/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016-2021 Intel Corporation */ #include #include #include #include #include #include #include "pmd_kasumi_priv.h" /** Parse crypto xform chain and set private session parameters. */ static int kasumi_session_configure(IMB_MGR *mgr, void *priv_sess, const struct rte_crypto_sym_xform *xform) { const struct rte_crypto_sym_xform *auth_xform = NULL; const struct rte_crypto_sym_xform *cipher_xform = NULL; enum ipsec_mb_operation mode; struct kasumi_session *sess = (struct kasumi_session *)priv_sess; /* Select Crypto operation - hash then cipher / cipher then hash */ int ret = ipsec_mb_parse_xform(xform, &mode, &auth_xform, &cipher_xform, NULL); if (ret) return ret; if (cipher_xform) { /* Only KASUMI F8 supported */ if (cipher_xform->cipher.algo != RTE_CRYPTO_CIPHER_KASUMI_F8) { IPSEC_MB_LOG(ERR, "Unsupported cipher algorithm "); return -ENOTSUP; } sess->cipher_iv_offset = cipher_xform->cipher.iv.offset; if (cipher_xform->cipher.iv.length != KASUMI_IV_LENGTH) { IPSEC_MB_LOG(ERR, "Wrong IV length"); return -EINVAL; } /* Initialize key */ IMB_KASUMI_INIT_F8_KEY_SCHED(mgr, cipher_xform->cipher.key.data, &sess->pKeySched_cipher); } if (auth_xform) { /* Only KASUMI F9 supported */ if (auth_xform->auth.algo != RTE_CRYPTO_AUTH_KASUMI_F9) { IPSEC_MB_LOG(ERR, "Unsupported authentication"); return -ENOTSUP; } if (auth_xform->auth.digest_length != KASUMI_DIGEST_LENGTH) { IPSEC_MB_LOG(ERR, "Wrong digest length"); return -EINVAL; } sess->auth_op = auth_xform->auth.op; /* Initialize key */ IMB_KASUMI_INIT_F9_KEY_SCHED(mgr, auth_xform->auth.key.data, &sess->pKeySched_hash); } sess->op = mode; return ret; } /** Encrypt/decrypt mbufs with same cipher key. */ static uint8_t process_kasumi_cipher_op(struct ipsec_mb_qp *qp, struct rte_crypto_op **ops, struct kasumi_session *session, uint8_t num_ops) { unsigned int i; uint8_t processed_ops = 0; const void *src[num_ops]; void *dst[num_ops]; uint8_t *iv_ptr; uint64_t iv[num_ops]; uint32_t num_bytes[num_ops]; for (i = 0; i < num_ops; i++) { src[i] = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) + (ops[i]->sym->cipher.data.offset >> 3); dst[i] = ops[i]->sym->m_dst ? rte_pktmbuf_mtod(ops[i]->sym->m_dst, uint8_t *) + (ops[i]->sym->cipher.data.offset >> 3) : rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) + (ops[i]->sym->cipher.data.offset >> 3); iv_ptr = rte_crypto_op_ctod_offset(ops[i], uint8_t *, session->cipher_iv_offset); iv[i] = *((uint64_t *)(iv_ptr)); num_bytes[i] = ops[i]->sym->cipher.data.length >> 3; processed_ops++; } if (processed_ops != 0) IMB_KASUMI_F8_N_BUFFER(qp->mb_mgr, &session->pKeySched_cipher, iv, src, dst, num_bytes, processed_ops); return processed_ops; } /** Encrypt/decrypt mbuf (bit level function). */ static uint8_t process_kasumi_cipher_op_bit(struct ipsec_mb_qp *qp, struct rte_crypto_op *op, struct kasumi_session *session) { uint8_t *src, *dst; uint8_t *iv_ptr; uint64_t iv; uint32_t length_in_bits, offset_in_bits; offset_in_bits = op->sym->cipher.data.offset; src = rte_pktmbuf_mtod(op->sym->m_src, uint8_t *); if (op->sym->m_dst == NULL) dst = src; else dst = rte_pktmbuf_mtod(op->sym->m_dst, uint8_t *); iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, session->cipher_iv_offset); iv = *((uint64_t *)(iv_ptr)); length_in_bits = op->sym->cipher.data.length; IMB_KASUMI_F8_1_BUFFER_BIT(qp->mb_mgr, &session->pKeySched_cipher, iv, src, dst, length_in_bits, offset_in_bits); return 1; } /** Generate/verify hash from mbufs with same hash key. */ static int process_kasumi_hash_op(struct ipsec_mb_qp *qp, struct rte_crypto_op **ops, struct kasumi_session *session, uint8_t num_ops) { unsigned int i; uint8_t processed_ops = 0; uint8_t *src, *dst; uint32_t length_in_bits; uint32_t num_bytes; struct kasumi_qp_data *qp_data = ipsec_mb_get_qp_private_data(qp); for (i = 0; i < num_ops; i++) { /* Data must be byte aligned */ if ((ops[i]->sym->auth.data.offset % BYTE_LEN) != 0) { ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; IPSEC_MB_LOG(ERR, "Invalid Offset"); break; } length_in_bits = ops[i]->sym->auth.data.length; src = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) + (ops[i]->sym->auth.data.offset >> 3); /* Direction from next bit after end of message */ num_bytes = length_in_bits >> 3; if (session->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY) { dst = qp_data->temp_digest; IMB_KASUMI_F9_1_BUFFER(qp->mb_mgr, &session->pKeySched_hash, src, num_bytes, dst); /* Verify digest. */ if (memcmp(dst, ops[i]->sym->auth.digest.data, KASUMI_DIGEST_LENGTH) != 0) ops[i]->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; } else { dst = ops[i]->sym->auth.digest.data; IMB_KASUMI_F9_1_BUFFER(qp->mb_mgr, &session->pKeySched_hash, src, num_bytes, dst); } processed_ops++; } return processed_ops; } /** Process a batch of crypto ops which shares the same session. */ static int process_ops(struct rte_crypto_op **ops, struct kasumi_session *session, struct ipsec_mb_qp *qp, uint8_t num_ops) { unsigned int i; unsigned int processed_ops; switch (session->op) { case IPSEC_MB_OP_ENCRYPT_ONLY: case IPSEC_MB_OP_DECRYPT_ONLY: processed_ops = process_kasumi_cipher_op(qp, ops, session, num_ops); break; case IPSEC_MB_OP_HASH_GEN_ONLY: case IPSEC_MB_OP_HASH_VERIFY_ONLY: processed_ops = process_kasumi_hash_op(qp, ops, session, num_ops); break; case IPSEC_MB_OP_ENCRYPT_THEN_HASH_GEN: case IPSEC_MB_OP_DECRYPT_THEN_HASH_VERIFY: processed_ops = process_kasumi_cipher_op(qp, ops, session, num_ops); process_kasumi_hash_op(qp, ops, session, processed_ops); break; case IPSEC_MB_OP_HASH_VERIFY_THEN_DECRYPT: case IPSEC_MB_OP_HASH_GEN_THEN_ENCRYPT: processed_ops = process_kasumi_hash_op(qp, ops, session, num_ops); process_kasumi_cipher_op(qp, ops, session, processed_ops); break; default: /* Operation not supported. */ processed_ops = 0; } for (i = 0; i < num_ops; i++) { /* * If there was no error/authentication failure, * change status to successful. */ if (ops[i]->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) ops[i]->status = RTE_CRYPTO_OP_STATUS_SUCCESS; /* Free session if a session-less crypto op. */ if (ops[i]->sess_type == RTE_CRYPTO_OP_SESSIONLESS) { memset(session, 0, sizeof(struct kasumi_session)); memset( ops[i]->sym->session, 0, rte_cryptodev_sym_get_existing_header_session_size( ops[i]->sym->session)); rte_mempool_put(qp->sess_mp_priv, session); rte_mempool_put(qp->sess_mp, ops[i]->sym->session); ops[i]->sym->session = NULL; } } return processed_ops; } /** Process a crypto op with length/offset in bits. */ static int process_op_bit(struct rte_crypto_op *op, struct kasumi_session *session, struct ipsec_mb_qp *qp) { unsigned int processed_op; switch (session->op) { /* case KASUMI_OP_ONLY_CIPHER: */ case IPSEC_MB_OP_ENCRYPT_ONLY: case IPSEC_MB_OP_DECRYPT_ONLY: processed_op = process_kasumi_cipher_op_bit(qp, op, session); break; /* case KASUMI_OP_ONLY_AUTH: */ case IPSEC_MB_OP_HASH_GEN_ONLY: case IPSEC_MB_OP_HASH_VERIFY_ONLY: processed_op = process_kasumi_hash_op(qp, &op, session, 1); break; /* case KASUMI_OP_CIPHER_AUTH: */ case IPSEC_MB_OP_ENCRYPT_THEN_HASH_GEN: processed_op = process_kasumi_cipher_op_bit(qp, op, session); if (processed_op == 1) process_kasumi_hash_op(qp, &op, session, 1); break; /* case KASUMI_OP_AUTH_CIPHER: */ case IPSEC_MB_OP_HASH_VERIFY_THEN_DECRYPT: processed_op = process_kasumi_hash_op(qp, &op, session, 1); if (processed_op == 1) process_kasumi_cipher_op_bit(qp, op, session); break; default: /* Operation not supported. */ processed_op = 0; } /* * If there was no error/authentication failure, * change status to successful. */ if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; /* Free session if a session-less crypto op. */ if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) { memset(op->sym->session, 0, sizeof(struct kasumi_session)); rte_cryptodev_sym_session_free(op->sym->session); op->sym->session = NULL; } return processed_op; } static uint16_t kasumi_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { struct rte_crypto_op *c_ops[nb_ops]; struct rte_crypto_op *curr_c_op = NULL; struct kasumi_session *prev_sess = NULL, *curr_sess = NULL; struct ipsec_mb_qp *qp = queue_pair; unsigned int i; uint8_t burst_size = 0; uint8_t processed_ops; unsigned int nb_dequeued; nb_dequeued = rte_ring_dequeue_burst(qp->ingress_queue, (void **)ops, nb_ops, NULL); for (i = 0; i < nb_dequeued; i++) { curr_c_op = ops[i]; #ifdef RTE_LIBRTE_PMD_KASUMI_DEBUG if (!rte_pktmbuf_is_contiguous(curr_c_op->sym->m_src) || (curr_c_op->sym->m_dst != NULL && !rte_pktmbuf_is_contiguous( curr_c_op->sym->m_dst))) { IPSEC_MB_LOG(ERR, "PMD supports only contiguous mbufs, op (%p) provides noncontiguous mbuf as source/destination buffer.", curr_c_op); curr_c_op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; break; } #endif /* Set status as enqueued (not processed yet) by default. */ curr_c_op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; curr_sess = (struct kasumi_session *) ipsec_mb_get_session_private(qp, curr_c_op); if (unlikely(curr_sess == NULL || curr_sess->op == IPSEC_MB_OP_NOT_SUPPORTED)) { curr_c_op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; break; } /* If length/offset is at bit-level, process this buffer alone. */ if (((curr_c_op->sym->cipher.data.length % BYTE_LEN) != 0) || ((ops[i]->sym->cipher.data.offset % BYTE_LEN) != 0)) { /* Process the ops of the previous session. */ if (prev_sess != NULL) { processed_ops = process_ops(c_ops, prev_sess, qp, burst_size); if (processed_ops < burst_size) { burst_size = 0; break; } burst_size = 0; prev_sess = NULL; } processed_ops = process_op_bit(curr_c_op, curr_sess, qp); if (processed_ops != 1) break; continue; } /* Batch ops that share the same session. */ if (prev_sess == NULL) { prev_sess = curr_sess; c_ops[burst_size++] = curr_c_op; } else if (curr_sess == prev_sess) { c_ops[burst_size++] = curr_c_op; /* * When there are enough ops to process in a batch, * process them, and start a new batch. */ if (burst_size == KASUMI_MAX_BURST) { processed_ops = process_ops(c_ops, prev_sess, qp, burst_size); if (processed_ops < burst_size) { burst_size = 0; break; } burst_size = 0; prev_sess = NULL; } } else { /* * Different session, process the ops * of the previous session. */ processed_ops = process_ops(c_ops, prev_sess, qp, burst_size); if (processed_ops < burst_size) { burst_size = 0; break; } burst_size = 0; prev_sess = curr_sess; c_ops[burst_size++] = curr_c_op; } } if (burst_size != 0) { /* Process the crypto ops of the last session. */ processed_ops = process_ops(c_ops, prev_sess, qp, burst_size); } qp->stats.dequeued_count += i; return i; } struct rte_cryptodev_ops kasumi_pmd_ops = { .dev_configure = ipsec_mb_config, .dev_start = ipsec_mb_start, .dev_stop = ipsec_mb_stop, .dev_close = ipsec_mb_close, .stats_get = ipsec_mb_stats_get, .stats_reset = ipsec_mb_stats_reset, .dev_infos_get = ipsec_mb_info_get, .queue_pair_setup = ipsec_mb_qp_setup, .queue_pair_release = ipsec_mb_qp_release, .sym_session_get_size = ipsec_mb_sym_session_get_size, .sym_session_configure = ipsec_mb_sym_session_configure, .sym_session_clear = ipsec_mb_sym_session_clear }; struct rte_cryptodev_ops *rte_kasumi_pmd_ops = &kasumi_pmd_ops; static int kasumi_probe(struct rte_vdev_device *vdev) { return ipsec_mb_create(vdev, IPSEC_MB_PMD_TYPE_KASUMI); } static struct rte_vdev_driver cryptodev_kasumi_pmd_drv = { .probe = kasumi_probe, .remove = ipsec_mb_remove }; static struct cryptodev_driver kasumi_crypto_drv; RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_KASUMI_PMD, cryptodev_kasumi_pmd_drv); RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_KASUMI_PMD, cryptodev_kasumi_pmd); RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_KASUMI_PMD, "max_nb_queue_pairs= socket_id="); RTE_PMD_REGISTER_CRYPTO_DRIVER(kasumi_crypto_drv, cryptodev_kasumi_pmd_drv.driver, pmd_driver_id_kasumi); /* Constructor function to register kasumi PMD */ RTE_INIT(ipsec_mb_register_kasumi) { struct ipsec_mb_internals *kasumi_data = &ipsec_mb_pmds[IPSEC_MB_PMD_TYPE_KASUMI]; kasumi_data->caps = kasumi_capabilities; kasumi_data->dequeue_burst = kasumi_pmd_dequeue_burst; kasumi_data->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA | RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT | RTE_CRYPTODEV_FF_SYM_SESSIONLESS | RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT; kasumi_data->internals_priv_size = 0; kasumi_data->ops = &kasumi_pmd_ops; kasumi_data->qp_priv_size = sizeof(struct kasumi_qp_data); kasumi_data->session_configure = kasumi_session_configure; kasumi_data->session_priv_size = sizeof(struct kasumi_session); }