/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2020 Inspur Corporation */ #include #include #include #include #include "gro_udp4.h" void * gro_udp4_tbl_create(uint16_t socket_id, uint16_t max_flow_num, uint16_t max_item_per_flow) { struct gro_udp4_tbl *tbl; size_t size; uint32_t entries_num, i; entries_num = max_flow_num * max_item_per_flow; entries_num = RTE_MIN(entries_num, GRO_UDP4_TBL_MAX_ITEM_NUM); if (entries_num == 0) return NULL; tbl = rte_zmalloc_socket(__func__, sizeof(struct gro_udp4_tbl), RTE_CACHE_LINE_SIZE, socket_id); if (tbl == NULL) return NULL; size = sizeof(struct gro_udp4_item) * entries_num; tbl->items = rte_zmalloc_socket(__func__, size, RTE_CACHE_LINE_SIZE, socket_id); if (tbl->items == NULL) { rte_free(tbl); return NULL; } tbl->max_item_num = entries_num; size = sizeof(struct gro_udp4_flow) * entries_num; tbl->flows = rte_zmalloc_socket(__func__, size, RTE_CACHE_LINE_SIZE, socket_id); if (tbl->flows == NULL) { rte_free(tbl->items); rte_free(tbl); return NULL; } /* INVALID_ARRAY_INDEX indicates an empty flow */ for (i = 0; i < entries_num; i++) tbl->flows[i].start_index = INVALID_ARRAY_INDEX; tbl->max_flow_num = entries_num; return tbl; } void gro_udp4_tbl_destroy(void *tbl) { struct gro_udp4_tbl *udp_tbl = tbl; if (udp_tbl) { rte_free(udp_tbl->items); rte_free(udp_tbl->flows); } rte_free(udp_tbl); } static inline uint32_t find_an_empty_item(struct gro_udp4_tbl *tbl) { uint32_t i; uint32_t max_item_num = tbl->max_item_num; for (i = 0; i < max_item_num; i++) if (tbl->items[i].firstseg == NULL) return i; return INVALID_ARRAY_INDEX; } static inline uint32_t find_an_empty_flow(struct gro_udp4_tbl *tbl) { uint32_t i; uint32_t max_flow_num = tbl->max_flow_num; for (i = 0; i < max_flow_num; i++) if (tbl->flows[i].start_index == INVALID_ARRAY_INDEX) return i; return INVALID_ARRAY_INDEX; } static inline uint32_t insert_new_item(struct gro_udp4_tbl *tbl, struct rte_mbuf *pkt, uint64_t start_time, uint32_t prev_idx, uint16_t frag_offset, uint8_t is_last_frag) { uint32_t item_idx; item_idx = find_an_empty_item(tbl); if (unlikely(item_idx == INVALID_ARRAY_INDEX)) return INVALID_ARRAY_INDEX; tbl->items[item_idx].firstseg = pkt; tbl->items[item_idx].lastseg = rte_pktmbuf_lastseg(pkt); tbl->items[item_idx].start_time = start_time; tbl->items[item_idx].next_pkt_idx = INVALID_ARRAY_INDEX; tbl->items[item_idx].frag_offset = frag_offset; tbl->items[item_idx].is_last_frag = is_last_frag; tbl->items[item_idx].nb_merged = 1; tbl->item_num++; /* if the previous packet exists, chain them together. */ if (prev_idx != INVALID_ARRAY_INDEX) { tbl->items[item_idx].next_pkt_idx = tbl->items[prev_idx].next_pkt_idx; tbl->items[prev_idx].next_pkt_idx = item_idx; } return item_idx; } static inline uint32_t delete_item(struct gro_udp4_tbl *tbl, uint32_t item_idx, uint32_t prev_item_idx) { uint32_t next_idx = tbl->items[item_idx].next_pkt_idx; /* NULL indicates an empty item */ tbl->items[item_idx].firstseg = NULL; tbl->item_num--; if (prev_item_idx != INVALID_ARRAY_INDEX) tbl->items[prev_item_idx].next_pkt_idx = next_idx; return next_idx; } static inline uint32_t insert_new_flow(struct gro_udp4_tbl *tbl, struct udp4_flow_key *src, uint32_t item_idx) { struct udp4_flow_key *dst; uint32_t flow_idx; flow_idx = find_an_empty_flow(tbl); if (unlikely(flow_idx == INVALID_ARRAY_INDEX)) return INVALID_ARRAY_INDEX; dst = &(tbl->flows[flow_idx].key); rte_ether_addr_copy(&(src->eth_saddr), &(dst->eth_saddr)); rte_ether_addr_copy(&(src->eth_daddr), &(dst->eth_daddr)); dst->ip_src_addr = src->ip_src_addr; dst->ip_dst_addr = src->ip_dst_addr; dst->ip_id = src->ip_id; tbl->flows[flow_idx].start_index = item_idx; tbl->flow_num++; return flow_idx; } /* * update the packet length for the flushed packet. */ static inline void update_header(struct gro_udp4_item *item) { struct rte_ipv4_hdr *ipv4_hdr; struct rte_mbuf *pkt = item->firstseg; uint16_t frag_offset; ipv4_hdr = (struct rte_ipv4_hdr *)(rte_pktmbuf_mtod(pkt, char *) + pkt->l2_len); ipv4_hdr->total_length = rte_cpu_to_be_16(pkt->pkt_len - pkt->l2_len); /* Clear MF bit if it is last fragment */ if (item->is_last_frag) { frag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset); ipv4_hdr->fragment_offset = rte_cpu_to_be_16(frag_offset & ~RTE_IPV4_HDR_MF_FLAG); } } int32_t gro_udp4_reassemble(struct rte_mbuf *pkt, struct gro_udp4_tbl *tbl, uint64_t start_time) { struct rte_ether_hdr *eth_hdr; struct rte_ipv4_hdr *ipv4_hdr; uint16_t ip_dl; uint16_t ip_id, hdr_len; uint16_t frag_offset = 0; uint8_t is_last_frag; struct udp4_flow_key key; uint32_t cur_idx, prev_idx, item_idx; uint32_t i, max_flow_num, remaining_flow_num; int cmp; uint8_t find; eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *); ipv4_hdr = (struct rte_ipv4_hdr *)((char *)eth_hdr + pkt->l2_len); hdr_len = pkt->l2_len + pkt->l3_len; /* * Don't process non-fragment packet. */ if (!is_ipv4_fragment(ipv4_hdr)) return -1; /* * Don't process the packet whose payload length is less than or * equal to 0. */ if (pkt->pkt_len <= hdr_len) return -1; ip_dl = rte_be_to_cpu_16(ipv4_hdr->total_length); if (ip_dl <= pkt->l3_len) return -1; ip_dl -= pkt->l3_len; ip_id = rte_be_to_cpu_16(ipv4_hdr->packet_id); frag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset); is_last_frag = ((frag_offset & RTE_IPV4_HDR_MF_FLAG) == 0) ? 1 : 0; frag_offset = (uint16_t)(frag_offset & RTE_IPV4_HDR_OFFSET_MASK) << 3; rte_ether_addr_copy(&(eth_hdr->src_addr), &(key.eth_saddr)); rte_ether_addr_copy(&(eth_hdr->dst_addr), &(key.eth_daddr)); key.ip_src_addr = ipv4_hdr->src_addr; key.ip_dst_addr = ipv4_hdr->dst_addr; key.ip_id = ip_id; /* Search for a matched flow. */ max_flow_num = tbl->max_flow_num; remaining_flow_num = tbl->flow_num; find = 0; for (i = 0; i < max_flow_num && remaining_flow_num; i++) { if (tbl->flows[i].start_index != INVALID_ARRAY_INDEX) { if (is_same_udp4_flow(tbl->flows[i].key, key)) { find = 1; break; } remaining_flow_num--; } } /* * Fail to find a matched flow. Insert a new flow and store the * packet into the flow. */ if (find == 0) { item_idx = insert_new_item(tbl, pkt, start_time, INVALID_ARRAY_INDEX, frag_offset, is_last_frag); if (unlikely(item_idx == INVALID_ARRAY_INDEX)) return -1; if (insert_new_flow(tbl, &key, item_idx) == INVALID_ARRAY_INDEX) { /* * Fail to insert a new flow, so delete the * stored packet. */ delete_item(tbl, item_idx, INVALID_ARRAY_INDEX); return -1; } return 0; } /* * Check all packets in the flow and try to find a neighbor for * the input packet. */ cur_idx = tbl->flows[i].start_index; prev_idx = cur_idx; do { cmp = udp4_check_neighbor(&(tbl->items[cur_idx]), frag_offset, ip_dl, 0); if (cmp) { if (merge_two_udp4_packets(&(tbl->items[cur_idx]), pkt, cmp, frag_offset, is_last_frag, 0)) return 1; /* * Fail to merge the two packets, as the packet * length is greater than the max value. Store * the packet into the flow. */ if (insert_new_item(tbl, pkt, start_time, prev_idx, frag_offset, is_last_frag) == INVALID_ARRAY_INDEX) return -1; return 0; } /* Ensure inserted items are ordered by frag_offset */ if (frag_offset < tbl->items[cur_idx].frag_offset) { break; } prev_idx = cur_idx; cur_idx = tbl->items[cur_idx].next_pkt_idx; } while (cur_idx != INVALID_ARRAY_INDEX); /* Fail to find a neighbor, so store the packet into the flow. */ if (cur_idx == tbl->flows[i].start_index) { /* Insert it before the first packet of the flow */ item_idx = insert_new_item(tbl, pkt, start_time, INVALID_ARRAY_INDEX, frag_offset, is_last_frag); if (unlikely(item_idx == INVALID_ARRAY_INDEX)) return -1; tbl->items[item_idx].next_pkt_idx = cur_idx; tbl->flows[i].start_index = item_idx; } else { if (insert_new_item(tbl, pkt, start_time, prev_idx, frag_offset, is_last_frag) == INVALID_ARRAY_INDEX) return -1; } return 0; } static int gro_udp4_merge_items(struct gro_udp4_tbl *tbl, uint32_t start_idx) { uint16_t frag_offset; uint8_t is_last_frag; int16_t ip_dl; struct rte_mbuf *pkt; int cmp; uint32_t item_idx; uint16_t hdr_len; item_idx = tbl->items[start_idx].next_pkt_idx; while (item_idx != INVALID_ARRAY_INDEX) { pkt = tbl->items[item_idx].firstseg; hdr_len = pkt->l2_len + pkt->l3_len; ip_dl = pkt->pkt_len - hdr_len; frag_offset = tbl->items[item_idx].frag_offset; is_last_frag = tbl->items[item_idx].is_last_frag; cmp = udp4_check_neighbor(&(tbl->items[start_idx]), frag_offset, ip_dl, 0); if (cmp) { if (merge_two_udp4_packets( &(tbl->items[start_idx]), pkt, cmp, frag_offset, is_last_frag, 0)) { item_idx = delete_item(tbl, item_idx, INVALID_ARRAY_INDEX); tbl->items[start_idx].next_pkt_idx = item_idx; } else return 0; } else return 0; } return 0; } uint16_t gro_udp4_tbl_timeout_flush(struct gro_udp4_tbl *tbl, uint64_t flush_timestamp, struct rte_mbuf **out, uint16_t nb_out) { uint16_t k = 0; uint32_t i, j; uint32_t max_flow_num = tbl->max_flow_num; for (i = 0; i < max_flow_num; i++) { if (unlikely(tbl->flow_num == 0)) return k; j = tbl->flows[i].start_index; while (j != INVALID_ARRAY_INDEX) { if (tbl->items[j].start_time <= flush_timestamp) { gro_udp4_merge_items(tbl, j); out[k++] = tbl->items[j].firstseg; if (tbl->items[j].nb_merged > 1) update_header(&(tbl->items[j])); /* * Delete the packet and get the next * packet in the flow. */ j = delete_item(tbl, j, INVALID_ARRAY_INDEX); tbl->flows[i].start_index = j; if (j == INVALID_ARRAY_INDEX) tbl->flow_num--; if (unlikely(k == nb_out)) return k; } else /* * Flushing packets does not strictly follow * timestamp. It does not flush left packets of * the flow this time once it finds one item * whose start_time is greater than * flush_timestamp. So go to check other flows. */ break; } } return k; } uint32_t gro_udp4_tbl_pkt_count(void *tbl) { struct gro_udp4_tbl *gro_tbl = tbl; if (gro_tbl) return gro_tbl->item_num; return 0; }