/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Aquantia Corporation */ #include #include #include #include "atl_ethdev.h" #include "atl_hw_regs.h" #include "atl_logs.h" #include "hw_atl/hw_atl_llh.h" #include "hw_atl/hw_atl_b0.h" #include "hw_atl/hw_atl_b0_internal.h" #define ATL_TX_CKSUM_OFFLOAD_MASK ( \ RTE_MBUF_F_TX_IP_CKSUM | \ RTE_MBUF_F_TX_L4_MASK | \ RTE_MBUF_F_TX_TCP_SEG) #define ATL_TX_OFFLOAD_MASK ( \ RTE_MBUF_F_TX_VLAN | \ RTE_MBUF_F_TX_IPV6 | \ RTE_MBUF_F_TX_IPV4 | \ RTE_MBUF_F_TX_IP_CKSUM | \ RTE_MBUF_F_TX_L4_MASK | \ RTE_MBUF_F_TX_TCP_SEG) #define ATL_TX_OFFLOAD_NOTSUP_MASK \ (RTE_MBUF_F_TX_OFFLOAD_MASK ^ ATL_TX_OFFLOAD_MASK) /** * Structure associated with each descriptor of the RX ring of a RX queue. */ struct atl_rx_entry { struct rte_mbuf *mbuf; }; /** * Structure associated with each descriptor of the TX ring of a TX queue. */ struct atl_tx_entry { struct rte_mbuf *mbuf; uint16_t next_id; uint16_t last_id; }; /** * Structure associated with each RX queue. */ struct atl_rx_queue { struct rte_mempool *mb_pool; struct hw_atl_rxd_s *hw_ring; uint64_t hw_ring_phys_addr; struct atl_rx_entry *sw_ring; uint16_t nb_rx_desc; uint16_t rx_tail; uint16_t nb_rx_hold; uint16_t rx_free_thresh; uint16_t queue_id; uint16_t port_id; uint16_t buff_size; bool l3_csum_enabled; bool l4_csum_enabled; }; /** * Structure associated with each TX queue. */ struct atl_tx_queue { struct hw_atl_txd_s *hw_ring; uint64_t hw_ring_phys_addr; struct atl_tx_entry *sw_ring; uint16_t nb_tx_desc; uint16_t tx_tail; uint16_t tx_head; uint16_t queue_id; uint16_t port_id; uint16_t tx_free_thresh; uint16_t tx_free; }; static inline void atl_reset_rx_queue(struct atl_rx_queue *rxq) { struct hw_atl_rxd_s *rxd = NULL; int i; PMD_INIT_FUNC_TRACE(); for (i = 0; i < rxq->nb_rx_desc; i++) { rxd = (struct hw_atl_rxd_s *)&rxq->hw_ring[i]; rxd->buf_addr = 0; rxd->hdr_addr = 0; } rxq->rx_tail = 0; } int atl_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mb_pool) { struct atl_rx_queue *rxq; const struct rte_memzone *mz; PMD_INIT_FUNC_TRACE(); /* make sure a valid number of descriptors have been requested */ if (nb_rx_desc < AQ_HW_MIN_RX_RING_SIZE || nb_rx_desc > AQ_HW_MAX_RX_RING_SIZE) { PMD_INIT_LOG(ERR, "Number of Rx descriptors must be " "less than or equal to %d, " "greater than or equal to %d", AQ_HW_MAX_RX_RING_SIZE, AQ_HW_MIN_RX_RING_SIZE); return -EINVAL; } /* * if this queue existed already, free the associated memory. The * queue cannot be reused in case we need to allocate memory on * different socket than was previously used. */ if (dev->data->rx_queues[rx_queue_id] != NULL) { atl_rx_queue_release(dev, rx_queue_id); dev->data->rx_queues[rx_queue_id] = NULL; } /* allocate memory for the queue structure */ rxq = rte_zmalloc_socket("atlantic Rx queue", sizeof(*rxq), RTE_CACHE_LINE_SIZE, socket_id); if (rxq == NULL) { PMD_INIT_LOG(ERR, "Cannot allocate queue structure"); return -ENOMEM; } /* setup queue */ rxq->mb_pool = mb_pool; rxq->nb_rx_desc = nb_rx_desc; rxq->port_id = dev->data->port_id; rxq->queue_id = rx_queue_id; rxq->rx_free_thresh = rx_conf->rx_free_thresh; rxq->l3_csum_enabled = dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_IPV4_CKSUM; rxq->l4_csum_enabled = dev->data->dev_conf.rxmode.offloads & (RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM); if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC) PMD_DRV_LOG(ERR, "PMD does not support KEEP_CRC offload"); /* allocate memory for the software ring */ rxq->sw_ring = rte_zmalloc_socket("atlantic sw rx ring", nb_rx_desc * sizeof(struct atl_rx_entry), RTE_CACHE_LINE_SIZE, socket_id); if (rxq->sw_ring == NULL) { PMD_INIT_LOG(ERR, "Port %d: Cannot allocate software ring for queue %d", rxq->port_id, rxq->queue_id); rte_free(rxq); return -ENOMEM; } /* * allocate memory for the hardware descriptor ring. A memzone large * enough to hold the maximum ring size is requested to allow for * resizing in later calls to the queue setup function. */ mz = rte_eth_dma_zone_reserve(dev, "rx hw_ring", rx_queue_id, HW_ATL_B0_MAX_RXD * sizeof(struct hw_atl_rxd_s), 128, socket_id); if (mz == NULL) { PMD_INIT_LOG(ERR, "Port %d: Cannot allocate hardware ring for queue %d", rxq->port_id, rxq->queue_id); rte_free(rxq->sw_ring); rte_free(rxq); return -ENOMEM; } rxq->hw_ring = mz->addr; rxq->hw_ring_phys_addr = mz->iova; atl_reset_rx_queue(rxq); dev->data->rx_queues[rx_queue_id] = rxq; return 0; } static inline void atl_reset_tx_queue(struct atl_tx_queue *txq) { struct atl_tx_entry *tx_entry; union hw_atl_txc_s *txc; uint16_t i; PMD_INIT_FUNC_TRACE(); if (!txq) { PMD_DRV_LOG(ERR, "Pointer to txq is NULL"); return; } tx_entry = txq->sw_ring; for (i = 0; i < txq->nb_tx_desc; i++) { txc = (union hw_atl_txc_s *)&txq->hw_ring[i]; txc->flags1 = 0; txc->flags2 = 2; } for (i = 0; i < txq->nb_tx_desc; i++) { txq->hw_ring[i].dd = 1; tx_entry[i].mbuf = NULL; } txq->tx_tail = 0; txq->tx_head = 0; txq->tx_free = txq->nb_tx_desc - 1; } int atl_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, uint16_t nb_tx_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { struct atl_tx_queue *txq; const struct rte_memzone *mz; PMD_INIT_FUNC_TRACE(); /* make sure a valid number of descriptors have been requested */ if (nb_tx_desc < AQ_HW_MIN_TX_RING_SIZE || nb_tx_desc > AQ_HW_MAX_TX_RING_SIZE) { PMD_INIT_LOG(ERR, "Number of Tx descriptors must be " "less than or equal to %d, " "greater than or equal to %d", AQ_HW_MAX_TX_RING_SIZE, AQ_HW_MIN_TX_RING_SIZE); return -EINVAL; } /* * if this queue existed already, free the associated memory. The * queue cannot be reused in case we need to allocate memory on * different socket than was previously used. */ if (dev->data->tx_queues[tx_queue_id] != NULL) { atl_tx_queue_release(dev, tx_queue_id); dev->data->tx_queues[tx_queue_id] = NULL; } /* allocate memory for the queue structure */ txq = rte_zmalloc_socket("atlantic Tx queue", sizeof(*txq), RTE_CACHE_LINE_SIZE, socket_id); if (txq == NULL) { PMD_INIT_LOG(ERR, "Cannot allocate queue structure"); return -ENOMEM; } /* setup queue */ txq->nb_tx_desc = nb_tx_desc; txq->port_id = dev->data->port_id; txq->queue_id = tx_queue_id; txq->tx_free_thresh = tx_conf->tx_free_thresh; /* allocate memory for the software ring */ txq->sw_ring = rte_zmalloc_socket("atlantic sw tx ring", nb_tx_desc * sizeof(struct atl_tx_entry), RTE_CACHE_LINE_SIZE, socket_id); if (txq->sw_ring == NULL) { PMD_INIT_LOG(ERR, "Port %d: Cannot allocate software ring for queue %d", txq->port_id, txq->queue_id); rte_free(txq); return -ENOMEM; } /* * allocate memory for the hardware descriptor ring. A memzone large * enough to hold the maximum ring size is requested to allow for * resizing in later calls to the queue setup function. */ mz = rte_eth_dma_zone_reserve(dev, "tx hw_ring", tx_queue_id, HW_ATL_B0_MAX_TXD * sizeof(struct hw_atl_txd_s), 128, socket_id); if (mz == NULL) { PMD_INIT_LOG(ERR, "Port %d: Cannot allocate hardware ring for queue %d", txq->port_id, txq->queue_id); rte_free(txq->sw_ring); rte_free(txq); return -ENOMEM; } txq->hw_ring = mz->addr; txq->hw_ring_phys_addr = mz->iova; atl_reset_tx_queue(txq); dev->data->tx_queues[tx_queue_id] = txq; return 0; } int atl_tx_init(struct rte_eth_dev *eth_dev) { struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct atl_tx_queue *txq; uint64_t base_addr = 0; int i = 0; int err = 0; PMD_INIT_FUNC_TRACE(); for (i = 0; i < eth_dev->data->nb_tx_queues; i++) { txq = eth_dev->data->tx_queues[i]; base_addr = txq->hw_ring_phys_addr; err = hw_atl_b0_hw_ring_tx_init(hw, base_addr, txq->queue_id, txq->nb_tx_desc, 0, txq->port_id); if (err) { PMD_INIT_LOG(ERR, "Port %d: Cannot init TX queue %d", txq->port_id, txq->queue_id); break; } } return err; } int atl_rx_init(struct rte_eth_dev *eth_dev) { struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct aq_rss_parameters *rss_params = &hw->aq_nic_cfg->aq_rss; struct atl_rx_queue *rxq; uint64_t base_addr = 0; int i = 0; int err = 0; PMD_INIT_FUNC_TRACE(); for (i = 0; i < eth_dev->data->nb_rx_queues; i++) { rxq = eth_dev->data->rx_queues[i]; base_addr = rxq->hw_ring_phys_addr; /* Take requested pool mbuf size and adapt * descriptor buffer to best fit */ int buff_size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM; buff_size = RTE_ALIGN_FLOOR(buff_size, 1024); if (buff_size > HW_ATL_B0_RXD_BUF_SIZE_MAX) { PMD_INIT_LOG(WARNING, "Port %d queue %d: mem pool buff size is too big\n", rxq->port_id, rxq->queue_id); buff_size = HW_ATL_B0_RXD_BUF_SIZE_MAX; } if (buff_size < 1024) { PMD_INIT_LOG(ERR, "Port %d queue %d: mem pool buff size is too small\n", rxq->port_id, rxq->queue_id); return -EINVAL; } rxq->buff_size = buff_size; err = hw_atl_b0_hw_ring_rx_init(hw, base_addr, rxq->queue_id, rxq->nb_rx_desc, buff_size, 0, rxq->port_id); if (err) { PMD_INIT_LOG(ERR, "Port %d: Cannot init RX queue %d", rxq->port_id, rxq->queue_id); break; } } for (i = rss_params->indirection_table_size; i--;) rss_params->indirection_table[i] = i & (eth_dev->data->nb_rx_queues - 1); hw_atl_b0_hw_rss_set(hw, rss_params); return err; } static int atl_alloc_rx_queue_mbufs(struct atl_rx_queue *rxq) { struct atl_rx_entry *rx_entry = rxq->sw_ring; struct hw_atl_rxd_s *rxd; uint64_t dma_addr = 0; uint32_t i = 0; PMD_INIT_FUNC_TRACE(); /* fill Rx ring */ for (i = 0; i < rxq->nb_rx_desc; i++) { struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool); if (mbuf == NULL) { PMD_INIT_LOG(ERR, "Port %d: mbuf alloc failed for rx queue %d", rxq->port_id, rxq->queue_id); return -ENOMEM; } mbuf->data_off = RTE_PKTMBUF_HEADROOM; mbuf->port = rxq->port_id; dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf)); rxd = (struct hw_atl_rxd_s *)&rxq->hw_ring[i]; rxd->buf_addr = dma_addr; rxd->hdr_addr = 0; rx_entry[i].mbuf = mbuf; } return 0; } static void atl_rx_queue_release_mbufs(struct atl_rx_queue *rxq) { int i; PMD_INIT_FUNC_TRACE(); if (rxq->sw_ring != NULL) { for (i = 0; i < rxq->nb_rx_desc; i++) { if (rxq->sw_ring[i].mbuf != NULL) { rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); rxq->sw_ring[i].mbuf = NULL; } } } } int atl_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct atl_rx_queue *rxq = NULL; PMD_INIT_FUNC_TRACE(); if (rx_queue_id < dev->data->nb_rx_queues) { rxq = dev->data->rx_queues[rx_queue_id]; if (atl_alloc_rx_queue_mbufs(rxq) != 0) { PMD_INIT_LOG(ERR, "Port %d: Allocate mbufs for queue %d failed", rxq->port_id, rxq->queue_id); return -1; } hw_atl_b0_hw_ring_rx_start(hw, rx_queue_id); rte_wmb(); hw_atl_reg_rx_dma_desc_tail_ptr_set(hw, rxq->nb_rx_desc - 1, rx_queue_id); dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; } else { return -1; } return 0; } int atl_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct atl_rx_queue *rxq = NULL; PMD_INIT_FUNC_TRACE(); if (rx_queue_id < dev->data->nb_rx_queues) { rxq = dev->data->rx_queues[rx_queue_id]; hw_atl_b0_hw_ring_rx_stop(hw, rx_queue_id); atl_rx_queue_release_mbufs(rxq); atl_reset_rx_queue(rxq); dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; } else { return -1; } return 0; } void atl_rx_queue_release(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct atl_rx_queue *rxq = dev->data->rx_queues[rx_queue_id]; PMD_INIT_FUNC_TRACE(); if (rxq != NULL) { atl_rx_queue_release_mbufs(rxq); rte_free(rxq->sw_ring); rte_free(rxq); } } static void atl_tx_queue_release_mbufs(struct atl_tx_queue *txq) { int i; PMD_INIT_FUNC_TRACE(); if (txq->sw_ring != NULL) { for (i = 0; i < txq->nb_tx_desc; i++) { if (txq->sw_ring[i].mbuf != NULL) { rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); txq->sw_ring[i].mbuf = NULL; } } } } int atl_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(dev->data->dev_private); PMD_INIT_FUNC_TRACE(); if (tx_queue_id < dev->data->nb_tx_queues) { hw_atl_b0_hw_ring_tx_start(hw, tx_queue_id); rte_wmb(); hw_atl_b0_hw_tx_ring_tail_update(hw, 0, tx_queue_id); dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; } else { return -1; } return 0; } int atl_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct atl_tx_queue *txq; PMD_INIT_FUNC_TRACE(); txq = dev->data->tx_queues[tx_queue_id]; hw_atl_b0_hw_ring_tx_stop(hw, tx_queue_id); atl_tx_queue_release_mbufs(txq); atl_reset_tx_queue(txq); dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } void atl_tx_queue_release(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct atl_tx_queue *txq = dev->data->tx_queues[tx_queue_id]; PMD_INIT_FUNC_TRACE(); if (txq != NULL) { atl_tx_queue_release_mbufs(txq); rte_free(txq->sw_ring); rte_free(txq); } } void atl_free_queues(struct rte_eth_dev *dev) { unsigned int i; PMD_INIT_FUNC_TRACE(); for (i = 0; i < dev->data->nb_rx_queues; i++) { atl_rx_queue_release(dev, i); dev->data->rx_queues[i] = 0; } dev->data->nb_rx_queues = 0; for (i = 0; i < dev->data->nb_tx_queues; i++) { atl_tx_queue_release(dev, i); dev->data->tx_queues[i] = 0; } dev->data->nb_tx_queues = 0; } int atl_start_queues(struct rte_eth_dev *dev) { int i; PMD_INIT_FUNC_TRACE(); for (i = 0; i < dev->data->nb_tx_queues; i++) { if (atl_tx_queue_start(dev, i) != 0) { PMD_DRV_LOG(ERR, "Port %d: Start Tx queue %d failed", dev->data->port_id, i); return -1; } } for (i = 0; i < dev->data->nb_rx_queues; i++) { if (atl_rx_queue_start(dev, i) != 0) { PMD_DRV_LOG(ERR, "Port %d: Start Rx queue %d failed", dev->data->port_id, i); return -1; } } return 0; } int atl_stop_queues(struct rte_eth_dev *dev) { int i; PMD_INIT_FUNC_TRACE(); for (i = 0; i < dev->data->nb_tx_queues; i++) { if (atl_tx_queue_stop(dev, i) != 0) { PMD_DRV_LOG(ERR, "Port %d: Stop Tx queue %d failed", dev->data->port_id, i); return -1; } } for (i = 0; i < dev->data->nb_rx_queues; i++) { if (atl_rx_queue_stop(dev, i) != 0) { PMD_DRV_LOG(ERR, "Port %d: Stop Rx queue %d failed", dev->data->port_id, i); return -1; } } return 0; } void atl_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, struct rte_eth_rxq_info *qinfo) { struct atl_rx_queue *rxq; PMD_INIT_FUNC_TRACE(); rxq = dev->data->rx_queues[queue_id]; qinfo->mp = rxq->mb_pool; qinfo->scattered_rx = dev->data->scattered_rx; qinfo->nb_desc = rxq->nb_rx_desc; } void atl_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, struct rte_eth_txq_info *qinfo) { struct atl_tx_queue *txq; PMD_INIT_FUNC_TRACE(); txq = dev->data->tx_queues[queue_id]; qinfo->nb_desc = txq->nb_tx_desc; } /* Return Rx queue avail count */ uint32_t atl_rx_queue_count(void *rx_queue) { struct atl_rx_queue *rxq; PMD_INIT_FUNC_TRACE(); rxq = rx_queue; if (rxq == NULL) return 0; return rxq->nb_rx_desc - rxq->nb_rx_hold; } int atl_dev_rx_descriptor_status(void *rx_queue, uint16_t offset) { struct atl_rx_queue *rxq = rx_queue; struct hw_atl_rxd_wb_s *rxd; uint32_t idx; PMD_INIT_FUNC_TRACE(); if (unlikely(offset >= rxq->nb_rx_desc)) return -EINVAL; if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold) return RTE_ETH_RX_DESC_UNAVAIL; idx = rxq->rx_tail + offset; if (idx >= rxq->nb_rx_desc) idx -= rxq->nb_rx_desc; rxd = (struct hw_atl_rxd_wb_s *)&rxq->hw_ring[idx]; if (rxd->dd) return RTE_ETH_RX_DESC_DONE; return RTE_ETH_RX_DESC_AVAIL; } int atl_dev_tx_descriptor_status(void *tx_queue, uint16_t offset) { struct atl_tx_queue *txq = tx_queue; struct hw_atl_txd_s *txd; uint32_t idx; PMD_INIT_FUNC_TRACE(); if (unlikely(offset >= txq->nb_tx_desc)) return -EINVAL; idx = txq->tx_tail + offset; if (idx >= txq->nb_tx_desc) idx -= txq->nb_tx_desc; txd = &txq->hw_ring[idx]; if (txd->dd) return RTE_ETH_TX_DESC_DONE; return RTE_ETH_TX_DESC_FULL; } static int atl_rx_enable_intr(struct rte_eth_dev *dev, uint16_t queue_id, bool enable) { struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct atl_rx_queue *rxq; PMD_INIT_FUNC_TRACE(); if (queue_id >= dev->data->nb_rx_queues) { PMD_DRV_LOG(ERR, "Invalid RX queue id=%d", queue_id); return -EINVAL; } rxq = dev->data->rx_queues[queue_id]; if (rxq == NULL) return 0; /* Mapping interrupt vector */ hw_atl_itr_irq_map_en_rx_set(hw, enable, queue_id); return 0; } int atl_dev_rx_queue_intr_enable(struct rte_eth_dev *eth_dev, uint16_t queue_id) { return atl_rx_enable_intr(eth_dev, queue_id, true); } int atl_dev_rx_queue_intr_disable(struct rte_eth_dev *eth_dev, uint16_t queue_id) { return atl_rx_enable_intr(eth_dev, queue_id, false); } uint16_t atl_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { int i, ret; uint64_t ol_flags; struct rte_mbuf *m; PMD_INIT_FUNC_TRACE(); for (i = 0; i < nb_pkts; i++) { m = tx_pkts[i]; ol_flags = m->ol_flags; if (m->nb_segs > AQ_HW_MAX_SEGS_SIZE) { rte_errno = EINVAL; return i; } if (ol_flags & ATL_TX_OFFLOAD_NOTSUP_MASK) { rte_errno = ENOTSUP; return i; } #ifdef RTE_LIBRTE_ETHDEV_DEBUG ret = rte_validate_tx_offload(m); if (ret != 0) { rte_errno = -ret; return i; } #endif ret = rte_net_intel_cksum_prepare(m); if (ret != 0) { rte_errno = -ret; return i; } } return i; } static uint64_t atl_desc_to_offload_flags(struct atl_rx_queue *rxq, struct hw_atl_rxd_wb_s *rxd_wb) { uint64_t mbuf_flags = 0; PMD_INIT_FUNC_TRACE(); /* IPv4 ? */ if (rxq->l3_csum_enabled && ((rxd_wb->pkt_type & 0x3) == 0)) { /* IPv4 csum error ? */ if (rxd_wb->rx_stat & BIT(1)) mbuf_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD; else mbuf_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD; } else { mbuf_flags |= RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN; } /* CSUM calculated ? */ if (rxq->l4_csum_enabled && (rxd_wb->rx_stat & BIT(3))) { if (rxd_wb->rx_stat & BIT(2)) mbuf_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD; else mbuf_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD; } else { mbuf_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN; } return mbuf_flags; } static uint32_t atl_desc_to_pkt_type(struct hw_atl_rxd_wb_s *rxd_wb) { uint32_t type = RTE_PTYPE_UNKNOWN; uint16_t l2_l3_type = rxd_wb->pkt_type & 0x3; uint16_t l4_type = (rxd_wb->pkt_type & 0x1C) >> 2; switch (l2_l3_type) { case 0: type = RTE_PTYPE_L3_IPV4; break; case 1: type = RTE_PTYPE_L3_IPV6; break; case 2: type = RTE_PTYPE_L2_ETHER; break; case 3: type = RTE_PTYPE_L2_ETHER_ARP; break; } switch (l4_type) { case 0: type |= RTE_PTYPE_L4_TCP; break; case 1: type |= RTE_PTYPE_L4_UDP; break; case 2: type |= RTE_PTYPE_L4_SCTP; break; case 3: type |= RTE_PTYPE_L4_ICMP; break; } if (rxd_wb->pkt_type & BIT(5)) type |= RTE_PTYPE_L2_ETHER_VLAN; return type; } uint16_t atl_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct atl_rx_queue *rxq = (struct atl_rx_queue *)rx_queue; struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id]; struct atl_adapter *adapter = ATL_DEV_TO_ADAPTER(&rte_eth_devices[rxq->port_id]); struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(adapter); struct aq_hw_cfg_s *cfg = ATL_DEV_PRIVATE_TO_CFG(dev->data->dev_private); struct atl_rx_entry *sw_ring = rxq->sw_ring; struct rte_mbuf *new_mbuf; struct rte_mbuf *rx_mbuf, *rx_mbuf_prev, *rx_mbuf_first; struct atl_rx_entry *rx_entry; uint16_t nb_rx = 0; uint16_t nb_hold = 0; struct hw_atl_rxd_wb_s rxd_wb; struct hw_atl_rxd_s *rxd = NULL; uint16_t tail = rxq->rx_tail; uint64_t dma_addr; uint16_t pkt_len = 0; while (nb_rx < nb_pkts) { uint16_t eop_tail = tail; rxd = (struct hw_atl_rxd_s *)&rxq->hw_ring[tail]; rxd_wb = *(struct hw_atl_rxd_wb_s *)rxd; if (!rxd_wb.dd) { /* RxD is not done */ break; } PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u tail=%u " "eop=0x%x pkt_len=%u hash=0x%x hash_type=0x%x", (unsigned int)rxq->port_id, (unsigned int)rxq->queue_id, (unsigned int)tail, (unsigned int)rxd_wb.eop, (unsigned int)rte_le_to_cpu_16(rxd_wb.pkt_len), rxd_wb.rss_hash, rxd_wb.rss_type); /* RxD is not done */ if (!rxd_wb.eop) { while (true) { struct hw_atl_rxd_wb_s *eop_rxwbd; eop_tail = (eop_tail + 1) % rxq->nb_rx_desc; eop_rxwbd = (struct hw_atl_rxd_wb_s *) &rxq->hw_ring[eop_tail]; if (!eop_rxwbd->dd) { /* no EOP received yet */ eop_tail = tail; break; } if (eop_rxwbd->dd && eop_rxwbd->eop) break; } /* No EOP in ring */ if (eop_tail == tail) break; } rx_mbuf_prev = NULL; rx_mbuf_first = NULL; /* Run through packet segments */ while (true) { new_mbuf = rte_mbuf_raw_alloc(rxq->mb_pool); if (new_mbuf == NULL) { PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " "queue_id=%u", (unsigned int)rxq->port_id, (unsigned int)rxq->queue_id); dev->data->rx_mbuf_alloc_failed++; adapter->sw_stats.rx_nombuf++; goto err_stop; } nb_hold++; rx_entry = &sw_ring[tail]; rx_mbuf = rx_entry->mbuf; rx_entry->mbuf = new_mbuf; dma_addr = rte_cpu_to_le_64( rte_mbuf_data_iova_default(new_mbuf)); /* setup RX descriptor */ rxd->hdr_addr = 0; rxd->buf_addr = dma_addr; /* * Initialize the returned mbuf. * 1) setup generic mbuf fields: * - number of segments, * - next segment, * - packet length, * - RX port identifier. * 2) integrate hardware offload data, if any: * < - RSS flag & hash, * - IP checksum flag, * - VLAN TCI, if any, * - error flags. */ pkt_len = (uint16_t)rte_le_to_cpu_16(rxd_wb.pkt_len); rx_mbuf->data_off = RTE_PKTMBUF_HEADROOM; rte_prefetch1((char *)rx_mbuf->buf_addr + rx_mbuf->data_off); rx_mbuf->nb_segs = 0; rx_mbuf->next = NULL; rx_mbuf->pkt_len = pkt_len; rx_mbuf->data_len = pkt_len; if (rxd_wb.eop) { u16 remainder_len = pkt_len % rxq->buff_size; if (!remainder_len) remainder_len = rxq->buff_size; rx_mbuf->data_len = remainder_len; } else { rx_mbuf->data_len = pkt_len > rxq->buff_size ? rxq->buff_size : pkt_len; } rx_mbuf->port = rxq->port_id; rx_mbuf->hash.rss = rxd_wb.rss_hash; rx_mbuf->vlan_tci = rxd_wb.vlan; rx_mbuf->ol_flags = atl_desc_to_offload_flags(rxq, &rxd_wb); rx_mbuf->packet_type = atl_desc_to_pkt_type(&rxd_wb); if (rx_mbuf->packet_type & RTE_PTYPE_L2_ETHER_VLAN) { rx_mbuf->ol_flags |= RTE_MBUF_F_RX_VLAN; rx_mbuf->vlan_tci = rxd_wb.vlan; if (cfg->vlan_strip) rx_mbuf->ol_flags |= RTE_MBUF_F_RX_VLAN_STRIPPED; } if (!rx_mbuf_first) rx_mbuf_first = rx_mbuf; rx_mbuf_first->nb_segs++; if (rx_mbuf_prev) rx_mbuf_prev->next = rx_mbuf; rx_mbuf_prev = rx_mbuf; tail = (tail + 1) % rxq->nb_rx_desc; /* Prefetch next mbufs */ rte_prefetch0(sw_ring[tail].mbuf); if ((tail & 0x3) == 0) { rte_prefetch0(&sw_ring[tail]); rte_prefetch0(&sw_ring[tail]); } /* filled mbuf_first */ if (rxd_wb.eop) break; rxd = (struct hw_atl_rxd_s *)&rxq->hw_ring[tail]; rxd_wb = *(struct hw_atl_rxd_wb_s *)rxd; }; /* * Store the mbuf address into the next entry of the array * of returned packets. */ rx_pkts[nb_rx++] = rx_mbuf_first; adapter->sw_stats.q_ipackets[rxq->queue_id]++; adapter->sw_stats.q_ibytes[rxq->queue_id] += rx_mbuf_first->pkt_len; PMD_RX_LOG(DEBUG, "add mbuf segs=%d pkt_len=%d", rx_mbuf_first->nb_segs, rx_mbuf_first->pkt_len); } err_stop: rxq->rx_tail = tail; /* * If the number of free RX descriptors is greater than the RX free * threshold of the queue, advance the Receive Descriptor Tail (RDT) * register. * Update the RDT with the value of the last processed RX descriptor * minus 1, to guarantee that the RDT register is never equal to the * RDH register, which creates a "full" ring situation from the * hardware point of view... */ nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold); if (nb_hold > rxq->rx_free_thresh) { PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " "nb_hold=%u nb_rx=%u", (unsigned int)rxq->port_id, (unsigned int)rxq->queue_id, (unsigned int)tail, (unsigned int)nb_hold, (unsigned int)nb_rx); tail = (uint16_t)((tail == 0) ? (rxq->nb_rx_desc - 1) : (tail - 1)); hw_atl_reg_rx_dma_desc_tail_ptr_set(hw, tail, rxq->queue_id); nb_hold = 0; } rxq->nb_rx_hold = nb_hold; return nb_rx; } static void atl_xmit_cleanup(struct atl_tx_queue *txq) { struct atl_tx_entry *sw_ring; struct hw_atl_txd_s *txd; int to_clean = 0; if (txq != NULL) { sw_ring = txq->sw_ring; int head = txq->tx_head; int cnt = head; while (true) { txd = &txq->hw_ring[cnt]; if (txd->dd) to_clean++; cnt = (cnt + 1) % txq->nb_tx_desc; if (cnt == txq->tx_tail) break; } if (to_clean == 0) return; while (to_clean) { txd = &txq->hw_ring[head]; struct atl_tx_entry *rx_entry = &sw_ring[head]; if (rx_entry->mbuf) { rte_pktmbuf_free_seg(rx_entry->mbuf); rx_entry->mbuf = NULL; } if (txd->dd) to_clean--; txd->buf_addr = 0; txd->flags = 0; head = (head + 1) % txq->nb_tx_desc; txq->tx_free++; } txq->tx_head = head; } } static int atl_tso_setup(struct rte_mbuf *tx_pkt, union hw_atl_txc_s *txc) { uint32_t tx_cmd = 0; uint64_t ol_flags = tx_pkt->ol_flags; if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) { tx_cmd |= tx_desc_cmd_lso | tx_desc_cmd_l4cs; txc->cmd = 0x4; if (ol_flags & RTE_MBUF_F_TX_IPV6) txc->cmd |= 0x2; txc->l2_len = tx_pkt->l2_len; txc->l3_len = tx_pkt->l3_len; txc->l4_len = tx_pkt->l4_len; txc->mss_len = tx_pkt->tso_segsz; } if (ol_flags & RTE_MBUF_F_TX_VLAN) { tx_cmd |= tx_desc_cmd_vlan; txc->vlan_tag = tx_pkt->vlan_tci; } if (tx_cmd) { txc->type = tx_desc_type_ctx; txc->idx = 0; } return tx_cmd; } static inline void atl_setup_csum_offload(struct rte_mbuf *mbuf, struct hw_atl_txd_s *txd, uint32_t tx_cmd) { txd->cmd |= tx_desc_cmd_fcs; txd->cmd |= (mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) ? tx_desc_cmd_ipv4 : 0; /* L4 csum requested */ txd->cmd |= (mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ? tx_desc_cmd_l4cs : 0; txd->cmd |= tx_cmd; } static inline void atl_xmit_pkt(struct aq_hw_s *hw, struct atl_tx_queue *txq, struct rte_mbuf *tx_pkt) { struct atl_adapter *adapter = ATL_DEV_TO_ADAPTER(&rte_eth_devices[txq->port_id]); uint32_t pay_len = 0; int tail = 0; struct atl_tx_entry *tx_entry; uint64_t buf_dma_addr; struct rte_mbuf *m_seg; union hw_atl_txc_s *txc = NULL; struct hw_atl_txd_s *txd = NULL; u32 tx_cmd = 0U; int desc_count = 0; tail = txq->tx_tail; txc = (union hw_atl_txc_s *)&txq->hw_ring[tail]; txc->flags1 = 0U; txc->flags2 = 0U; tx_cmd = atl_tso_setup(tx_pkt, txc); if (tx_cmd) { /* We've consumed the first desc, adjust counters */ tail = (tail + 1) % txq->nb_tx_desc; txq->tx_tail = tail; txq->tx_free -= 1; txd = &txq->hw_ring[tail]; txd->flags = 0U; } else { txd = (struct hw_atl_txd_s *)txc; } txd->ct_en = !!tx_cmd; txd->type = tx_desc_type_desc; atl_setup_csum_offload(tx_pkt, txd, tx_cmd); if (tx_cmd) txd->ct_idx = 0; pay_len = tx_pkt->pkt_len; txd->pay_len = pay_len; for (m_seg = tx_pkt; m_seg; m_seg = m_seg->next) { if (desc_count > 0) { txd = &txq->hw_ring[tail]; txd->flags = 0U; } buf_dma_addr = rte_mbuf_data_iova(m_seg); txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr); txd->type = tx_desc_type_desc; txd->len = m_seg->data_len; txd->pay_len = pay_len; /* Store mbuf for freeing later */ tx_entry = &txq->sw_ring[tail]; if (tx_entry->mbuf) rte_pktmbuf_free_seg(tx_entry->mbuf); tx_entry->mbuf = m_seg; tail = (tail + 1) % txq->nb_tx_desc; desc_count++; } // Last descriptor requires EOP and WB txd->eop = 1U; txd->cmd |= tx_desc_cmd_wb; hw_atl_b0_hw_tx_ring_tail_update(hw, tail, txq->queue_id); txq->tx_tail = tail; txq->tx_free -= desc_count; adapter->sw_stats.q_opackets[txq->queue_id]++; adapter->sw_stats.q_obytes[txq->queue_id] += pay_len; } uint16_t atl_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct rte_eth_dev *dev = NULL; struct aq_hw_s *hw = NULL; struct atl_tx_queue *txq = tx_queue; struct rte_mbuf *tx_pkt; uint16_t nb_tx; dev = &rte_eth_devices[txq->port_id]; hw = ATL_DEV_PRIVATE_TO_HW(dev->data->dev_private); PMD_TX_LOG(DEBUG, "port %d txq %d pkts: %d tx_free=%d tx_tail=%d tx_head=%d", txq->port_id, txq->queue_id, nb_pkts, txq->tx_free, txq->tx_tail, txq->tx_head); for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) { tx_pkt = *tx_pkts++; /* Clean Tx queue if needed */ if (txq->tx_free < txq->tx_free_thresh) atl_xmit_cleanup(txq); /* Check if we have enough free descriptors */ if (txq->tx_free < tx_pkt->nb_segs) break; /* check mbuf is valid */ if ((tx_pkt->nb_segs == 0) || ((tx_pkt->nb_segs > 1) && (tx_pkt->next == NULL))) break; /* Send the packet */ atl_xmit_pkt(hw, txq, tx_pkt); } PMD_TX_LOG(DEBUG, "atl_xmit_pkts %d transmitted", nb_tx); return nb_tx; }