/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2008-2017 Cisco Systems, Inc. All rights reserved. * Copyright 2007 Nuova Systems, Inc. All rights reserved. */ #include #include #include #include #include "vnic_dev.h" #include "vnic_resource.h" #include "vnic_devcmd.h" #include "vnic_nic.h" #include "vnic_stats.h" #include "vnic_flowman.h" enum vnic_proxy_type { PROXY_NONE, PROXY_BY_BDF, PROXY_BY_INDEX, }; struct vnic_res { void __iomem *vaddr; dma_addr_t bus_addr; unsigned int count; }; struct vnic_intr_coal_timer_info { uint32_t mul; uint32_t div; uint32_t max_usec; }; struct vnic_dev { void *priv; struct rte_pci_device *pdev; struct vnic_res res[RES_TYPE_MAX]; enum vnic_dev_intr_mode intr_mode; struct vnic_devcmd __iomem *devcmd; struct vnic_devcmd_notify *notify; struct vnic_devcmd_notify notify_copy; dma_addr_t notify_pa; uint32_t notify_sz; dma_addr_t linkstatus_pa; struct vnic_stats *stats; dma_addr_t stats_pa; struct vnic_devcmd_fw_info *fw_info; dma_addr_t fw_info_pa; struct fm_info *flowman_info; dma_addr_t flowman_info_pa; enum vnic_proxy_type proxy; uint32_t proxy_index; uint64_t args[VNIC_DEVCMD_NARGS]; int in_reset; struct vnic_intr_coal_timer_info intr_coal_timer_info; void *(*alloc_consistent)(void *priv, size_t size, dma_addr_t *dma_handle, uint8_t *name); void (*free_consistent)(void *priv, size_t size, void *vaddr, dma_addr_t dma_handle); /* * Used to serialize devcmd access, currently from PF and its * VF representors. When there are no representors, lock is * not used. */ int locked; void (*lock)(void *priv); void (*unlock)(void *priv); struct vnic_dev *pf_vdev; int vf_id; }; #define VNIC_MAX_RES_HDR_SIZE \ (sizeof(struct vnic_resource_header) + \ sizeof(struct vnic_resource) * RES_TYPE_MAX) #define VNIC_RES_STRIDE 128 void *vnic_dev_priv(struct vnic_dev *vdev) { return vdev->priv; } void vnic_register_cbacks(struct vnic_dev *vdev, void *(*alloc_consistent)(void *priv, size_t size, dma_addr_t *dma_handle, uint8_t *name), void (*free_consistent)(void *priv, size_t size, void *vaddr, dma_addr_t dma_handle)) { vdev->alloc_consistent = alloc_consistent; vdev->free_consistent = free_consistent; } void vnic_register_lock(struct vnic_dev *vdev, void (*lock)(void *priv), void (*unlock)(void *priv)) { vdev->lock = lock; vdev->unlock = unlock; vdev->locked = 0; } static int vnic_dev_discover_res(struct vnic_dev *vdev, struct vnic_dev_bar *bar, unsigned int num_bars) { struct vnic_resource_header __iomem *rh; struct mgmt_barmap_hdr __iomem *mrh; struct vnic_resource __iomem *r; uint8_t type; if (num_bars == 0) return -EINVAL; if (bar->len < VNIC_MAX_RES_HDR_SIZE) { pr_err("vNIC BAR0 res hdr length error\n"); return -EINVAL; } rh = bar->vaddr; mrh = bar->vaddr; if (!rh) { pr_err("vNIC BAR0 res hdr not mem-mapped\n"); return -EINVAL; } /* Check for mgmt vnic in addition to normal vnic */ if ((ioread32(&rh->magic) != VNIC_RES_MAGIC) || (ioread32(&rh->version) != VNIC_RES_VERSION)) { if ((ioread32(&mrh->magic) != MGMTVNIC_MAGIC) || (ioread32(&mrh->version) != MGMTVNIC_VERSION)) { pr_err("vNIC BAR0 res magic/version error " \ "exp (%lx/%lx) or (%lx/%lx), curr (%x/%x)\n", VNIC_RES_MAGIC, VNIC_RES_VERSION, MGMTVNIC_MAGIC, MGMTVNIC_VERSION, ioread32(&rh->magic), ioread32(&rh->version)); return -EINVAL; } } if (ioread32(&mrh->magic) == MGMTVNIC_MAGIC) r = (struct vnic_resource __iomem *)(mrh + 1); else r = (struct vnic_resource __iomem *)(rh + 1); while ((type = ioread8(&r->type)) != RES_TYPE_EOL) { uint8_t bar_num = ioread8(&r->bar); uint32_t bar_offset = ioread32(&r->bar_offset); uint32_t count = ioread32(&r->count); uint32_t len; r++; if (bar_num >= num_bars) continue; if (!bar[bar_num].len || !bar[bar_num].vaddr) continue; switch (type) { case RES_TYPE_WQ: case RES_TYPE_RQ: case RES_TYPE_CQ: case RES_TYPE_INTR_CTRL: /* each count is stride bytes long */ len = count * VNIC_RES_STRIDE; if (len + bar_offset > bar[bar_num].len) { pr_err("vNIC BAR0 resource %d " \ "out-of-bounds, offset 0x%x + " \ "size 0x%x > bar len 0x%lx\n", type, bar_offset, len, bar[bar_num].len); return -EINVAL; } break; case RES_TYPE_INTR_PBA_LEGACY: case RES_TYPE_DEVCMD: len = count; break; default: continue; } vdev->res[type].count = count; vdev->res[type].vaddr = (char __iomem *)bar[bar_num].vaddr + bar_offset; vdev->res[type].bus_addr = bar[bar_num].bus_addr + bar_offset; } return 0; } unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev, enum vnic_res_type type) { return vdev->res[type].count; } void __iomem *vnic_dev_get_res(struct vnic_dev *vdev, enum vnic_res_type type, unsigned int index) { if (!vdev->res[type].vaddr) return NULL; switch (type) { case RES_TYPE_WQ: case RES_TYPE_RQ: case RES_TYPE_CQ: case RES_TYPE_INTR_CTRL: return (char __iomem *)vdev->res[type].vaddr + index * VNIC_RES_STRIDE; default: return (char __iomem *)vdev->res[type].vaddr; } } unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring, unsigned int desc_count, unsigned int desc_size) { /* The base address of the desc rings must be 512 byte aligned. * Descriptor count is aligned to groups of 32 descriptors. A * count of 0 means the maximum 4096 descriptors. Descriptor * size is aligned to 16 bytes. */ unsigned int count_align = 32; unsigned int desc_align = 16; ring->base_align = 512; if (desc_count == 0) desc_count = 4096; ring->desc_count = VNIC_ALIGN(desc_count, count_align); ring->desc_size = VNIC_ALIGN(desc_size, desc_align); ring->size = ring->desc_count * ring->desc_size; ring->size_unaligned = ring->size + ring->base_align; return ring->size_unaligned; } void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring) { memset(ring->descs, 0, ring->size); } int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev, struct vnic_dev_ring *ring, unsigned int desc_count, unsigned int desc_size, __rte_unused unsigned int socket_id, char *z_name) { void *alloc_addr; dma_addr_t alloc_pa = 0; vnic_dev_desc_ring_size(ring, desc_count, desc_size); alloc_addr = vdev->alloc_consistent(vdev->priv, ring->size_unaligned, &alloc_pa, (uint8_t *)z_name); if (!alloc_addr) { pr_err("Failed to allocate ring (size=%d), aborting\n", (int)ring->size); return -ENOMEM; } ring->descs_unaligned = alloc_addr; if (!alloc_pa) { pr_err("Failed to map allocated ring (size=%d), aborting\n", (int)ring->size); vdev->free_consistent(vdev->priv, ring->size_unaligned, alloc_addr, alloc_pa); return -ENOMEM; } ring->base_addr_unaligned = alloc_pa; ring->base_addr = VNIC_ALIGN(ring->base_addr_unaligned, ring->base_align); ring->descs = (uint8_t *)ring->descs_unaligned + (ring->base_addr - ring->base_addr_unaligned); vnic_dev_clear_desc_ring(ring); ring->desc_avail = ring->desc_count - 1; return 0; } void vnic_dev_free_desc_ring(__rte_unused struct vnic_dev *vdev, struct vnic_dev_ring *ring) { if (ring->descs) { vdev->free_consistent(vdev->priv, ring->size_unaligned, ring->descs_unaligned, ring->base_addr_unaligned); ring->descs = NULL; } } static int _vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, int wait) { struct vnic_devcmd __iomem *devcmd = vdev->devcmd; unsigned int i; int delay; uint32_t status; int err; status = ioread32(&devcmd->status); if (status == 0xFFFFFFFF) { /* PCI-e target device is gone */ return -ENODEV; } if (status & STAT_BUSY) { pr_err("Busy devcmd %d\n", _CMD_N(cmd)); return -EBUSY; } if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) { for (i = 0; i < VNIC_DEVCMD_NARGS; i++) writeq(vdev->args[i], &devcmd->args[i]); rte_wmb(); /* complete all writes initiated till now */ } iowrite32(cmd, &devcmd->cmd); if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT)) return 0; for (delay = 0; delay < wait; delay++) { usleep(100); status = ioread32(&devcmd->status); if (status == 0xFFFFFFFF) { /* PCI-e target device is gone */ return -ENODEV; } if (!(status & STAT_BUSY)) { if (status & STAT_ERROR) { err = -(int)readq(&devcmd->args[0]); if (cmd != CMD_CAPABILITY && cmd != CMD_OVERLAY_OFFLOAD_CTRL && cmd != CMD_GET_SUPP_FEATURE_VER) pr_err("Devcmd %d failed " \ "with error code %d\n", _CMD_N(cmd), err); return err; } if (_CMD_DIR(cmd) & _CMD_DIR_READ) { rte_rmb();/* finish all reads */ for (i = 0; i < VNIC_DEVCMD_NARGS; i++) vdev->args[i] = readq(&devcmd->args[i]); } return 0; } } pr_err("Timedout devcmd %d\n", _CMD_N(cmd)); return -ETIMEDOUT; } static int vnic_dev_cmd_proxy(struct vnic_dev *vdev, enum vnic_devcmd_cmd proxy_cmd, enum vnic_devcmd_cmd cmd, uint64_t *args, int nargs, int wait) { uint32_t status; int err; /* * Proxy command consumes 2 arguments. One for proxy index, * the other is for command to be proxied */ if (nargs > VNIC_DEVCMD_NARGS - 2) { pr_err("number of args %d exceeds the maximum\n", nargs); return -EINVAL; } memset(vdev->args, 0, sizeof(vdev->args)); vdev->args[0] = vdev->proxy_index; vdev->args[1] = cmd; memcpy(&vdev->args[2], args, nargs * sizeof(args[0])); err = _vnic_dev_cmd(vdev, proxy_cmd, wait); if (err) return err; status = (uint32_t)vdev->args[0]; if (status & STAT_ERROR) { err = (int)vdev->args[1]; if (err != ERR_ECMDUNKNOWN || cmd != CMD_CAPABILITY) pr_err("Error %d proxy devcmd %d\n", err, _CMD_N(cmd)); return err; } memcpy(args, &vdev->args[1], nargs * sizeof(args[0])); return 0; } static int vnic_dev_cmd_no_proxy(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, uint64_t *args, int nargs, int wait) { int err; if (nargs > VNIC_DEVCMD_NARGS) { pr_err("number of args %d exceeds the maximum\n", nargs); return -EINVAL; } memset(vdev->args, 0, sizeof(vdev->args)); memcpy(vdev->args, args, nargs * sizeof(args[0])); err = _vnic_dev_cmd(vdev, cmd, wait); memcpy(args, vdev->args, nargs * sizeof(args[0])); return err; } void vnic_dev_cmd_proxy_by_index_start(struct vnic_dev *vdev, uint16_t index) { vdev->proxy = PROXY_BY_INDEX; vdev->proxy_index = index; } void vnic_dev_cmd_proxy_end(struct vnic_dev *vdev) { vdev->proxy = PROXY_NONE; vdev->proxy_index = 0; } int vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, uint64_t *a0, uint64_t *a1, int wait) { uint64_t args[2]; bool vf_rep; int vf_idx; int err; vf_rep = false; if (vdev->pf_vdev) { vf_rep = true; vf_idx = vdev->vf_id; /* Everything below assumes PF vdev */ vdev = vdev->pf_vdev; } if (vdev->lock) vdev->lock(vdev->priv); /* For VF representor, proxy devcmd to VF index */ if (vf_rep) vnic_dev_cmd_proxy_by_index_start(vdev, vf_idx); args[0] = *a0; args[1] = *a1; memset(vdev->args, 0, sizeof(vdev->args)); switch (vdev->proxy) { case PROXY_BY_INDEX: err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd, args, ARRAY_SIZE(args), wait); break; case PROXY_BY_BDF: err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd, args, ARRAY_SIZE(args), wait); break; case PROXY_NONE: default: err = vnic_dev_cmd_no_proxy(vdev, cmd, args, 2, wait); break; } if (vf_rep) vnic_dev_cmd_proxy_end(vdev); if (vdev->unlock) vdev->unlock(vdev->priv); if (err == 0) { *a0 = args[0]; *a1 = args[1]; } return err; } int vnic_dev_cmd_args(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, uint64_t *args, int nargs, int wait) { bool vf_rep; int vf_idx; int err; vf_rep = false; if (vdev->pf_vdev) { vf_rep = true; vf_idx = vdev->vf_id; vdev = vdev->pf_vdev; } if (vdev->lock) vdev->lock(vdev->priv); if (vf_rep) vnic_dev_cmd_proxy_by_index_start(vdev, vf_idx); switch (vdev->proxy) { case PROXY_BY_INDEX: err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd, args, nargs, wait); break; case PROXY_BY_BDF: err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd, args, nargs, wait); break; case PROXY_NONE: default: err = vnic_dev_cmd_no_proxy(vdev, cmd, args, nargs, wait); break; } if (vf_rep) vnic_dev_cmd_proxy_end(vdev); if (vdev->unlock) vdev->unlock(vdev->priv); return err; } int vnic_dev_fw_info(struct vnic_dev *vdev, struct vnic_devcmd_fw_info **fw_info) { char name[RTE_MEMZONE_NAMESIZE]; uint64_t a0, a1 = 0; int wait = 1000; int err = 0; static uint32_t instance; if (!vdev->fw_info) { snprintf((char *)name, sizeof(name), "vnic_fw_info-%u", instance++); vdev->fw_info = vdev->alloc_consistent(vdev->priv, sizeof(struct vnic_devcmd_fw_info), &vdev->fw_info_pa, (uint8_t *)name); if (!vdev->fw_info) return -ENOMEM; a0 = vdev->fw_info_pa; a1 = sizeof(struct vnic_devcmd_fw_info); err = vnic_dev_cmd(vdev, CMD_MCPU_FW_INFO, &a0, &a1, wait); } *fw_info = vdev->fw_info; return err; } static int vnic_dev_advanced_filters_cap(struct vnic_dev *vdev, uint64_t *args, int nargs) { memset(args, 0, nargs * sizeof(*args)); args[0] = CMD_ADD_ADV_FILTER; args[1] = FILTER_CAP_MODE_V1_FLAG; return vnic_dev_cmd_args(vdev, CMD_CAPABILITY, args, nargs, 1000); } int vnic_dev_capable_adv_filters(struct vnic_dev *vdev) { uint64_t a0 = CMD_ADD_ADV_FILTER, a1 = 0; int wait = 1000; int err; err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait); if (err) return 0; return (a1 >= (uint32_t)FILTER_DPDK_1); } int vnic_dev_flowman_cmd(struct vnic_dev *vdev, uint64_t *args, int nargs) { int wait = 1000; return vnic_dev_cmd_args(vdev, CMD_FLOW_MANAGER_OP, args, nargs, wait); } static int vnic_dev_flowman_enable(struct vnic_dev *vdev, uint32_t *mode, uint8_t *filter_actions) { char name[RTE_MEMZONE_NAMESIZE]; uint64_t args[3]; uint64_t ops; static uint32_t instance; /* Advanced filtering is a prerequisite */ if (!vnic_dev_capable_adv_filters(vdev)) return 0; /* flowman devcmd available? */ if (!vnic_dev_capable(vdev, CMD_FLOW_MANAGER_OP)) return 0; /* Have the version we are using? */ args[0] = FM_API_VERSION_QUERY; if (vnic_dev_flowman_cmd(vdev, args, 1)) return 0; if ((args[0] & (1ULL << FM_VERSION)) == 0) return 0; /* Select the version */ args[0] = FM_API_VERSION_SELECT; args[1] = FM_VERSION; if (vnic_dev_flowman_cmd(vdev, args, 2)) return 0; /* Can we get fm_info? */ if (!vdev->flowman_info) { snprintf((char *)name, sizeof(name), "vnic_fm_info-%u", instance++); vdev->flowman_info = vdev->alloc_consistent(vdev->priv, sizeof(struct fm_info), &vdev->flowman_info_pa, (uint8_t *)name); if (!vdev->flowman_info) return 0; } args[0] = FM_INFO_QUERY; args[1] = vdev->flowman_info_pa; args[2] = sizeof(struct fm_info); if (vnic_dev_flowman_cmd(vdev, args, 3)) return 0; /* Have required operations? */ ops = (1ULL << FMOP_END) | (1ULL << FMOP_DROP) | (1ULL << FMOP_RQ_STEER) | (1ULL << FMOP_EXACT_MATCH) | (1ULL << FMOP_MARK) | (1ULL << FMOP_TAG) | (1ULL << FMOP_EG_HAIRPIN) | (1ULL << FMOP_ENCAP) | (1ULL << FMOP_DECAP_NOSTRIP); if ((vdev->flowman_info->fm_op_mask & ops) != ops) return 0; /* Good to use flowman now */ *mode = FILTER_FLOWMAN; *filter_actions = FILTER_ACTION_RQ_STEERING_FLAG | FILTER_ACTION_FILTER_ID_FLAG | FILTER_ACTION_COUNTER_FLAG | FILTER_ACTION_DROP_FLAG; return 1; } /* Determine the "best" filtering mode VIC is capable of. Returns one of 4 * value or 0 if filtering is unavailble: * FILTER_FLOWMAN- flowman api capable * FILTER_DPDK_1- advanced filters availabile * FILTER_USNIC_IP_FLAG - advanced filters but with the restriction that * the IP layer must explicitly specified. I.e. cannot have a UDP * filter that matches both IPv4 and IPv6. * FILTER_IPV4_5TUPLE - fallback if either of the 2 above aren't available. * all other filter types are not available. * Retrun true in filter_tags if supported */ int vnic_dev_capable_filter_mode(struct vnic_dev *vdev, uint32_t *mode, uint8_t *filter_actions) { uint64_t args[4]; int err; uint32_t max_level = 0; /* If flowman is available, use it as it is the most capable API */ if (vnic_dev_flowman_enable(vdev, mode, filter_actions)) return 0; err = vnic_dev_advanced_filters_cap(vdev, args, 4); /* determine supported filter actions */ *filter_actions = FILTER_ACTION_RQ_STEERING_FLAG; /* always available */ if (args[2] == FILTER_CAP_MODE_V1) *filter_actions = args[3]; if (err || ((args[0] == 1) && (args[1] == 0))) { /* Adv filter Command not supported or adv filters available but * not enabled. Try the normal filter capability command. */ args[0] = CMD_ADD_FILTER; args[1] = 0; err = vnic_dev_cmd_args(vdev, CMD_CAPABILITY, args, 2, 1000); /* * ERR_EPERM may be returned if, for example, vNIC is * on a VF. It simply means no filtering is available */ if (err == -ERR_EPERM) { *mode = 0; return 0; } if (err) return err; max_level = args[1]; goto parse_max_level; } else if (args[2] == FILTER_CAP_MODE_V1) { /* parse filter capability mask in args[1] */ if (args[1] & FILTER_DPDK_1_FLAG) *mode = FILTER_DPDK_1; else if (args[1] & FILTER_USNIC_IP_FLAG) *mode = FILTER_USNIC_IP; else if (args[1] & FILTER_IPV4_5TUPLE_FLAG) *mode = FILTER_IPV4_5TUPLE; return 0; } max_level = args[1]; parse_max_level: if (max_level >= (uint32_t)FILTER_USNIC_IP) *mode = FILTER_USNIC_IP; else *mode = FILTER_IPV4_5TUPLE; return 0; } void vnic_dev_capable_udp_rss_weak(struct vnic_dev *vdev, bool *cfg_chk, bool *weak) { uint64_t a0 = CMD_NIC_CFG, a1 = 0; int wait = 1000; int err; *cfg_chk = false; *weak = false; err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait); if (err == 0 && a0 != 0 && a1 != 0) { *cfg_chk = true; *weak = !!((a1 >> 32) & CMD_NIC_CFG_CAPF_UDP_WEAK); } } int vnic_dev_capable(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd) { uint64_t a0 = (uint32_t)cmd, a1 = 0; int wait = 1000; int err; err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait); return !(err || a0); } int vnic_dev_spec(struct vnic_dev *vdev, unsigned int offset, size_t size, void *value) { uint64_t a0, a1; int wait = 1000; int err; a0 = offset; a1 = size; err = vnic_dev_cmd(vdev, CMD_DEV_SPEC, &a0, &a1, wait); switch (size) { case 1: *(uint8_t *)value = (uint8_t)a0; break; case 2: *(uint16_t *)value = (uint16_t)a0; break; case 4: *(uint32_t *)value = (uint32_t)a0; break; case 8: *(uint64_t *)value = a0; break; default: BUG(); break; } return err; } int vnic_dev_stats_clear(struct vnic_dev *vdev) { uint64_t a0 = 0, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_STATS_CLEAR, &a0, &a1, wait); } int vnic_dev_stats_dump(struct vnic_dev *vdev, struct vnic_stats **stats) { uint64_t a0, a1; int wait = 1000; if (!vdev->stats) return -ENOMEM; *stats = vdev->stats; a0 = vdev->stats_pa; a1 = sizeof(struct vnic_stats); return vnic_dev_cmd(vdev, CMD_STATS_DUMP, &a0, &a1, wait); } int vnic_dev_close(struct vnic_dev *vdev) { uint64_t a0 = 0, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_CLOSE, &a0, &a1, wait); } int vnic_dev_enable_wait(struct vnic_dev *vdev) { uint64_t a0 = 0, a1 = 0; int wait = 1000; if (vnic_dev_capable(vdev, CMD_ENABLE_WAIT)) return vnic_dev_cmd(vdev, CMD_ENABLE_WAIT, &a0, &a1, wait); else return vnic_dev_cmd(vdev, CMD_ENABLE, &a0, &a1, wait); } int vnic_dev_disable(struct vnic_dev *vdev) { uint64_t a0 = 0, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_DISABLE, &a0, &a1, wait); } int vnic_dev_open(struct vnic_dev *vdev, int arg) { uint64_t a0 = (uint32_t)arg, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_OPEN, &a0, &a1, wait); } int vnic_dev_open_done(struct vnic_dev *vdev, int *done) { uint64_t a0 = 0, a1 = 0; int wait = 1000; int err; *done = 0; err = vnic_dev_cmd(vdev, CMD_OPEN_STATUS, &a0, &a1, wait); if (err) return err; *done = (a0 == 0); return 0; } int vnic_dev_get_mac_addr(struct vnic_dev *vdev, uint8_t *mac_addr) { uint64_t a0 = 0, a1 = 0; int wait = 1000; int err, i; for (i = 0; i < RTE_ETHER_ADDR_LEN; i++) mac_addr[i] = 0; err = vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait); if (err) return err; for (i = 0; i < RTE_ETHER_ADDR_LEN; i++) mac_addr[i] = ((uint8_t *)&a0)[i]; return 0; } int vnic_dev_packet_filter(struct vnic_dev *vdev, int directed, int multicast, int broadcast, int promisc, int allmulti) { uint64_t a0, a1 = 0; int wait = 1000; int err; a0 = (directed ? CMD_PFILTER_DIRECTED : 0) | (multicast ? CMD_PFILTER_MULTICAST : 0) | (broadcast ? CMD_PFILTER_BROADCAST : 0) | (promisc ? CMD_PFILTER_PROMISCUOUS : 0) | (allmulti ? CMD_PFILTER_ALL_MULTICAST : 0); err = vnic_dev_cmd(vdev, CMD_PACKET_FILTER, &a0, &a1, wait); if (err) pr_err("Can't set packet filter\n"); return err; } int vnic_dev_add_addr(struct vnic_dev *vdev, uint8_t *addr) { uint64_t a0 = 0, a1 = 0; int wait = 1000; int err; int i; for (i = 0; i < RTE_ETHER_ADDR_LEN; i++) ((uint8_t *)&a0)[i] = addr[i]; err = vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait); if (err) pr_err("Can't add addr [" RTE_ETHER_ADDR_PRT_FMT "], %d\n", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], err); return err; } int vnic_dev_del_addr(struct vnic_dev *vdev, uint8_t *addr) { uint64_t a0 = 0, a1 = 0; int wait = 1000; int err; int i; for (i = 0; i < RTE_ETHER_ADDR_LEN; i++) ((uint8_t *)&a0)[i] = addr[i]; err = vnic_dev_cmd(vdev, CMD_ADDR_DEL, &a0, &a1, wait); if (err) pr_err("Can't del addr [" RTE_ETHER_ADDR_PRT_FMT "], %d\n", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], err); return err; } int vnic_dev_set_ig_vlan_rewrite_mode(struct vnic_dev *vdev, uint8_t ig_vlan_rewrite_mode) { uint64_t a0 = ig_vlan_rewrite_mode, a1 = 0; int wait = 1000; if (vnic_dev_capable(vdev, CMD_IG_VLAN_REWRITE_MODE)) return vnic_dev_cmd(vdev, CMD_IG_VLAN_REWRITE_MODE, &a0, &a1, wait); else return 0; } void vnic_dev_set_reset_flag(struct vnic_dev *vdev, int state) { vdev->in_reset = state; } static inline int vnic_dev_in_reset(struct vnic_dev *vdev) { return vdev->in_reset; } int vnic_dev_notify_setcmd(struct vnic_dev *vdev, void *notify_addr, dma_addr_t notify_pa, uint16_t intr) { uint64_t a0, a1; int wait = 1000; int r; memset(notify_addr, 0, sizeof(struct vnic_devcmd_notify)); if (!vnic_dev_in_reset(vdev)) { vdev->notify = notify_addr; vdev->notify_pa = notify_pa; } a0 = (uint64_t)notify_pa; a1 = ((uint64_t)intr << 32) & 0x0000ffff00000000ULL; a1 += sizeof(struct vnic_devcmd_notify); r = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait); if (!vnic_dev_in_reset(vdev)) vdev->notify_sz = (r == 0) ? (uint32_t)a1 : 0; return r; } int vnic_dev_notify_set(struct vnic_dev *vdev, uint16_t intr) { void *notify_addr = NULL; dma_addr_t notify_pa = 0; char name[RTE_MEMZONE_NAMESIZE]; static uint32_t instance; if (vdev->notify || vdev->notify_pa) { return vnic_dev_notify_setcmd(vdev, vdev->notify, vdev->notify_pa, intr); } if (!vnic_dev_in_reset(vdev)) { snprintf((char *)name, sizeof(name), "vnic_notify-%u", instance++); notify_addr = vdev->alloc_consistent(vdev->priv, sizeof(struct vnic_devcmd_notify), ¬ify_pa, (uint8_t *)name); if (!notify_addr) return -ENOMEM; } return vnic_dev_notify_setcmd(vdev, notify_addr, notify_pa, intr); } int vnic_dev_notify_unsetcmd(struct vnic_dev *vdev) { uint64_t a0, a1; int wait = 1000; int err; a0 = 0; /* paddr = 0 to unset notify buffer */ a1 = 0x0000ffff00000000ULL; /* intr num = -1 to unreg for intr */ a1 += sizeof(struct vnic_devcmd_notify); err = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait); if (!vnic_dev_in_reset(vdev)) { vdev->notify = NULL; vdev->notify_pa = 0; vdev->notify_sz = 0; } return err; } int vnic_dev_notify_unset(struct vnic_dev *vdev) { if (vdev->notify && !vnic_dev_in_reset(vdev)) { vdev->free_consistent(vdev->priv, sizeof(struct vnic_devcmd_notify), vdev->notify, vdev->notify_pa); } return vnic_dev_notify_unsetcmd(vdev); } static int vnic_dev_notify_ready(struct vnic_dev *vdev) { uint32_t *words; unsigned int nwords = vdev->notify_sz / 4; unsigned int i; uint32_t csum; if (!vdev->notify || !vdev->notify_sz) return 0; do { csum = 0; rte_memcpy(&vdev->notify_copy, vdev->notify, vdev->notify_sz); words = (uint32_t *)&vdev->notify_copy; for (i = 1; i < nwords; i++) csum += words[i]; } while (csum != words[0]); return 1; } int vnic_dev_init(struct vnic_dev *vdev, int arg) { uint64_t a0 = (uint32_t)arg, a1 = 0; int wait = 1000; int r = 0; if (vnic_dev_capable(vdev, CMD_INIT)) r = vnic_dev_cmd(vdev, CMD_INIT, &a0, &a1, wait); else { vnic_dev_cmd(vdev, CMD_INIT_v1, &a0, &a1, wait); if (a0 & CMD_INITF_DEFAULT_MAC) { /* Emulate these for old CMD_INIT_v1 which * didn't pass a0 so no CMD_INITF_*. */ vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait); vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait); } } return r; } void vnic_dev_intr_coal_timer_info_default(struct vnic_dev *vdev) { /* Default: hardware intr coal timer is in units of 1.5 usecs */ vdev->intr_coal_timer_info.mul = 2; vdev->intr_coal_timer_info.div = 3; vdev->intr_coal_timer_info.max_usec = vnic_dev_intr_coal_timer_hw_to_usec(vdev, 0xffff); } int vnic_dev_link_status(struct vnic_dev *vdev) { if (!vnic_dev_notify_ready(vdev)) return 0; return vdev->notify_copy.link_state; } uint32_t vnic_dev_port_speed(struct vnic_dev *vdev) { if (!vnic_dev_notify_ready(vdev)) return 0; return vdev->notify_copy.port_speed; } uint32_t vnic_dev_mtu(struct vnic_dev *vdev) { if (!vnic_dev_notify_ready(vdev)) return 0; return vdev->notify_copy.mtu; } uint32_t vnic_dev_uif(struct vnic_dev *vdev) { if (!vnic_dev_notify_ready(vdev)) return 0; return vdev->notify_copy.uif; } uint32_t vnic_dev_intr_coal_timer_usec_to_hw(struct vnic_dev *vdev, uint32_t usec) { return (usec * vdev->intr_coal_timer_info.mul) / vdev->intr_coal_timer_info.div; } uint32_t vnic_dev_intr_coal_timer_hw_to_usec(struct vnic_dev *vdev, uint32_t hw_cycles) { return (hw_cycles * vdev->intr_coal_timer_info.div) / vdev->intr_coal_timer_info.mul; } uint32_t vnic_dev_get_intr_coal_timer_max(struct vnic_dev *vdev) { return vdev->intr_coal_timer_info.max_usec; } int vnic_dev_alloc_stats_mem(struct vnic_dev *vdev) { char name[RTE_MEMZONE_NAMESIZE]; static uint32_t instance; snprintf((char *)name, sizeof(name), "vnic_stats-%u", instance++); vdev->stats = vdev->alloc_consistent(vdev->priv, sizeof(struct vnic_stats), &vdev->stats_pa, (uint8_t *)name); return vdev->stats == NULL ? -ENOMEM : 0; } void vnic_dev_unregister(struct vnic_dev *vdev) { if (vdev) { if (vdev->notify) vdev->free_consistent(vdev->priv, sizeof(struct vnic_devcmd_notify), vdev->notify, vdev->notify_pa); if (vdev->stats) vdev->free_consistent(vdev->priv, sizeof(struct vnic_stats), vdev->stats, vdev->stats_pa); if (vdev->flowman_info) vdev->free_consistent(vdev->priv, sizeof(struct fm_info), vdev->flowman_info, vdev->flowman_info_pa); if (vdev->fw_info) vdev->free_consistent(vdev->priv, sizeof(struct vnic_devcmd_fw_info), vdev->fw_info, vdev->fw_info_pa); rte_free(vdev); } } struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev, void *priv, struct rte_pci_device *pdev, struct vnic_dev_bar *bar, unsigned int num_bars) { if (!vdev) { char name[RTE_MEMZONE_NAMESIZE]; snprintf((char *)name, sizeof(name), "%s-vnic", pdev->device.name); vdev = (struct vnic_dev *)rte_zmalloc_socket(name, sizeof(struct vnic_dev), RTE_CACHE_LINE_SIZE, pdev->device.numa_node); if (!vdev) return NULL; } vdev->priv = priv; vdev->pdev = pdev; if (vnic_dev_discover_res(vdev, bar, num_bars)) goto err_out; vdev->devcmd = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD, 0); if (!vdev->devcmd) goto err_out; return vdev; err_out: vnic_dev_unregister(vdev); return NULL; } struct vnic_dev *vnic_vf_rep_register(void *priv, struct vnic_dev *pf_vdev, int vf_id) { struct vnic_dev *vdev; vdev = (struct vnic_dev *)rte_zmalloc("enic-vf-rep-vdev", sizeof(struct vnic_dev), RTE_CACHE_LINE_SIZE); if (!vdev) return NULL; vdev->priv = priv; vdev->pf_vdev = pf_vdev; vdev->vf_id = vf_id; vdev->alloc_consistent = pf_vdev->alloc_consistent; vdev->free_consistent = pf_vdev->free_consistent; return vdev; } /* * vnic_dev_classifier: Add/Delete classifier entries * @vdev: vdev of the device * @cmd: CLSF_ADD for Add filter * CLSF_DEL for Delete filter * @entry: In case of ADD filter, the caller passes the RQ number in this * variable. * This function stores the filter_id returned by the * firmware in the same variable before return; * * In case of DEL filter, the caller passes the RQ number. Return * value is irrelevant. * @data: filter data * @action: action data */ int vnic_dev_classifier(struct vnic_dev *vdev, uint8_t cmd, uint16_t *entry, struct filter_v2 *data, struct filter_action_v2 *action_v2) { uint64_t a0 = 0, a1 = 0; int wait = 1000; dma_addr_t tlv_pa; int ret = -EINVAL; struct filter_tlv *tlv, *tlv_va; uint64_t tlv_size; uint32_t filter_size, action_size; static unsigned int unique_id; char z_name[RTE_MEMZONE_NAMESIZE]; enum vnic_devcmd_cmd dev_cmd; if (cmd == CLSF_ADD) { dev_cmd = (data->type >= FILTER_DPDK_1) ? CMD_ADD_ADV_FILTER : CMD_ADD_FILTER; filter_size = vnic_filter_size(data); action_size = vnic_action_size(action_v2); tlv_size = filter_size + action_size + 2*sizeof(struct filter_tlv); snprintf((char *)z_name, sizeof(z_name), "vnic_clsf_%u", unique_id++); tlv_va = vdev->alloc_consistent(vdev->priv, tlv_size, &tlv_pa, (uint8_t *)z_name); if (!tlv_va) return -ENOMEM; tlv = tlv_va; a0 = tlv_pa; a1 = tlv_size; memset(tlv, 0, tlv_size); tlv->type = CLSF_TLV_FILTER; tlv->length = filter_size; memcpy(&tlv->val, (void *)data, filter_size); tlv = (struct filter_tlv *)((char *)tlv + sizeof(struct filter_tlv) + filter_size); tlv->type = CLSF_TLV_ACTION; tlv->length = action_size; memcpy(&tlv->val, (void *)action_v2, action_size); ret = vnic_dev_cmd(vdev, dev_cmd, &a0, &a1, wait); *entry = (uint16_t)a0; vdev->free_consistent(vdev->priv, tlv_size, tlv_va, tlv_pa); } else if (cmd == CLSF_DEL) { a0 = *entry; ret = vnic_dev_cmd(vdev, CMD_DEL_FILTER, &a0, &a1, wait); } return ret; } int vnic_dev_overlay_offload_ctrl(struct vnic_dev *vdev, uint8_t overlay, uint8_t config) { uint64_t a0 = overlay; uint64_t a1 = config; int wait = 1000; return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CTRL, &a0, &a1, wait); } int vnic_dev_overlay_offload_cfg(struct vnic_dev *vdev, uint8_t overlay, uint16_t vxlan_udp_port_number) { uint64_t a1 = vxlan_udp_port_number; uint64_t a0 = overlay; int wait = 1000; return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CFG, &a0, &a1, wait); } int vnic_dev_capable_vxlan(struct vnic_dev *vdev) { uint64_t a0 = VIC_FEATURE_VXLAN; uint64_t a1 = 0; int wait = 1000; int ret; ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, &a1, wait); /* 1 if the NIC can do VXLAN for both IPv4 and IPv6 with multiple WQs */ return ret == 0 && (a1 & (FEATURE_VXLAN_IPV6 | FEATURE_VXLAN_MULTI_WQ)) == (FEATURE_VXLAN_IPV6 | FEATURE_VXLAN_MULTI_WQ); } int vnic_dev_capable_geneve(struct vnic_dev *vdev) { uint64_t a0 = VIC_FEATURE_GENEVE; uint64_t a1 = 0; int wait = 1000; int ret; ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, &a1, wait); return ret == 0 && !!(a1 & FEATURE_GENEVE_OPTIONS); } uint64_t vnic_dev_capable_cq_entry_size(struct vnic_dev *vdev) { uint64_t a0 = CMD_CQ_ENTRY_SIZE_SET; uint64_t a1 = 0; int wait = 1000; int ret; ret = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait); /* All models support 16B CQ entry by default */ if (!(ret == 0 && a0 == 0)) a1 = VNIC_RQ_CQ_ENTRY_SIZE_16_CAPABLE; return a1; } int vnic_dev_set_cq_entry_size(struct vnic_dev *vdev, uint32_t rq_idx, uint32_t size_flag) { uint64_t a0 = rq_idx; uint64_t a1 = size_flag; int wait = 1000; return vnic_dev_cmd(vdev, CMD_CQ_ENTRY_SIZE_SET, &a0, &a1, wait); }