long descs[4], struct rte_mbuf **rx_pkts, uint32_t *ptype_tbl) { __vector unsigned long ptype0 = vec_mergel(descs[0], descs[1]); __vector unsigned long ptype1 = vec_mergel(descs[2], descs[3]); ptype0 = vec_sr(ptype0, (__vector unsigned long){30, 30}); ptype1 = vec_sr(ptype1, (__vector unsigned long){30, 30}); rx_pkts[0]->packet_type = ptype_tbl[(*(__vector unsigned char *)&ptype0)[0]]; rx_pkts[1]->packet_type = ptype_tbl[(*(__vector unsigned char *)&ptype0)[8]]; rx_pkts[2]->packet_type = ptype_tbl[(*(__vector unsigned char *)&ptype1)[0]]; rx_pkts[3]->packet_type = ptype_tbl[(*(__vector unsigned char *)&ptype1)[8]]; } /** * vPMD raw receive routine, only accept(nb_pkts >= RTE_I40E_DESCS_PER_LOOP) * * Notice: * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet * - floor align nb_pkts to a RTE_I40E_DESCS_PER_LOOP power-of-two */ static inline uint16_t _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts, uint8_t *split_packet) { volatile union i40e_rx_desc *rxdp; struct i40e_rx_entry *sw_ring; uint16_t nb_pkts_recd; int pos; uint64_t var; __vector unsigned char shuf_msk; uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; __vector unsigned short crc_adjust = (__vector unsigned short){ 0, 0, /* ignore pkt_type field */ rxq->crc_len, /* sub crc on pkt_len */ 0, /* ignore high-16bits of pkt_len */ rxq->crc_len, /* sub crc on data_len */ 0, 0, 0 /* ignore non-length fields */ }; __vector unsigned long dd_check, eop_check; /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP); /* Just the act of getting into the function from the application is * going to cost about 7 cycles */ rxdp = rxq->rx_ring + rxq->rx_tail; rte_prefetch0(rxdp); /* See if we need to rearm the RX queue - gives the prefetch a bit * of time to act */ if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH) i40e_rxq_rearm(rxq); /* Before we start moving massive data around, check to see if * there is actually a packet available */ if (!(rxdp->wb.qword1.status_error_len & rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT))) return 0; /* 4 packets DD mask */ dd_check = (__vector unsigned long){0x0000000100000001ULL, 0x0000000100000001ULL}; /* 4 packets EOP mask */ eop_check = (__vector unsigned long){0x0000000200000002ULL, 0x0000000200000002ULL}; /* mask to shuffle from desc. to mbuf */ shuf_msk = (__vector unsigned char){ 0xFF, 0xFF, /* pkt_type set as unknown */ 0xFF, 0xFF, /* pkt_type set as unknown */ 14, 15, /* octet 15~14, low 16 bits pkt_len */ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ 14, 15, /* octet 15~14, 16 bits data_len */ 2, 3, /* octet 2~3, low 16 bits vlan_macip */ 4, 5, 6, 7 /* octet 4~7, 32bits rss */ }; /* Cache is empty -> need to scan the buffer rings, but first move * the next 'n' mbufs into the cache */ sw_ring = &rxq->sw_ring[rxq->rx_tail]; /* A. load 4 packet in one loop * [A*. mask out 4 unused dirty field in desc] * B. copy 4 mbuf point from swring to rx_pkts * C. calc the number of DD bits among the 4 packets * [C*. extract the end-of-packet bit, if requested] * D. fill info. from desc to mbuf */ for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts; pos += RTE_I40E_DESCS_PER_LOOP, rxdp += RTE_I40E_DESCS_PER_LOOP) { __vector unsigned long descs[RTE_I40E_DESCS_PER_LOOP]; __vector unsigned char pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4; __vector unsigned short staterr, sterr_tmp1, sterr_tmp2; __vector unsigned long mbp1, mbp2; /* two mbuf pointer * in one XMM reg. */ /* B.1 load 2 mbuf point */ mbp1 = *(__vector unsigned long *)&sw_ring[pos]; /* Read desc statuses backwards to avoid race condition */ /* A.1 load desc[3] */ descs[3] = *(__vector unsigned long *)(rxdp + 3); rte_compiler_barrier(); /* B.2 copy 2 mbuf point into rx_pkts */ *(__vector unsigned long *)&rx_pkts[pos] = mbp1; /* B.1 load 2 mbuf point */ mbp2 = *(__vector unsigned long *)&sw_ring[pos + 2]; /* A.1 load desc[2-0] */ descs[2] = *(__vector unsigned long *)(rxdp + 2); rte_compiler_barrier(); descs[1] = *(__vector unsigned long *)(rxdp + 1); rte_compiler_barrier(); descs[0] = *(__vector unsigned long *)(rxdp); /* B.2 copy 2 mbuf point into rx_pkts */ *(__vector unsigned long *)&rx_pkts[pos + 2] = mbp2; if (split_packet) { rte_mbuf_prefetch_part2(rx_pkts[pos]); rte_mbuf_prefetch_part2(rx_pkts[pos + 1]); rte_mbuf_prefetch_part2(rx_pkts[pos + 2]); rte_mbuf_prefetch_part2(rx_pkts[pos + 3]); } /* avoid compiler reorder optimization */ rte_compiler_barrier(); /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/ const __vector unsigned int len3 = vec_sl( vec_ld(0, (__vector unsigned int *)&descs[3]), (__vector unsigned int){0, 0, 0, PKTLEN_SHIFT}); const __vector unsigned int len2 = vec_sl( vec_ld(0, (__vector unsigned int *)&descs[2]), (__vector unsigned int){0, 0, 0, PKTLEN_SHIFT}); /* merge the now-aligned packet length fields back in */ descs[3] = (__vector unsigned long)len3; descs[2] = (__vector unsigned long)len2; /* D.1 pkt 3,4 convert format from desc to pktmbuf */ pkt_mb4 = vec_perm((__vector unsigned char)descs[3], (__vector unsigned char){}, shuf_msk); pkt_mb3 = vec_perm((__vector unsigned char)descs[2], (__vector unsigned char){}, shuf_msk); /* C.1 4=>2 filter staterr info only */ sterr_tmp2 = vec_mergel((__vector unsigned short)descs[3], (__vector unsigned short)descs[2]); /* C.1 4=>2 filter staterr info only */ sterr_tmp1 = vec_mergel((__vector unsigned short)descs[1], (__vector unsigned short)descs[0]); /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */ pkt_mb4 = (__vector unsigned char)vec_sub( (__vector unsigned short)pkt_mb4, crc_adjust); pkt_mb3 = (__vector unsigned char)vec_sub( (__vector unsigned short)pkt_mb3, crc_adjust); /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/ const __vector unsigned int len1 = vec_sl( vec_ld(0, (__vector unsigned int *)&descs[1]), (__vector unsigned int){0, 0, 0, PKTLEN_SHIFT}); const __vector unsigned int len0 = vec_sl( vec_ld(0, (__vector unsigned int *)&descs[0]), (__vector unsigned int){0, 0, 0, PKTLEN_SHIFT}); /* merge the now-aligned packet length fields back in */ descs[1] = (__vector unsigned long)len1; descs[0] = (__vector unsigned long)len0; /* D.1 pkt 1,2 convert format from desc to pktmbuf */ pkt_mb2 = vec_perm((__vector unsigned char)descs[1], (__vector unsigned char){}, shuf_msk); pkt_mb1 = vec_perm((__vector unsigned char)descs[0], (__vector unsigned char){}, shuf_msk); /* C.2 get 4 pkts staterr value */ staterr = (__vector unsigned short)vec_mergeh( sterr_tmp1, sterr_tmp2); /* D.3 copy final 3,4 data to rx_pkts */ vec_st(pkt_mb4, 0, (__vector unsigned char *)&rx_pkts[pos + 3] ->rx_descriptor_fields1 ); vec_st(pkt_mb3, 0, (__vector unsigned char *)&rx_pkts[pos + 2] ->rx_descriptor_fields1 ); /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */ pkt_mb2 = (__vector unsigned char)vec_sub( (__vector unsigned short)pkt_mb2, crc_adjust); pkt_mb1 = (__vector unsigned char)vec_sub( (__vector unsigned short)pkt_mb1, crc_adjust); /* C* extract and record EOP bit */ if (split_packet) { __vector unsigned char eop_shuf_mask = (__vector unsigned char){ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x04, 0x0C, 0x00, 0x08 }; /* and with mask to extract bits, flipping 1-0 */ __vector unsigned char eop_bits = vec_and( (__vector unsigned char)vec_nor(staterr, staterr), (__vector unsigned char)eop_check); /* the staterr values are not in order, as the count * of dd bits doesn't care. However, for end of * packet tracking, we do care, so shuffle. This also * compresses the 32-bit values to 8-bit */ eop_bits = vec_perm(eop_bits, (__vector unsigned char){}, eop_shuf_mask); /* store the resulting 32-bit value */ *split_packet = (vec_ld(0, (__vector unsigned int *)&eop_bits))[0]; split_packet += RTE_I40E_DESCS_PER_LOOP; /* zero-out next pointers */ rx_pkts[pos]->next = NULL; rx_pkts[pos + 1]->next = NULL; rx_pkts[pos + 2]->next = NULL; rx_pkts[pos + 3]->next = NULL; } /* C.3 calc available number of desc */ staterr = vec_and(staterr, (__vector unsigned short)dd_check); /* D.3 copy final 1,2 data to rx_pkts */ vec_st(pkt_mb2, 0, (__vector unsigned char *)&rx_pkts[pos + 1] ->rx_descriptor_fields1 ); vec_st(pkt_mb1, 0, (__vector unsigned char *)&rx_pkts[pos]->rx_descriptor_fields1 ); desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl); desc_to_olflags_v(descs, &rx_pkts[pos]); /* C.4 calc available number of desc */ var = __builtin_popcountll((vec_ld(0, (__vector unsigned long *)&staterr)[0])); nb_pkts_recd += var; if (likely(var != RTE_I40E_DESCS_PER_LOOP)) break; } /* Update our internal tail pointer */ rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd); rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1)); rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd); return nb_pkts_recd; } /* Notice: * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet */ uint16_t i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL); } /** * vPMD receive routine that reassembles single burst of 32 scattered packets * * Notice: * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet */ static uint16_t i40e_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct i40e_rx_queue *rxq = rx_queue; uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0}; /* get some new buffers */ uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts, split_flags); if (nb_bufs == 0) return 0; /* happy day case, full burst + no packets to be joined */ const uint64_t *split_fl64 = (uint64_t *)split_flags; if (rxq->pkt_first_seg == NULL && split_fl64[0] == 0 && split_fl64[1] == 0 && split_fl64[2] == 0 && split_fl64[3] == 0) return nb_bufs; /* reassemble any packets that need reassembly*/ unsigned int i = 0; if (!rxq->pkt_first_seg) { /* find the first split flag, and only reassemble then*/ while (i < nb_bufs && !split_flags[i]) i++; if (i == nb_bufs) return nb_bufs; } return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, &split_flags[i]); } /** * vPMD receive routine that reassembles scattered packets. */ uint16_t i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { uint16_t retval = 0; while (nb_pkts > RTE_I40E_VPMD_RX_BURST) { uint16_t burst; burst = i40e_recv_scattered_burst_vec(rx_queue, rx_pkts + retval, RTE_I40E_VPMD_RX_BURST); retval += burst; nb_pkts -= burst; if (burst < RTE_I40E_VPMD_RX_BURST) return retval; } return retval + i40e_recv_scattered_burst_vec(rx_queue, rx_pkts + retval, nb_pkts); } static inline void vtx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags) { uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA | ((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) | ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT)); __vector unsigned long descriptor = (__vector unsigned long){ pkt->buf_iova + pkt->data_off, high_qw}; *(__vector unsigned long *)txdp = descriptor; } static inline void vtx(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags) { int i; for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt) vtx1(txdp, *pkt, flags); } uint16_t i40e_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue; volatile struct i40e_tx_desc *txdp; struct i40e_tx_entry *txep; uint16_t n, nb_commit, tx_id; uint64_t flags = I40E_TD_CMD; uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD; int i; /* cross rx_thresh boundary is not allowed */ nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh); if (txq->nb_tx_free < txq->tx_free_thresh) i40e_tx_free_bufs(txq); nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts); nb_commit = nb_pkts; if (unlikely(nb_pkts == 0)) return 0; tx_id = txq->tx_tail; txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts); n = (uint16_t)(txq->nb_tx_desc - tx_id); if (nb_commit >= n) { tx_backlog_entry(txep, tx_pkts, n); for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp) vtx1(txdp, *tx_pkts, flags); vtx1(txdp, *tx_pkts++, rs); nb_commit = (uint16_t)(nb_commit - n); tx_id = 0; txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1); /* avoid reach the end of ring */ txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; } tx_backlog_entry(txep, tx_pkts, nb_commit); vtx(txdp, tx_pkts, nb_commit, flags); tx_id = (uint16_t)(tx_id + nb_commit); if (tx_id > txq->tx_next_rs) { txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |= rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) << I40E_TXD_QW1_CMD_SHIFT); txq->tx_next_rs = (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh); } txq->tx_tail = tx_id; I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail); return nb_pkts; } void __rte_cold i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq) { _i40e_rx_queue_release_mbufs_vec(rxq); } int __rte_cold i40e_rxq_vec_setup(struct i40e_rx_queue *rxq) { return i40e_rxq_vec_setup_default(rxq); } int __rte_cold i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused * txq) { return 0; } int __rte_cold i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev) { return i40e_rx_vec_dev_conf_condition_check_default(dev); }