/* SPDX-License-Identifier: BSD-3-Clause */ /* Copyright(c) 2019-2021 Broadcom All rights reserved. */ #include #include #include #include #include #include #include #include "bnxt.h" #include "bnxt_cpr.h" #include "bnxt_ring.h" #include "bnxt_txq.h" #include "bnxt_txr.h" #include "bnxt_rxtx_vec_common.h" #include static uint16_t recv_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct bnxt_rx_queue *rxq = rx_queue; const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0, rxq->mbuf_initializer); struct bnxt_cp_ring_info *cpr = rxq->cp_ring; struct bnxt_rx_ring_info *rxr = rxq->rx_ring; uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size; uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size; struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring; uint64_t valid, desc_valid_mask = ~0ULL; const __m256i info3_v_mask = _mm256_set1_epi32(CMPL_BASE_V); uint32_t raw_cons = cpr->cp_raw_cons; uint32_t cons, mbcons; int nb_rx_pkts = 0; int i; const __m256i valid_target = _mm256_set1_epi32(!!(raw_cons & cp_ring_size)); const __m256i dsc_shuf_msk = _mm256_set_epi8(0xff, 0xff, 0xff, 0xff, /* Zeroes. */ 7, 6, /* metadata type */ 9, 8, /* flags2 low 16 */ 5, 4, /* vlan_tci */ 1, 0, /* errors_v2 */ 0xff, 0xff, 0xff, 0xff, /* Zeroes. */ 0xff, 0xff, 0xff, 0xff, /* Zeroes. */ 7, 6, /* metadata type */ 9, 8, /* flags2 low 16 */ 5, 4, /* vlan_tci */ 1, 0, /* errors_v2 */ 0xff, 0xff, 0xff, 0xff); /* Zeroes. */ const __m256i shuf_msk = _mm256_set_epi8(15, 14, 13, 12, /* rss */ 7, 6, /* vlan_tci */ 3, 2, /* data_len */ 0xFF, 0xFF, 3, 2, /* pkt_len */ 0xFF, 0xFF, 0xFF, 0xFF, /* pkt_type (zeroes) */ 15, 14, 13, 12, /* rss */ 7, 6, /* vlan_tci */ 3, 2, /* data_len */ 0xFF, 0xFF, 3, 2, /* pkt_len */ 0xFF, 0xFF, 0xFF, 0xFF); /* pkt_type (zeroes) */ const __m256i flags_type_mask = _mm256_set1_epi32(RX_PKT_CMPL_FLAGS_ITYPE_MASK); const __m256i flags2_mask1 = _mm256_set1_epi32(CMPL_FLAGS2_VLAN_TUN_MSK); const __m256i flags2_mask2 = _mm256_set1_epi32(RX_PKT_CMPL_FLAGS2_IP_TYPE); const __m256i rss_mask = _mm256_set1_epi32(RX_PKT_CMPL_FLAGS_RSS_VALID); __m256i t0, t1, flags_type, flags2, index, errors; __m256i ptype_idx, ptypes, is_tunnel; __m256i mbuf01, mbuf23, mbuf45, mbuf67; __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, rearm6, rearm7; __m256i ol_flags, ol_flags_hi; __m256i rss_flags; /* Validate ptype table indexing at build time. */ bnxt_check_ptype_constants(); /* If Rx Q was stopped return */ if (unlikely(!rxq->rx_started)) return 0; if (rxq->rxrearm_nb >= rxq->rx_free_thresh) bnxt_rxq_rearm(rxq, rxr); nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC256); cons = raw_cons & (cp_ring_size - 1); mbcons = (raw_cons / 2) & (rx_ring_size - 1); /* Return immediately if there is not at least one completed packet. */ if (!bnxt_cpr_cmp_valid(&cp_desc_ring[cons], raw_cons, cp_ring_size)) return 0; /* Ensure that we do not go past the ends of the rings. */ nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons, (cp_ring_size - cons) / 2)); /* * If we are at the end of the ring, ensure that descriptors after the * last valid entry are not treated as valid. Otherwise, force the * maximum number of packets to receive to be a multiple of the per- * loop count. */ if (nb_pkts < BNXT_RX_DESCS_PER_LOOP_VEC256) { desc_valid_mask >>= CHAR_BIT * (BNXT_RX_DESCS_PER_LOOP_VEC256 - nb_pkts); } else { nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC256); } /* Handle RX burst request */ for (i = 0; i < nb_pkts; i += BNXT_RX_DESCS_PER_LOOP_VEC256, cons += BNXT_RX_DESCS_PER_LOOP_VEC256 * 2, mbcons += BNXT_RX_DESCS_PER_LOOP_VEC256) { __m256i desc0, desc1, desc2, desc3, desc4, desc5, desc6, desc7; __m256i rxcmp0_1, rxcmp2_3, rxcmp4_5, rxcmp6_7, info3_v; __m256i errors_v2; uint32_t num_valid; /* Copy eight mbuf pointers to output array. */ t0 = _mm256_loadu_si256((void *)&rxr->rx_buf_ring[mbcons]); _mm256_storeu_si256((void *)&rx_pkts[i], t0); #ifdef RTE_ARCH_X86_64 t0 = _mm256_loadu_si256((void *)&rxr->rx_buf_ring[mbcons + 4]); _mm256_storeu_si256((void *)&rx_pkts[i + 4], t0); #endif /* * Load eight receive completion descriptors into 256-bit * registers. Loads are issued in reverse order in order to * ensure consistent state. */ desc7 = _mm256_load_si256((void *)&cp_desc_ring[cons + 14]); rte_compiler_barrier(); desc6 = _mm256_load_si256((void *)&cp_desc_ring[cons + 12]); rte_compiler_barrier(); desc5 = _mm256_load_si256((void *)&cp_desc_ring[cons + 10]); rte_compiler_barrier(); desc4 = _mm256_load_si256((void *)&cp_desc_ring[cons + 8]); rte_compiler_barrier(); desc3 = _mm256_load_si256((void *)&cp_desc_ring[cons + 6]); rte_compiler_barrier(); desc2 = _mm256_load_si256((void *)&cp_desc_ring[cons + 4]); rte_compiler_barrier(); desc1 = _mm256_load_si256((void *)&cp_desc_ring[cons + 2]); rte_compiler_barrier(); desc0 = _mm256_load_si256((void *)&cp_desc_ring[cons + 0]); /* * Pack needed fields from each descriptor into a compressed * 128-bit layout and pair two compressed descriptors into * 256-bit registers. The 128-bit compressed layout is as * follows: * Bits 0-15: flags_type field from low completion record. * Bits 16-31: len field from low completion record. * Bits 32-47: flags2 (low 16 bits) from high completion. * Bits 48-79: metadata from high completion record. * Bits 80-95: errors_v2 from high completion record. * Bits 96-127: rss hash from low completion record. */ t0 = _mm256_permute2f128_si256(desc6, desc7, 0x20); t1 = _mm256_permute2f128_si256(desc6, desc7, 0x31); t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk); rxcmp6_7 = _mm256_blend_epi32(t0, t1, 0x66); t0 = _mm256_permute2f128_si256(desc4, desc5, 0x20); t1 = _mm256_permute2f128_si256(desc4, desc5, 0x31); t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk); rxcmp4_5 = _mm256_blend_epi32(t0, t1, 0x66); t0 = _mm256_permute2f128_si256(desc2, desc3, 0x20); t1 = _mm256_permute2f128_si256(desc2, desc3, 0x31); t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk); rxcmp2_3 = _mm256_blend_epi32(t0, t1, 0x66); t0 = _mm256_permute2f128_si256(desc0, desc1, 0x20); t1 = _mm256_permute2f128_si256(desc0, desc1, 0x31); t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk); rxcmp0_1 = _mm256_blend_epi32(t0, t1, 0x66); /* Compute packet type table indices for eight packets. */ t0 = _mm256_unpacklo_epi32(rxcmp0_1, rxcmp2_3); t1 = _mm256_unpacklo_epi32(rxcmp4_5, rxcmp6_7); flags_type = _mm256_unpacklo_epi64(t0, t1); ptype_idx = _mm256_and_si256(flags_type, flags_type_mask); ptype_idx = _mm256_srli_epi32(ptype_idx, RX_PKT_CMPL_FLAGS_ITYPE_SFT - BNXT_PTYPE_TBL_TYPE_SFT); t0 = _mm256_unpacklo_epi32(rxcmp0_1, rxcmp2_3); t1 = _mm256_unpacklo_epi32(rxcmp4_5, rxcmp6_7); flags2 = _mm256_unpackhi_epi64(t0, t1); t0 = _mm256_srli_epi32(_mm256_and_si256(flags2, flags2_mask1), RX_PKT_CMPL_FLAGS2_META_FORMAT_SFT - BNXT_PTYPE_TBL_VLAN_SFT); ptype_idx = _mm256_or_si256(ptype_idx, t0); t0 = _mm256_srli_epi32(_mm256_and_si256(flags2, flags2_mask2), RX_PKT_CMPL_FLAGS2_IP_TYPE_SFT - BNXT_PTYPE_TBL_IP_VER_SFT); ptype_idx = _mm256_or_si256(ptype_idx, t0); /* * Load ptypes for eight packets using gather. Gather operations * have extremely high latency (~19 cycles), execution and use * of result should be separated as much as possible. */ ptypes = _mm256_i32gather_epi32((int *)bnxt_ptype_table, ptype_idx, sizeof(uint32_t)); /* * Compute ol_flags and checksum error table indices for eight * packets. */ is_tunnel = _mm256_and_si256(flags2, _mm256_set1_epi32(4)); is_tunnel = _mm256_slli_epi32(is_tunnel, 3); flags2 = _mm256_and_si256(flags2, _mm256_set1_epi32(0x1F)); /* Extract errors_v2 fields for eight packets. */ t0 = _mm256_unpackhi_epi32(rxcmp0_1, rxcmp2_3); t1 = _mm256_unpackhi_epi32(rxcmp4_5, rxcmp6_7); errors_v2 = _mm256_unpacklo_epi64(t0, t1); errors = _mm256_srli_epi32(errors_v2, 4); errors = _mm256_and_si256(errors, _mm256_set1_epi32(0xF)); errors = _mm256_and_si256(errors, flags2); index = _mm256_andnot_si256(errors, flags2); errors = _mm256_or_si256(errors, _mm256_srli_epi32(is_tunnel, 1)); index = _mm256_or_si256(index, is_tunnel); /* * Load ol_flags for eight packets using gather. Gather * operations have extremely high latency (~19 cycles), * execution and use of result should be separated as much * as possible. */ ol_flags = _mm256_i32gather_epi32((int *)rxr->ol_flags_table, index, sizeof(uint32_t)); errors = _mm256_i32gather_epi32((int *)rxr->ol_flags_err_table, errors, sizeof(uint32_t)); /* * Pack the 128-bit array of valid descriptor flags into 64 * bits and count the number of set bits in order to determine * the number of valid descriptors. */ const __m256i perm_msk = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0); info3_v = _mm256_permutevar8x32_epi32(errors_v2, perm_msk); info3_v = _mm256_and_si256(errors_v2, info3_v_mask); info3_v = _mm256_xor_si256(info3_v, valid_target); info3_v = _mm256_packs_epi32(info3_v, _mm256_setzero_si256()); valid = _mm_cvtsi128_si64(_mm256_extracti128_si256(info3_v, 1)); valid = (valid << CHAR_BIT) | _mm_cvtsi128_si64(_mm256_castsi256_si128(info3_v)); num_valid = __builtin_popcountll(valid & desc_valid_mask); if (num_valid == 0) break; /* Update mbuf rearm_data for eight packets. */ mbuf01 = _mm256_shuffle_epi8(rxcmp0_1, shuf_msk); mbuf23 = _mm256_shuffle_epi8(rxcmp2_3, shuf_msk); mbuf45 = _mm256_shuffle_epi8(rxcmp4_5, shuf_msk); mbuf67 = _mm256_shuffle_epi8(rxcmp6_7, shuf_msk); /* Blend in ptype field for two mbufs at a time. */ mbuf01 = _mm256_blend_epi32(mbuf01, ptypes, 0x11); mbuf23 = _mm256_blend_epi32(mbuf23, _mm256_srli_si256(ptypes, 4), 0x11); mbuf45 = _mm256_blend_epi32(mbuf45, _mm256_srli_si256(ptypes, 8), 0x11); mbuf67 = _mm256_blend_epi32(mbuf67, _mm256_srli_si256(ptypes, 12), 0x11); /* Unpack rearm data, set fixed fields for first four mbufs. */ rearm0 = _mm256_permute2f128_si256(mbuf_init, mbuf01, 0x20); rearm1 = _mm256_blend_epi32(mbuf_init, mbuf01, 0xF0); rearm2 = _mm256_permute2f128_si256(mbuf_init, mbuf23, 0x20); rearm3 = _mm256_blend_epi32(mbuf_init, mbuf23, 0xF0); /* Compute final ol_flags values for eight packets. */ rss_flags = _mm256_and_si256(flags_type, rss_mask); rss_flags = _mm256_srli_epi32(rss_flags, 9); ol_flags = _mm256_or_si256(ol_flags, errors); ol_flags = _mm256_or_si256(ol_flags, rss_flags); ol_flags_hi = _mm256_permute2f128_si256(ol_flags, ol_flags, 0x11); /* Set ol_flags fields for first four packets. */ rearm0 = _mm256_blend_epi32(rearm0, _mm256_slli_si256(ol_flags, 8), 0x04); rearm1 = _mm256_blend_epi32(rearm1, _mm256_slli_si256(ol_flags_hi, 8), 0x04); rearm2 = _mm256_blend_epi32(rearm2, _mm256_slli_si256(ol_flags, 4), 0x04); rearm3 = _mm256_blend_epi32(rearm3, _mm256_slli_si256(ol_flags_hi, 4), 0x04); /* Store all mbuf fields for first four packets. */ _mm256_storeu_si256((void *)&rx_pkts[i + 0]->rearm_data, rearm0); _mm256_storeu_si256((void *)&rx_pkts[i + 1]->rearm_data, rearm1); _mm256_storeu_si256((void *)&rx_pkts[i + 2]->rearm_data, rearm2); _mm256_storeu_si256((void *)&rx_pkts[i + 3]->rearm_data, rearm3); /* Unpack rearm data, set fixed fields for final four mbufs. */ rearm4 = _mm256_permute2f128_si256(mbuf_init, mbuf45, 0x20); rearm5 = _mm256_blend_epi32(mbuf_init, mbuf45, 0xF0); rearm6 = _mm256_permute2f128_si256(mbuf_init, mbuf67, 0x20); rearm7 = _mm256_blend_epi32(mbuf_init, mbuf67, 0xF0); /* Set ol_flags fields for final four packets. */ rearm4 = _mm256_blend_epi32(rearm4, ol_flags, 0x04); rearm5 = _mm256_blend_epi32(rearm5, ol_flags_hi, 0x04); rearm6 = _mm256_blend_epi32(rearm6, _mm256_srli_si256(ol_flags, 4), 0x04); rearm7 = _mm256_blend_epi32(rearm7, _mm256_srli_si256(ol_flags_hi, 4), 0x04); /* Store all mbuf fields for final four packets. */ _mm256_storeu_si256((void *)&rx_pkts[i + 4]->rearm_data, rearm4); _mm256_storeu_si256((void *)&rx_pkts[i + 5]->rearm_data, rearm5); _mm256_storeu_si256((void *)&rx_pkts[i + 6]->rearm_data, rearm6); _mm256_storeu_si256((void *)&rx_pkts[i + 7]->rearm_data, rearm7); nb_rx_pkts += num_valid; if (num_valid < BNXT_RX_DESCS_PER_LOOP_VEC256) break; } if (nb_rx_pkts) { rxr->rx_raw_prod = RING_ADV(rxr->rx_raw_prod, nb_rx_pkts); rxq->rxrearm_nb += nb_rx_pkts; cpr->cp_raw_cons += 2 * nb_rx_pkts; bnxt_db_cq(cpr); } return nb_rx_pkts; } uint16_t bnxt_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { uint16_t cnt = 0; while (nb_pkts > RTE_BNXT_MAX_RX_BURST) { uint16_t burst; burst = recv_burst_vec_avx2(rx_queue, rx_pkts + cnt, RTE_BNXT_MAX_RX_BURST); cnt += burst; nb_pkts -= burst; if (burst < RTE_BNXT_MAX_RX_BURST) return cnt; } return cnt + recv_burst_vec_avx2(rx_queue, rx_pkts + cnt, nb_pkts); } static void bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq) { struct bnxt_cp_ring_info *cpr = txq->cp_ring; uint32_t raw_cons = cpr->cp_raw_cons; uint32_t cons; uint32_t nb_tx_pkts = 0; struct tx_cmpl *txcmp; struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring; struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct; uint32_t ring_mask = cp_ring_struct->ring_mask; do { cons = RING_CMPL(ring_mask, raw_cons); txcmp = (struct tx_cmpl *)&cp_desc_ring[cons]; if (!bnxt_cpr_cmp_valid(txcmp, raw_cons, ring_mask + 1)) break; nb_tx_pkts += txcmp->opaque; raw_cons = NEXT_RAW_CMP(raw_cons); } while (nb_tx_pkts < ring_mask); if (nb_tx_pkts) { if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) bnxt_tx_cmp_vec_fast(txq, nb_tx_pkts); else bnxt_tx_cmp_vec(txq, nb_tx_pkts); cpr->cp_raw_cons = raw_cons; bnxt_db_cq(cpr); } } static inline void bnxt_xmit_one(struct rte_mbuf *mbuf, struct tx_bd_long *txbd, struct rte_mbuf **tx_buf) { uint64_t dsc_hi, dsc_lo; __m128i desc; *tx_buf = mbuf; dsc_hi = mbuf->buf_iova + mbuf->data_off; dsc_lo = (mbuf->data_len << 16) | bnxt_xmit_flags_len(mbuf->data_len, TX_BD_FLAGS_NOCMPL); desc = _mm_set_epi64x(dsc_hi, dsc_lo); _mm_store_si128((void *)txbd, desc); } static uint16_t bnxt_xmit_fixed_burst_vec(struct bnxt_tx_queue *txq, struct rte_mbuf **pkts, uint16_t nb_pkts) { struct bnxt_tx_ring_info *txr = txq->tx_ring; uint16_t tx_prod, tx_raw_prod = txr->tx_raw_prod; struct tx_bd_long *txbd; struct rte_mbuf **tx_buf; uint16_t to_send; tx_prod = RING_IDX(txr->tx_ring_struct, tx_raw_prod); txbd = &txr->tx_desc_ring[tx_prod]; tx_buf = &txr->tx_buf_ring[tx_prod]; /* Prefetch next transmit buffer descriptors. */ rte_prefetch0(txbd); rte_prefetch0(txbd + 3); nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq)); if (unlikely(nb_pkts == 0)) return 0; /* Handle TX burst request */ to_send = nb_pkts; /* * If current descriptor is not on a 32-byte boundary, send one packet * to align for 32-byte stores. */ if (tx_prod & 1) { bnxt_xmit_one(pkts[0], txbd++, tx_buf++); to_send--; pkts++; } /* * Send four packets per loop, with a single store for each pair * of descriptors. */ while (to_send >= BNXT_TX_DESCS_PER_LOOP) { uint64_t dsc0_hi, dsc0_lo, dsc1_hi, dsc1_lo; uint64_t dsc2_hi, dsc2_lo, dsc3_hi, dsc3_lo; __m256i dsc01, dsc23; /* Prefetch next transmit buffer descriptors. */ rte_prefetch0(txbd + 4); rte_prefetch0(txbd + 7); /* Copy four mbuf pointers to tx buf ring. */ #ifdef RTE_ARCH_X86_64 __m256i tmp = _mm256_loadu_si256((void *)pkts); _mm256_storeu_si256((void *)tx_buf, tmp); #else __m128i tmp = _mm_loadu_si128((void *)pkts); _mm_storeu_si128((void *)tx_buf, tmp); #endif dsc0_hi = tx_buf[0]->buf_iova + tx_buf[0]->data_off; dsc0_lo = (tx_buf[0]->data_len << 16) | bnxt_xmit_flags_len(tx_buf[0]->data_len, TX_BD_FLAGS_NOCMPL); dsc1_hi = tx_buf[1]->buf_iova + tx_buf[1]->data_off; dsc1_lo = (tx_buf[1]->data_len << 16) | bnxt_xmit_flags_len(tx_buf[1]->data_len, TX_BD_FLAGS_NOCMPL); dsc01 = _mm256_set_epi64x(dsc1_hi, dsc1_lo, dsc0_hi, dsc0_lo); dsc2_hi = tx_buf[2]->buf_iova + tx_buf[2]->data_off; dsc2_lo = (tx_buf[2]->data_len << 16) | bnxt_xmit_flags_len(tx_buf[2]->data_len, TX_BD_FLAGS_NOCMPL); dsc3_hi = tx_buf[3]->buf_iova + tx_buf[3]->data_off; dsc3_lo = (tx_buf[3]->data_len << 16) | bnxt_xmit_flags_len(tx_buf[3]->data_len, TX_BD_FLAGS_NOCMPL); dsc23 = _mm256_set_epi64x(dsc3_hi, dsc3_lo, dsc2_hi, dsc2_lo); _mm256_store_si256((void *)txbd, dsc01); _mm256_store_si256((void *)(txbd + 2), dsc23); to_send -= BNXT_TX_DESCS_PER_LOOP; pkts += BNXT_TX_DESCS_PER_LOOP; txbd += BNXT_TX_DESCS_PER_LOOP; tx_buf += BNXT_TX_DESCS_PER_LOOP; } /* Send any remaining packets, writing each descriptor individually. */ while (to_send) { bnxt_xmit_one(pkts[0], txbd++, tx_buf++); to_send--; pkts++; } /* Request a completion for the final packet of the burst. */ txbd[-1].opaque = nb_pkts; txbd[-1].flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL; tx_raw_prod += nb_pkts; bnxt_db_write(&txr->tx_db, tx_raw_prod); txr->tx_raw_prod = tx_raw_prod; return nb_pkts; } uint16_t bnxt_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { int nb_sent = 0; struct bnxt_tx_queue *txq = tx_queue; struct bnxt_tx_ring_info *txr = txq->tx_ring; uint16_t ring_size = txr->tx_ring_struct->ring_size; /* Tx queue was stopped; wait for it to be restarted */ if (unlikely(!txq->tx_started)) { PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n"); return 0; } /* Handle TX completions */ if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh) bnxt_handle_tx_cp_vec(txq); while (nb_pkts) { uint16_t ret, num; /* * Ensure that no more than RTE_BNXT_MAX_TX_BURST packets * are transmitted before the next completion. */ num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST); /* * Ensure that a ring wrap does not occur within a call to * bnxt_xmit_fixed_burst_vec(). */ num = RTE_MIN(num, ring_size - (txr->tx_raw_prod & (ring_size - 1))); ret = bnxt_xmit_fixed_burst_vec(txq, &tx_pkts[nb_sent], num); nb_sent += ret; nb_pkts -= ret; if (ret < num) break; } return nb_sent; }