/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2020-2021 HiSilicon Limited. */ #include #include "hns3_common.h" #include "hns3_dcb.h" #include "hns3_logs.h" #include "hns3_tm.h" static inline uint32_t hns3_tm_max_tx_queues_get(struct rte_eth_dev *dev) { /* * This API will called in pci device probe stage, we can't call * rte_eth_dev_info_get to get max_tx_queues (due to rte_eth_devices * not setup), so we call the hns3_dev_infos_get. */ struct rte_eth_dev_info dev_info; memset(&dev_info, 0, sizeof(dev_info)); (void)hns3_dev_infos_get(dev, &dev_info); return RTE_MIN(dev_info.max_tx_queues, RTE_MAX_QUEUES_PER_PORT); } void hns3_tm_conf_init(struct rte_eth_dev *dev) { struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t max_tx_queues = hns3_tm_max_tx_queues_get(dev); if (!hns3_dev_get_support(hw, TM)) return; pf->tm_conf.nb_leaf_nodes_max = max_tx_queues; pf->tm_conf.nb_nodes_max = 1 + HNS3_MAX_TC_NUM + max_tx_queues; pf->tm_conf.nb_shaper_profile_max = 1 + HNS3_MAX_TC_NUM; TAILQ_INIT(&pf->tm_conf.shaper_profile_list); pf->tm_conf.nb_shaper_profile = 0; pf->tm_conf.root = NULL; TAILQ_INIT(&pf->tm_conf.tc_list); TAILQ_INIT(&pf->tm_conf.queue_list); pf->tm_conf.nb_tc_node = 0; pf->tm_conf.nb_queue_node = 0; pf->tm_conf.committed = false; } void hns3_tm_conf_uninit(struct rte_eth_dev *dev) { struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_tm_shaper_profile *shaper_profile; struct hns3_tm_node *tm_node; if (!hns3_dev_get_support(hw, TM)) return; if (pf->tm_conf.nb_queue_node > 0) { while ((tm_node = TAILQ_FIRST(&pf->tm_conf.queue_list))) { TAILQ_REMOVE(&pf->tm_conf.queue_list, tm_node, node); rte_free(tm_node); } pf->tm_conf.nb_queue_node = 0; } if (pf->tm_conf.nb_tc_node > 0) { while ((tm_node = TAILQ_FIRST(&pf->tm_conf.tc_list))) { TAILQ_REMOVE(&pf->tm_conf.tc_list, tm_node, node); rte_free(tm_node); } pf->tm_conf.nb_tc_node = 0; } if (pf->tm_conf.root != NULL) { rte_free(pf->tm_conf.root); pf->tm_conf.root = NULL; } if (pf->tm_conf.nb_shaper_profile > 0) { while ((shaper_profile = TAILQ_FIRST(&pf->tm_conf.shaper_profile_list))) { TAILQ_REMOVE(&pf->tm_conf.shaper_profile_list, shaper_profile, node); rte_free(shaper_profile); } pf->tm_conf.nb_shaper_profile = 0; } pf->tm_conf.nb_leaf_nodes_max = 0; pf->tm_conf.nb_nodes_max = 0; pf->tm_conf.nb_shaper_profile_max = 0; } static inline uint64_t hns3_tm_rate_convert_firmware2tm(uint32_t firmware_rate) { #define FIRMWARE_TO_TM_RATE_SCALE 125000 /* tm rate unit is Bps, firmware rate is Mbps */ return ((uint64_t)firmware_rate) * FIRMWARE_TO_TM_RATE_SCALE; } static inline uint32_t hns3_tm_rate_convert_tm2firmware(uint64_t tm_rate) { #define TM_TO_FIRMWARE_RATE_SCALE 125000 /* tm rate unit is Bps, firmware rate is Mbps */ return (uint32_t)(tm_rate / TM_TO_FIRMWARE_RATE_SCALE); } static int hns3_tm_capabilities_get(struct rte_eth_dev *dev, struct rte_tm_capabilities *cap, struct rte_tm_error *error) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t max_tx_queues = hns3_tm_max_tx_queues_get(dev); if (cap == NULL || error == NULL) return -EINVAL; error->type = RTE_TM_ERROR_TYPE_NONE; memset(cap, 0, sizeof(struct rte_tm_capabilities)); cap->n_nodes_max = 1 + HNS3_MAX_TC_NUM + max_tx_queues; cap->n_levels_max = HNS3_TM_NODE_LEVEL_MAX; cap->non_leaf_nodes_identical = 1; cap->leaf_nodes_identical = 1; cap->shaper_n_max = 1 + HNS3_MAX_TC_NUM; cap->shaper_private_n_max = 1 + HNS3_MAX_TC_NUM; cap->shaper_private_rate_max = hns3_tm_rate_convert_firmware2tm(hw->max_tm_rate); cap->sched_n_children_max = max_tx_queues; cap->sched_sp_n_priorities_max = 1; cap->sched_wfq_weight_max = 1; cap->shaper_pkt_length_adjust_min = RTE_TM_ETH_FRAMING_OVERHEAD; cap->shaper_pkt_length_adjust_max = RTE_TM_ETH_FRAMING_OVERHEAD_FCS; return 0; } static struct hns3_tm_shaper_profile * hns3_tm_shaper_profile_search(struct rte_eth_dev *dev, uint32_t shaper_profile_id) { struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct hns3_shaper_profile_list *shaper_profile_list = &pf->tm_conf.shaper_profile_list; struct hns3_tm_shaper_profile *shaper_profile; TAILQ_FOREACH(shaper_profile, shaper_profile_list, node) { if (shaper_profile_id == shaper_profile->shaper_profile_id) return shaper_profile; } return NULL; } static int hns3_tm_shaper_profile_param_check(struct rte_eth_dev *dev, struct rte_tm_shaper_params *profile, struct rte_tm_error *error) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (profile->committed.rate) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE_COMMITTED_RATE; error->message = "committed rate not supported"; return -EINVAL; } if (profile->committed.size) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE_COMMITTED_SIZE; error->message = "committed bucket size not supported"; return -EINVAL; } if (profile->peak.rate > hns3_tm_rate_convert_firmware2tm(hw->max_tm_rate)) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE_PEAK_RATE; error->message = "peak rate too large"; return -EINVAL; } if (profile->peak.rate < hns3_tm_rate_convert_firmware2tm(1)) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE_PEAK_RATE; error->message = "peak rate must be at least 1Mbps"; return -EINVAL; } if (profile->peak.size) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE_PEAK_SIZE; error->message = "peak bucket size not supported"; return -EINVAL; } if (profile->pkt_length_adjust) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE_PKT_ADJUST_LEN; error->message = "packet length adjustment not supported"; return -EINVAL; } if (profile->packet_mode) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE_PACKET_MODE; error->message = "packet mode not supported"; return -EINVAL; } return 0; } static int hns3_tm_shaper_profile_add(struct rte_eth_dev *dev, uint32_t shaper_profile_id, struct rte_tm_shaper_params *profile, struct rte_tm_error *error) { struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct hns3_tm_shaper_profile *shaper_profile; int ret; if (profile == NULL || error == NULL) return -EINVAL; if (pf->tm_conf.nb_shaper_profile >= pf->tm_conf.nb_shaper_profile_max) { error->type = RTE_TM_ERROR_TYPE_UNSPECIFIED; error->message = "too much profiles"; return -EINVAL; } ret = hns3_tm_shaper_profile_param_check(dev, profile, error); if (ret) return ret; shaper_profile = hns3_tm_shaper_profile_search(dev, shaper_profile_id); if (shaper_profile) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE_ID; error->message = "profile ID exist"; return -EINVAL; } shaper_profile = rte_zmalloc("hns3_tm_shaper_profile", sizeof(struct hns3_tm_shaper_profile), 0); if (shaper_profile == NULL) return -ENOMEM; shaper_profile->shaper_profile_id = shaper_profile_id; memcpy(&shaper_profile->profile, profile, sizeof(struct rte_tm_shaper_params)); TAILQ_INSERT_TAIL(&pf->tm_conf.shaper_profile_list, shaper_profile, node); pf->tm_conf.nb_shaper_profile++; return 0; } static int hns3_tm_shaper_profile_del(struct rte_eth_dev *dev, uint32_t shaper_profile_id, struct rte_tm_error *error) { struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct hns3_tm_shaper_profile *shaper_profile; if (error == NULL) return -EINVAL; shaper_profile = hns3_tm_shaper_profile_search(dev, shaper_profile_id); if (shaper_profile == NULL) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE_ID; error->message = "profile ID not exist"; return -EINVAL; } if (shaper_profile->reference_count) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE; error->message = "profile in use"; return -EINVAL; } TAILQ_REMOVE(&pf->tm_conf.shaper_profile_list, shaper_profile, node); rte_free(shaper_profile); pf->tm_conf.nb_shaper_profile--; return 0; } static struct hns3_tm_node * hns3_tm_node_search(struct rte_eth_dev *dev, uint32_t node_id, enum hns3_tm_node_type *node_type) { struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct hns3_tm_node_list *queue_list = &pf->tm_conf.queue_list; struct hns3_tm_node_list *tc_list = &pf->tm_conf.tc_list; struct hns3_tm_node *tm_node; if (pf->tm_conf.root && pf->tm_conf.root->id == node_id) { *node_type = HNS3_TM_NODE_TYPE_PORT; return pf->tm_conf.root; } TAILQ_FOREACH(tm_node, tc_list, node) { if (tm_node->id == node_id) { *node_type = HNS3_TM_NODE_TYPE_TC; return tm_node; } } TAILQ_FOREACH(tm_node, queue_list, node) { if (tm_node->id == node_id) { *node_type = HNS3_TM_NODE_TYPE_QUEUE; return tm_node; } } return NULL; } static int hns3_tm_nonleaf_node_param_check(struct rte_eth_dev *dev, struct rte_tm_node_params *params, struct rte_tm_error *error) { struct hns3_tm_shaper_profile *shaper_profile; if (params->shaper_profile_id != RTE_TM_SHAPER_PROFILE_ID_NONE) { shaper_profile = hns3_tm_shaper_profile_search(dev, params->shaper_profile_id); if (shaper_profile == NULL) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS_SHAPER_PROFILE_ID; error->message = "shaper profile not exist"; return -EINVAL; } } if (params->nonleaf.wfq_weight_mode) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS_WFQ_WEIGHT_MODE; error->message = "WFQ not supported"; return -EINVAL; } if (params->nonleaf.n_sp_priorities != 1) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS_N_SP_PRIORITIES; error->message = "SP priority not supported"; return -EINVAL; } return 0; } static int hns3_tm_leaf_node_param_check(struct rte_eth_dev *dev __rte_unused, struct rte_tm_node_params *params, struct rte_tm_error *error) { if (params->shaper_profile_id != RTE_TM_SHAPER_PROFILE_ID_NONE) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS_SHAPER_PROFILE_ID; error->message = "shaper not supported"; return -EINVAL; } if (params->leaf.cman != RTE_TM_CMAN_TAIL_DROP) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS_CMAN; error->message = "congestion management not supported"; return -EINVAL; } if (params->leaf.wred.wred_profile_id != RTE_TM_WRED_PROFILE_ID_NONE) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS_WRED_PROFILE_ID; error->message = "WRED not supported"; return -EINVAL; } if (params->leaf.wred.shared_wred_context_id) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS_SHARED_WRED_CONTEXT_ID; error->message = "WRED not supported"; return -EINVAL; } if (params->leaf.wred.n_shared_wred_contexts) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS_N_SHARED_WRED_CONTEXTS; error->message = "WRED not supported"; return -EINVAL; } return 0; } static int hns3_tm_node_param_check(struct rte_eth_dev *dev, uint32_t node_id, uint32_t priority, uint32_t weight, struct rte_tm_node_params *params, struct rte_tm_error *error) { struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); enum hns3_tm_node_type node_type = HNS3_TM_NODE_TYPE_MAX; if (node_id == RTE_TM_NODE_ID_NULL) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "invalid node id"; return -EINVAL; } if (hns3_tm_node_search(dev, node_id, &node_type)) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "node id already used"; return -EINVAL; } if (priority) { error->type = RTE_TM_ERROR_TYPE_NODE_PRIORITY; error->message = "priority should be 0"; return -EINVAL; } if (weight != 1) { error->type = RTE_TM_ERROR_TYPE_NODE_WEIGHT; error->message = "weight must be 1"; return -EINVAL; } if (params->shared_shaper_id) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS_SHARED_SHAPER_ID; error->message = "shared shaper not supported"; return -EINVAL; } if (params->n_shared_shapers) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS_N_SHARED_SHAPERS; error->message = "shared shaper not supported"; return -EINVAL; } if (node_id >= pf->tm_conf.nb_leaf_nodes_max) return hns3_tm_nonleaf_node_param_check(dev, params, error); else return hns3_tm_leaf_node_param_check(dev, params, error); } static int hns3_tm_port_node_add(struct rte_eth_dev *dev, uint32_t node_id, uint32_t level_id, struct rte_tm_node_params *params, struct rte_tm_error *error) { struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct hns3_tm_node *tm_node; if (level_id != RTE_TM_NODE_LEVEL_ID_ANY && level_id != HNS3_TM_NODE_LEVEL_PORT) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS; error->message = "wrong level"; return -EINVAL; } if (node_id != pf->tm_conf.nb_nodes_max - 1) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "invalid port node ID"; return -EINVAL; } if (pf->tm_conf.root) { error->type = RTE_TM_ERROR_TYPE_NODE_PARENT_NODE_ID; error->message = "already have a root"; return -EINVAL; } tm_node = rte_zmalloc("hns3_tm_node", sizeof(struct hns3_tm_node), 0); if (tm_node == NULL) return -ENOMEM; tm_node->id = node_id; tm_node->reference_count = 0; tm_node->parent = NULL; tm_node->shaper_profile = hns3_tm_shaper_profile_search(dev, params->shaper_profile_id); memcpy(&tm_node->params, params, sizeof(struct rte_tm_node_params)); pf->tm_conf.root = tm_node; if (tm_node->shaper_profile) tm_node->shaper_profile->reference_count++; return 0; } static int hns3_tm_tc_node_add(struct rte_eth_dev *dev, uint32_t node_id, uint32_t level_id, struct hns3_tm_node *parent_node, struct rte_tm_node_params *params, struct rte_tm_error *error) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct hns3_tm_node *tm_node; if (level_id != RTE_TM_NODE_LEVEL_ID_ANY && level_id != HNS3_TM_NODE_LEVEL_TC) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS; error->message = "wrong level"; return -EINVAL; } if (node_id >= pf->tm_conf.nb_nodes_max - 1 || node_id < pf->tm_conf.nb_leaf_nodes_max || hns3_tm_calc_node_tc_no(&pf->tm_conf, node_id) >= hw->num_tc) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "invalid tc node ID"; return -EINVAL; } if (pf->tm_conf.nb_tc_node >= hw->num_tc) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "too many TCs"; return -EINVAL; } tm_node = rte_zmalloc("hns3_tm_node", sizeof(struct hns3_tm_node), 0); if (tm_node == NULL) return -ENOMEM; tm_node->id = node_id; tm_node->reference_count = 0; tm_node->parent = parent_node; tm_node->shaper_profile = hns3_tm_shaper_profile_search(dev, params->shaper_profile_id); memcpy(&tm_node->params, params, sizeof(struct rte_tm_node_params)); TAILQ_INSERT_TAIL(&pf->tm_conf.tc_list, tm_node, node); pf->tm_conf.nb_tc_node++; tm_node->parent->reference_count++; if (tm_node->shaper_profile) tm_node->shaper_profile->reference_count++; return 0; } static int hns3_tm_queue_node_add(struct rte_eth_dev *dev, uint32_t node_id, uint32_t level_id, struct hns3_tm_node *parent_node, struct rte_tm_node_params *params, struct rte_tm_error *error) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct hns3_tm_node *tm_node; if (level_id != RTE_TM_NODE_LEVEL_ID_ANY && level_id != HNS3_TM_NODE_LEVEL_QUEUE) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS; error->message = "wrong level"; return -EINVAL; } /* note: dev->data->nb_tx_queues <= max_tx_queues */ if (node_id >= dev->data->nb_tx_queues) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "invalid queue node ID"; return -EINVAL; } if (hns3_txq_mapped_tc_get(hw, node_id) != hns3_tm_calc_node_tc_no(&pf->tm_conf, parent_node->id)) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "queue's TC not match parent's TC"; return -EINVAL; } tm_node = rte_zmalloc("hns3_tm_node", sizeof(struct hns3_tm_node), 0); if (tm_node == NULL) return -ENOMEM; tm_node->id = node_id; tm_node->reference_count = 0; tm_node->parent = parent_node; memcpy(&tm_node->params, params, sizeof(struct rte_tm_node_params)); TAILQ_INSERT_TAIL(&pf->tm_conf.queue_list, tm_node, node); pf->tm_conf.nb_queue_node++; tm_node->parent->reference_count++; return 0; } static int hns3_tm_node_add(struct rte_eth_dev *dev, uint32_t node_id, uint32_t parent_node_id, uint32_t priority, uint32_t weight, uint32_t level_id, struct rte_tm_node_params *params, struct rte_tm_error *error) { struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); enum hns3_tm_node_type parent_node_type = HNS3_TM_NODE_TYPE_MAX; struct hns3_tm_node *parent_node; int ret; if (params == NULL || error == NULL) return -EINVAL; if (pf->tm_conf.committed) { error->type = RTE_TM_ERROR_TYPE_UNSPECIFIED; error->message = "already committed"; return -EINVAL; } ret = hns3_tm_node_param_check(dev, node_id, priority, weight, params, error); if (ret) return ret; /* root node who don't have a parent */ if (parent_node_id == RTE_TM_NODE_ID_NULL) return hns3_tm_port_node_add(dev, node_id, level_id, params, error); parent_node = hns3_tm_node_search(dev, parent_node_id, &parent_node_type); if (parent_node == NULL) { error->type = RTE_TM_ERROR_TYPE_NODE_PARENT_NODE_ID; error->message = "parent not exist"; return -EINVAL; } if (parent_node_type != HNS3_TM_NODE_TYPE_PORT && parent_node_type != HNS3_TM_NODE_TYPE_TC) { error->type = RTE_TM_ERROR_TYPE_NODE_PARENT_NODE_ID; error->message = "parent is not port or TC"; return -EINVAL; } if (parent_node_type == HNS3_TM_NODE_TYPE_PORT) return hns3_tm_tc_node_add(dev, node_id, level_id, parent_node, params, error); else return hns3_tm_queue_node_add(dev, node_id, level_id, parent_node, params, error); } static void hns3_tm_node_do_delete(struct hns3_pf *pf, enum hns3_tm_node_type node_type, struct hns3_tm_node *tm_node) { if (node_type == HNS3_TM_NODE_TYPE_PORT) { if (tm_node->shaper_profile) tm_node->shaper_profile->reference_count--; rte_free(tm_node); pf->tm_conf.root = NULL; return; } if (tm_node->shaper_profile) tm_node->shaper_profile->reference_count--; tm_node->parent->reference_count--; if (node_type == HNS3_TM_NODE_TYPE_TC) { TAILQ_REMOVE(&pf->tm_conf.tc_list, tm_node, node); pf->tm_conf.nb_tc_node--; } else { TAILQ_REMOVE(&pf->tm_conf.queue_list, tm_node, node); pf->tm_conf.nb_queue_node--; } rte_free(tm_node); } static int hns3_tm_node_delete(struct rte_eth_dev *dev, uint32_t node_id, struct rte_tm_error *error) { struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); enum hns3_tm_node_type node_type = HNS3_TM_NODE_TYPE_MAX; struct hns3_tm_node *tm_node; if (error == NULL) return -EINVAL; if (pf->tm_conf.committed) { error->type = RTE_TM_ERROR_TYPE_UNSPECIFIED; error->message = "already committed"; return -EINVAL; } tm_node = hns3_tm_node_search(dev, node_id, &node_type); if (tm_node == NULL) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "no such node"; return -EINVAL; } if (tm_node->reference_count) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "cannot delete a node which has children"; return -EINVAL; } hns3_tm_node_do_delete(pf, node_type, tm_node); return 0; } static int hns3_tm_node_type_get(struct rte_eth_dev *dev, uint32_t node_id, int *is_leaf, struct rte_tm_error *error) { enum hns3_tm_node_type node_type = HNS3_TM_NODE_TYPE_MAX; struct hns3_tm_node *tm_node; if (is_leaf == NULL || error == NULL) return -EINVAL; tm_node = hns3_tm_node_search(dev, node_id, &node_type); if (tm_node == NULL) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "no such node"; return -EINVAL; } if (node_type == HNS3_TM_NODE_TYPE_QUEUE) *is_leaf = true; else *is_leaf = false; return 0; } static void hns3_tm_nonleaf_level_capsbilities_get(struct rte_eth_dev *dev, uint32_t level_id, struct rte_tm_level_capabilities *cap) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t max_tx_queues = hns3_tm_max_tx_queues_get(dev); if (level_id == HNS3_TM_NODE_LEVEL_PORT) { cap->n_nodes_max = 1; cap->n_nodes_nonleaf_max = 1; cap->n_nodes_leaf_max = 0; } else { cap->n_nodes_max = HNS3_MAX_TC_NUM; cap->n_nodes_nonleaf_max = HNS3_MAX_TC_NUM; cap->n_nodes_leaf_max = 0; } cap->non_leaf_nodes_identical = 1; cap->leaf_nodes_identical = 1; cap->nonleaf.shaper_private_supported = true; cap->nonleaf.shaper_private_dual_rate_supported = false; cap->nonleaf.shaper_private_rate_min = 0; cap->nonleaf.shaper_private_rate_max = hns3_tm_rate_convert_firmware2tm(hw->max_tm_rate); cap->nonleaf.shaper_shared_n_max = 0; if (level_id == HNS3_TM_NODE_LEVEL_PORT) cap->nonleaf.sched_n_children_max = HNS3_MAX_TC_NUM; else cap->nonleaf.sched_n_children_max = max_tx_queues; cap->nonleaf.sched_sp_n_priorities_max = 1; cap->nonleaf.sched_wfq_n_children_per_group_max = 0; cap->nonleaf.sched_wfq_n_groups_max = 0; cap->nonleaf.sched_wfq_weight_max = 1; cap->nonleaf.stats_mask = 0; } static void hns3_tm_leaf_level_capabilities_get(struct rte_eth_dev *dev, struct rte_tm_level_capabilities *cap) { uint32_t max_tx_queues = hns3_tm_max_tx_queues_get(dev); cap->n_nodes_max = max_tx_queues; cap->n_nodes_nonleaf_max = 0; cap->n_nodes_leaf_max = max_tx_queues; cap->non_leaf_nodes_identical = 1; cap->leaf_nodes_identical = 1; cap->leaf.shaper_private_supported = false; cap->leaf.shaper_private_dual_rate_supported = false; cap->leaf.shaper_private_rate_min = 0; cap->leaf.shaper_private_rate_max = 0; cap->leaf.shaper_shared_n_max = 0; cap->leaf.cman_head_drop_supported = false; cap->leaf.cman_wred_context_private_supported = false; cap->leaf.cman_wred_context_shared_n_max = 0; cap->leaf.stats_mask = 0; } static int hns3_tm_level_capabilities_get(struct rte_eth_dev *dev, uint32_t level_id, struct rte_tm_level_capabilities *cap, struct rte_tm_error *error) { if (cap == NULL || error == NULL) return -EINVAL; if (level_id >= HNS3_TM_NODE_LEVEL_MAX) { error->type = RTE_TM_ERROR_TYPE_LEVEL_ID; error->message = "too deep level"; return -EINVAL; } memset(cap, 0, sizeof(struct rte_tm_level_capabilities)); if (level_id != HNS3_TM_NODE_LEVEL_QUEUE) hns3_tm_nonleaf_level_capsbilities_get(dev, level_id, cap); else hns3_tm_leaf_level_capabilities_get(dev, cap); return 0; } static void hns3_tm_nonleaf_node_capabilities_get(struct rte_eth_dev *dev, enum hns3_tm_node_type node_type, struct rte_tm_node_capabilities *cap) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t max_tx_queues = hns3_tm_max_tx_queues_get(dev); cap->shaper_private_supported = true; cap->shaper_private_dual_rate_supported = false; cap->shaper_private_rate_min = 0; cap->shaper_private_rate_max = hns3_tm_rate_convert_firmware2tm(hw->max_tm_rate); cap->shaper_shared_n_max = 0; if (node_type == HNS3_TM_NODE_TYPE_PORT) cap->nonleaf.sched_n_children_max = HNS3_MAX_TC_NUM; else cap->nonleaf.sched_n_children_max = max_tx_queues; cap->nonleaf.sched_sp_n_priorities_max = 1; cap->nonleaf.sched_wfq_n_children_per_group_max = 0; cap->nonleaf.sched_wfq_n_groups_max = 0; cap->nonleaf.sched_wfq_weight_max = 1; cap->stats_mask = 0; } static void hns3_tm_leaf_node_capabilities_get(struct rte_eth_dev *dev __rte_unused, struct rte_tm_node_capabilities *cap) { cap->shaper_private_supported = false; cap->shaper_private_dual_rate_supported = false; cap->shaper_private_rate_min = 0; cap->shaper_private_rate_max = 0; cap->shaper_shared_n_max = 0; cap->leaf.cman_head_drop_supported = false; cap->leaf.cman_wred_context_private_supported = false; cap->leaf.cman_wred_context_shared_n_max = 0; cap->stats_mask = 0; } static int hns3_tm_node_capabilities_get(struct rte_eth_dev *dev, uint32_t node_id, struct rte_tm_node_capabilities *cap, struct rte_tm_error *error) { enum hns3_tm_node_type node_type; struct hns3_tm_node *tm_node; if (cap == NULL || error == NULL) return -EINVAL; tm_node = hns3_tm_node_search(dev, node_id, &node_type); if (tm_node == NULL) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "no such node"; return -EINVAL; } memset(cap, 0, sizeof(struct rte_tm_node_capabilities)); if (node_type != HNS3_TM_NODE_TYPE_QUEUE) hns3_tm_nonleaf_node_capabilities_get(dev, node_type, cap); else hns3_tm_leaf_node_capabilities_get(dev, cap); return 0; } static int hns3_tm_config_port_rate(struct hns3_hw *hw, struct hns3_tm_shaper_profile *shaper_profile) { struct hns3_port_limit_rate_cmd *cfg; struct hns3_cmd_desc desc; uint32_t firmware_rate; uint64_t rate; int ret; if (shaper_profile) { rate = shaper_profile->profile.peak.rate; firmware_rate = hns3_tm_rate_convert_tm2firmware(rate); } else { firmware_rate = hw->max_tm_rate; } hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_PORT_LIMIT_RATE, false); cfg = (struct hns3_port_limit_rate_cmd *)desc.data; cfg->speed = rte_cpu_to_le_32(firmware_rate); ret = hns3_cmd_send(hw, &desc, 1); if (ret) hns3_err(hw, "failed to config port rate, ret = %d", ret); return ret; } static int hns3_tm_config_tc_rate(struct hns3_hw *hw, uint8_t tc_no, struct hns3_tm_shaper_profile *shaper_profile) { struct hns3_tc_limit_rate_cmd *cfg; struct hns3_cmd_desc desc; uint32_t firmware_rate; uint64_t rate; int ret; if (shaper_profile) { rate = shaper_profile->profile.peak.rate; firmware_rate = hns3_tm_rate_convert_tm2firmware(rate); } else { firmware_rate = hw->dcb_info.tc_info[tc_no].bw_limit; } hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_TC_LIMIT_RATE, false); cfg = (struct hns3_tc_limit_rate_cmd *)desc.data; cfg->speed = rte_cpu_to_le_32(firmware_rate); cfg->tc_id = tc_no; ret = hns3_cmd_send(hw, &desc, 1); if (ret) hns3_err(hw, "failed to config tc (%u) rate, ret = %d", tc_no, ret); return ret; } static bool hns3_tm_configure_check(struct hns3_hw *hw, struct rte_tm_error *error) { struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw); struct hns3_tm_conf *tm_conf = &pf->tm_conf; struct hns3_tm_node_list *tc_list = &tm_conf->tc_list; struct hns3_tm_node_list *queue_list = &tm_conf->queue_list; struct hns3_tm_node *tm_node; /* TC */ TAILQ_FOREACH(tm_node, tc_list, node) { if (!tm_node->reference_count) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS; error->message = "TC without queue assigned"; return false; } if (hns3_tm_calc_node_tc_no(tm_conf, tm_node->id) >= hw->num_tc) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "node's TC not exist"; return false; } } /* Queue */ TAILQ_FOREACH(tm_node, queue_list, node) { if (tm_node->id >= hw->data->nb_tx_queues) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "node's queue invalid"; return false; } if (hns3_txq_mapped_tc_get(hw, tm_node->id) != hns3_tm_calc_node_tc_no(tm_conf, tm_node->parent->id)) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "queue's TC not match parent's TC"; return false; } } return true; } static int hns3_tm_hierarchy_do_commit(struct hns3_hw *hw, struct rte_tm_error *error) { struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw); struct hns3_tm_node_list *tc_list = &pf->tm_conf.tc_list; struct hns3_tm_node *tm_node; uint8_t tc_no; int ret; /* port */ tm_node = pf->tm_conf.root; if (tm_node->shaper_profile) { ret = hns3_tm_config_port_rate(hw, tm_node->shaper_profile); if (ret) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE; error->message = "fail to set port peak rate"; return -EIO; } } /* TC */ TAILQ_FOREACH(tm_node, tc_list, node) { if (tm_node->shaper_profile == NULL) continue; tc_no = hns3_tm_calc_node_tc_no(&pf->tm_conf, tm_node->id); ret = hns3_tm_config_tc_rate(hw, tc_no, tm_node->shaper_profile); if (ret) { error->type = RTE_TM_ERROR_TYPE_NODE_PARAMS; error->message = "fail to set TC peak rate"; return -EIO; } } return 0; } static int hns3_tm_hierarchy_commit(struct rte_eth_dev *dev, int clear_on_fail, struct rte_tm_error *error) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); int ret; if (error == NULL) return -EINVAL; if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) { error->type = RTE_TM_ERROR_TYPE_UNSPECIFIED; error->message = "device is resetting"; /* don't goto fail_clear, user may try later */ return -EBUSY; } if (pf->tm_conf.root == NULL) goto done; /* check configure before commit make sure key configure not violated */ if (!hns3_tm_configure_check(hw, error)) goto fail_clear; ret = hns3_tm_hierarchy_do_commit(hw, error); if (ret) goto fail_clear; done: pf->tm_conf.committed = true; return 0; fail_clear: if (clear_on_fail) { hns3_tm_conf_uninit(dev); hns3_tm_conf_init(dev); } return -EINVAL; } static int hns3_tm_hierarchy_commit_wrap(struct rte_eth_dev *dev, int clear_on_fail, struct rte_tm_error *error) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); int ret; rte_spinlock_lock(&hw->lock); ret = hns3_tm_hierarchy_commit(dev, clear_on_fail, error); rte_spinlock_unlock(&hw->lock); return ret; } static int hns3_tm_node_shaper_do_update(struct hns3_hw *hw, uint32_t node_id, enum hns3_tm_node_type node_type, struct hns3_tm_shaper_profile *shaper_profile, struct rte_tm_error *error) { struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw); uint8_t tc_no; int ret; if (node_type == HNS3_TM_NODE_TYPE_QUEUE) { if (shaper_profile != NULL) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE_ID; error->message = "queue node shaper not supported"; return -EINVAL; } return 0; } if (!pf->tm_conf.committed) return 0; if (node_type == HNS3_TM_NODE_TYPE_PORT) { ret = hns3_tm_config_port_rate(hw, shaper_profile); if (ret) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE; error->message = "fail to update port peak rate"; } return ret; } /* * update TC's shaper */ tc_no = hns3_tm_calc_node_tc_no(&pf->tm_conf, node_id); ret = hns3_tm_config_tc_rate(hw, tc_no, shaper_profile); if (ret) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE; error->message = "fail to update TC peak rate"; } return ret; } static int hns3_tm_node_shaper_update(struct rte_eth_dev *dev, uint32_t node_id, uint32_t shaper_profile_id, struct rte_tm_error *error) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); enum hns3_tm_node_type node_type = HNS3_TM_NODE_TYPE_MAX; struct hns3_tm_shaper_profile *profile = NULL; struct hns3_tm_node *tm_node; if (error == NULL) return -EINVAL; if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) { error->type = RTE_TM_ERROR_TYPE_UNSPECIFIED; error->message = "device is resetting"; return -EBUSY; } tm_node = hns3_tm_node_search(dev, node_id, &node_type); if (tm_node == NULL) { error->type = RTE_TM_ERROR_TYPE_NODE_ID; error->message = "no such node"; return -EINVAL; } if (shaper_profile_id == tm_node->params.shaper_profile_id) return 0; if (shaper_profile_id != RTE_TM_SHAPER_PROFILE_ID_NONE) { profile = hns3_tm_shaper_profile_search(dev, shaper_profile_id); if (profile == NULL) { error->type = RTE_TM_ERROR_TYPE_SHAPER_PROFILE_ID; error->message = "profile ID not exist"; return -EINVAL; } } if (hns3_tm_node_shaper_do_update(hw, node_id, node_type, profile, error)) return -EINVAL; if (tm_node->shaper_profile) tm_node->shaper_profile->reference_count--; tm_node->shaper_profile = profile; tm_node->params.shaper_profile_id = shaper_profile_id; if (profile != NULL) profile->reference_count++; return 0; } static int hns3_tm_node_shaper_update_wrap(struct rte_eth_dev *dev, uint32_t node_id, uint32_t shaper_profile_id, struct rte_tm_error *error) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); int ret; rte_spinlock_lock(&hw->lock); ret = hns3_tm_node_shaper_update(dev, node_id, shaper_profile_id, error); rte_spinlock_unlock(&hw->lock); return ret; } static const struct rte_tm_ops hns3_tm_ops = { .capabilities_get = hns3_tm_capabilities_get, .shaper_profile_add = hns3_tm_shaper_profile_add, .shaper_profile_delete = hns3_tm_shaper_profile_del, .node_add = hns3_tm_node_add, .node_delete = hns3_tm_node_delete, .node_type_get = hns3_tm_node_type_get, .level_capabilities_get = hns3_tm_level_capabilities_get, .node_capabilities_get = hns3_tm_node_capabilities_get, .hierarchy_commit = hns3_tm_hierarchy_commit_wrap, .node_shaper_update = hns3_tm_node_shaper_update_wrap, }; int hns3_tm_ops_get(struct rte_eth_dev *dev, void *arg) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (arg == NULL) return -EINVAL; if (!hns3_dev_get_support(hw, TM)) return -EOPNOTSUPP; *(const void **)arg = &hns3_tm_ops; return 0; } void hns3_tm_dev_start_proc(struct hns3_hw *hw) { struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw); if (!hns3_dev_get_support(hw, TM)) return; if (pf->tm_conf.root && !pf->tm_conf.committed) hns3_warn(hw, "please call hierarchy_commit() before starting the port."); } /* * We need clear tm_conf committed flag when device stop so that user can modify * tm configuration (e.g. add or delete node). * * If user don't call hierarchy commit when device start later, the Port/TC's * shaper rate still the same as previous committed. * * To avoid the above problem, we need recover Port/TC shaper rate when device * stop. */ void hns3_tm_dev_stop_proc(struct hns3_hw *hw) { struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw); struct hns3_tm_node_list *tc_list = &pf->tm_conf.tc_list; struct hns3_tm_node *tm_node; uint8_t tc_no; if (!pf->tm_conf.committed) return; tm_node = pf->tm_conf.root; if (tm_node != NULL && tm_node->shaper_profile) (void)hns3_tm_config_port_rate(hw, NULL); TAILQ_FOREACH(tm_node, tc_list, node) { if (tm_node->shaper_profile == NULL) continue; tc_no = hns3_tm_calc_node_tc_no(&pf->tm_conf, tm_node->id); (void)hns3_tm_config_tc_rate(hw, tc_no, NULL); } pf->tm_conf.committed = false; } int hns3_tm_conf_update(struct hns3_hw *hw) { struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw); struct rte_tm_error error; if (!hns3_dev_get_support(hw, TM)) return 0; if (pf->tm_conf.root == NULL || !pf->tm_conf.committed) return 0; memset(&error, 0, sizeof(struct rte_tm_error)); return hns3_tm_hierarchy_do_commit(hw, &error); }