/* SPDX-License-Identifier: BSD-3-Clause * Copyright(C) 2021 Marvell. */ #ifndef _CNXK_SE_H_ #define _CNXK_SE_H_ #include #include "cnxk_cryptodev.h" #include "cnxk_cryptodev_ops.h" #define SRC_IOV_SIZE \ (sizeof(struct roc_se_iov_ptr) + \ (sizeof(struct roc_se_buf_ptr) * ROC_SE_MAX_SG_CNT)) #define DST_IOV_SIZE \ (sizeof(struct roc_se_iov_ptr) + \ (sizeof(struct roc_se_buf_ptr) * ROC_SE_MAX_SG_CNT)) struct cnxk_se_sess { uint16_t cpt_op : 4; uint16_t zsk_flag : 4; uint16_t aes_gcm : 1; uint16_t aes_ctr : 1; uint16_t chacha_poly : 1; uint16_t is_null : 1; uint16_t is_gmac : 1; uint16_t rsvd1 : 3; uint16_t aad_length; uint8_t mac_len; uint8_t iv_length; uint8_t auth_iv_length; uint16_t iv_offset; uint16_t auth_iv_offset; uint32_t salt; uint64_t cpt_inst_w7; struct roc_se_ctx roc_se_ctx; } __rte_cache_aligned; static inline void cpt_pack_iv(uint8_t *iv_src, uint8_t *iv_dst) { /* pack the first 8 bytes of IV to 6 bytes. * discard the 2 MSB bits of each byte */ iv_dst[0] = (((iv_src[0] & 0x3f) << 2) | ((iv_src[1] >> 4) & 0x3)); iv_dst[1] = (((iv_src[1] & 0xf) << 4) | ((iv_src[2] >> 2) & 0xf)); iv_dst[2] = (((iv_src[2] & 0x3) << 6) | (iv_src[3] & 0x3f)); iv_dst[3] = (((iv_src[4] & 0x3f) << 2) | ((iv_src[5] >> 4) & 0x3)); iv_dst[4] = (((iv_src[5] & 0xf) << 4) | ((iv_src[6] >> 2) & 0xf)); iv_dst[5] = (((iv_src[6] & 0x3) << 6) | (iv_src[7] & 0x3f)); } static inline void pdcp_iv_copy(uint8_t *iv_d, uint8_t *iv_s, const uint8_t pdcp_alg_type, uint8_t pack_iv) { uint32_t *iv_s_temp, iv_temp[4]; int j; if (pdcp_alg_type == ROC_SE_PDCP_ALG_TYPE_SNOW3G) { /* * DPDK seems to provide it in form of IV3 IV2 IV1 IV0 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3 */ iv_s_temp = (uint32_t *)iv_s; for (j = 0; j < 4; j++) iv_temp[j] = iv_s_temp[3 - j]; memcpy(iv_d, iv_temp, 16); } else { if (pack_iv) { cpt_pack_iv(iv_s, iv_d); memcpy(iv_d + 6, iv_s + 8, 17); } else memcpy(iv_d, iv_s, 16); } } static __rte_always_inline int cpt_mac_len_verify(struct rte_crypto_auth_xform *auth) { uint16_t mac_len = auth->digest_length; int ret; switch (auth->algo) { case RTE_CRYPTO_AUTH_MD5: case RTE_CRYPTO_AUTH_MD5_HMAC: ret = (mac_len == 16) ? 0 : -1; break; case RTE_CRYPTO_AUTH_SHA1: case RTE_CRYPTO_AUTH_SHA1_HMAC: ret = (mac_len == 20) ? 0 : -1; break; case RTE_CRYPTO_AUTH_SHA224: case RTE_CRYPTO_AUTH_SHA224_HMAC: ret = (mac_len == 28) ? 0 : -1; break; case RTE_CRYPTO_AUTH_SHA256: case RTE_CRYPTO_AUTH_SHA256_HMAC: ret = (mac_len == 32) ? 0 : -1; break; case RTE_CRYPTO_AUTH_SHA384: case RTE_CRYPTO_AUTH_SHA384_HMAC: ret = (mac_len == 48) ? 0 : -1; break; case RTE_CRYPTO_AUTH_SHA512: case RTE_CRYPTO_AUTH_SHA512_HMAC: ret = (mac_len == 64) ? 0 : -1; break; case RTE_CRYPTO_AUTH_NULL: ret = 0; break; default: ret = -1; } return ret; } static __rte_always_inline void cpt_fc_salt_update(struct roc_se_ctx *se_ctx, uint8_t *salt) { struct roc_se_context *fctx = &se_ctx->se_ctx.fctx; memcpy(fctx->enc.encr_iv, salt, 4); } static __rte_always_inline uint32_t fill_sg_comp(struct roc_se_sglist_comp *list, uint32_t i, phys_addr_t dma_addr, uint32_t size) { struct roc_se_sglist_comp *to = &list[i >> 2]; to->u.s.len[i % 4] = rte_cpu_to_be_16(size); to->ptr[i % 4] = rte_cpu_to_be_64(dma_addr); i++; return i; } static __rte_always_inline uint32_t fill_sg_comp_from_buf(struct roc_se_sglist_comp *list, uint32_t i, struct roc_se_buf_ptr *from) { struct roc_se_sglist_comp *to = &list[i >> 2]; to->u.s.len[i % 4] = rte_cpu_to_be_16(from->size); to->ptr[i % 4] = rte_cpu_to_be_64((uint64_t)from->vaddr); i++; return i; } static __rte_always_inline uint32_t fill_sg_comp_from_buf_min(struct roc_se_sglist_comp *list, uint32_t i, struct roc_se_buf_ptr *from, uint32_t *psize) { struct roc_se_sglist_comp *to = &list[i >> 2]; uint32_t size = *psize; uint32_t e_len; e_len = (size > from->size) ? from->size : size; to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len); to->ptr[i % 4] = rte_cpu_to_be_64((uint64_t)from->vaddr); *psize -= e_len; i++; return i; } /* * This fills the MC expected SGIO list * from IOV given by user. */ static __rte_always_inline uint32_t fill_sg_comp_from_iov(struct roc_se_sglist_comp *list, uint32_t i, struct roc_se_iov_ptr *from, uint32_t from_offset, uint32_t *psize, struct roc_se_buf_ptr *extra_buf, uint32_t extra_offset) { int32_t j; uint32_t extra_len = extra_buf ? extra_buf->size : 0; uint32_t size = *psize; for (j = 0; (j < from->buf_cnt) && size; j++) { struct roc_se_sglist_comp *to = &list[i >> 2]; uint32_t buf_sz = from->bufs[j].size; void *vaddr = from->bufs[j].vaddr; uint64_t e_vaddr; uint32_t e_len; if (unlikely(from_offset)) { if (from_offset >= buf_sz) { from_offset -= buf_sz; continue; } e_vaddr = (uint64_t)vaddr + from_offset; e_len = (size > (buf_sz - from_offset)) ? (buf_sz - from_offset) : size; from_offset = 0; } else { e_vaddr = (uint64_t)vaddr; e_len = (size > buf_sz) ? buf_sz : size; } to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len); to->ptr[i % 4] = rte_cpu_to_be_64(e_vaddr); if (extra_len && (e_len >= extra_offset)) { /* Break the data at given offset */ uint32_t next_len = e_len - extra_offset; uint64_t next_vaddr = e_vaddr + extra_offset; if (!extra_offset) { i--; } else { e_len = extra_offset; size -= e_len; to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len); } extra_len = RTE_MIN(extra_len, size); /* Insert extra data ptr */ if (extra_len) { i++; to = &list[i >> 2]; to->u.s.len[i % 4] = rte_cpu_to_be_16(extra_len); to->ptr[i % 4] = rte_cpu_to_be_64( (uint64_t)extra_buf->vaddr); size -= extra_len; } next_len = RTE_MIN(next_len, size); /* insert the rest of the data */ if (next_len) { i++; to = &list[i >> 2]; to->u.s.len[i % 4] = rte_cpu_to_be_16(next_len); to->ptr[i % 4] = rte_cpu_to_be_64(next_vaddr); size -= next_len; } extra_len = 0; } else { size -= e_len; } if (extra_offset) extra_offset -= size; i++; } *psize = size; return (uint32_t)i; } static __rte_always_inline int cpt_digest_gen_prep(uint32_t flags, uint64_t d_lens, struct roc_se_fc_params *params, struct cpt_inst_s *inst) { void *m_vaddr = params->meta_buf.vaddr; uint32_t size, i; uint16_t data_len, mac_len, key_len; roc_se_auth_type hash_type; struct roc_se_ctx *ctx; struct roc_se_sglist_comp *gather_comp; struct roc_se_sglist_comp *scatter_comp; uint8_t *in_buffer; uint32_t g_size_bytes, s_size_bytes; union cpt_inst_w4 cpt_inst_w4; ctx = params->ctx_buf.vaddr; hash_type = ctx->hash_type; mac_len = ctx->mac_len; key_len = ctx->auth_key_len; data_len = ROC_SE_AUTH_DLEN(d_lens); /*GP op header */ cpt_inst_w4.s.opcode_minor = 0; cpt_inst_w4.s.param2 = ((uint16_t)hash_type << 8); if (ctx->hmac) { cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_HMAC | ROC_SE_DMA_MODE; cpt_inst_w4.s.param1 = key_len; cpt_inst_w4.s.dlen = data_len + RTE_ALIGN_CEIL(key_len, 8); } else { cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_HASH | ROC_SE_DMA_MODE; cpt_inst_w4.s.param1 = 0; cpt_inst_w4.s.dlen = data_len; } /* Null auth only case enters the if */ if (unlikely(!hash_type && !ctx->enc_cipher)) { cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_MISC; /* Minor op is passthrough */ cpt_inst_w4.s.opcode_minor = 0x03; /* Send out completion code only */ cpt_inst_w4.s.param2 = 0x1; } /* DPTR has SG list */ in_buffer = m_vaddr; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; /* TODO Add error check if space will be sufficient */ gather_comp = (struct roc_se_sglist_comp *)((uint8_t *)m_vaddr + 8); /* * Input gather list */ i = 0; if (ctx->hmac) { uint64_t k_vaddr = (uint64_t)ctx->auth_key; /* Key */ i = fill_sg_comp(gather_comp, i, k_vaddr, RTE_ALIGN_CEIL(key_len, 8)); } /* input data */ size = data_len; if (size) { i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient dst IOV size, short by %dB", size); return -1; } } else { /* * Looks like we need to support zero data * gather ptr in case of hash & hmac */ i++; } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp); /* * Output Gather list */ i = 0; scatter_comp = (struct roc_se_sglist_comp *)((uint8_t *)gather_comp + g_size_bytes); if (flags & ROC_SE_VALID_MAC_BUF) { if (unlikely(params->mac_buf.size < mac_len)) { plt_dp_err("Insufficient MAC size"); return -1; } size = mac_len; i = fill_sg_comp_from_buf_min(scatter_comp, i, ¶ms->mac_buf, &size); } else { size = mac_len; i = fill_sg_comp_from_iov(scatter_comp, i, params->src_iov, data_len, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient dst IOV size, short by %dB", size); return -1; } } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp); size = g_size_bytes + s_size_bytes + ROC_SE_SG_LIST_HDR_SIZE; /* This is DPTR len in case of SG mode */ cpt_inst_w4.s.dlen = size; inst->dptr = (uint64_t)in_buffer; inst->w4.u64 = cpt_inst_w4.u64; return 0; } static __rte_always_inline int cpt_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *fc_params, struct cpt_inst_s *inst) { uint32_t iv_offset = 0; int32_t inputlen, outputlen, enc_dlen, auth_dlen; struct roc_se_ctx *se_ctx; uint32_t cipher_type, hash_type; uint32_t mac_len, size; uint8_t iv_len = 16; struct roc_se_buf_ptr *aad_buf = NULL; uint32_t encr_offset, auth_offset; uint32_t encr_data_len, auth_data_len, aad_len = 0; uint32_t passthrough_len = 0; union cpt_inst_w4 cpt_inst_w4; void *offset_vaddr; uint8_t op_minor; encr_offset = ROC_SE_ENCR_OFFSET(d_offs); auth_offset = ROC_SE_AUTH_OFFSET(d_offs); encr_data_len = ROC_SE_ENCR_DLEN(d_lens); auth_data_len = ROC_SE_AUTH_DLEN(d_lens); if (unlikely(flags & ROC_SE_VALID_AAD_BUF)) { /* We don't support both AAD and auth data separately */ auth_data_len = 0; auth_offset = 0; aad_len = fc_params->aad_buf.size; aad_buf = &fc_params->aad_buf; } se_ctx = fc_params->ctx_buf.vaddr; cipher_type = se_ctx->enc_cipher; hash_type = se_ctx->hash_type; mac_len = se_ctx->mac_len; op_minor = se_ctx->template_w4.s.opcode_minor; if (unlikely(!(flags & ROC_SE_VALID_IV_BUF))) { iv_len = 0; iv_offset = ROC_SE_ENCR_IV_OFFSET(d_offs); } if (unlikely(flags & ROC_SE_VALID_AAD_BUF)) { /* * When AAD is given, data above encr_offset is pass through * Since AAD is given as separate pointer and not as offset, * this is a special case as we need to fragment input data * into passthrough + encr_data and then insert AAD in between. */ if (hash_type != ROC_SE_GMAC_TYPE) { passthrough_len = encr_offset; auth_offset = passthrough_len + iv_len; encr_offset = passthrough_len + aad_len + iv_len; auth_data_len = aad_len + encr_data_len; } else { passthrough_len = 16 + aad_len; auth_offset = passthrough_len + iv_len; auth_data_len = aad_len; } } else { encr_offset += iv_len; auth_offset += iv_len; } /* Encryption */ cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_FC; cpt_inst_w4.s.opcode_minor = ROC_SE_FC_MINOR_OP_ENCRYPT; cpt_inst_w4.s.opcode_minor |= (uint64_t)op_minor; if (hash_type == ROC_SE_GMAC_TYPE) { encr_offset = 0; encr_data_len = 0; } auth_dlen = auth_offset + auth_data_len; enc_dlen = encr_data_len + encr_offset; if (unlikely(encr_data_len & 0xf)) { if ((cipher_type == ROC_SE_DES3_CBC) || (cipher_type == ROC_SE_DES3_ECB)) enc_dlen = RTE_ALIGN_CEIL(encr_data_len, 8) + encr_offset; else if (likely((cipher_type == ROC_SE_AES_CBC) || (cipher_type == ROC_SE_AES_ECB))) enc_dlen = RTE_ALIGN_CEIL(encr_data_len, 8) + encr_offset; } if (unlikely(auth_dlen > enc_dlen)) { inputlen = auth_dlen; outputlen = auth_dlen + mac_len; } else { inputlen = enc_dlen; outputlen = enc_dlen + mac_len; } if (op_minor & ROC_SE_FC_MINOR_OP_HMAC_FIRST) outputlen = enc_dlen; /* GP op header */ cpt_inst_w4.s.param1 = encr_data_len; cpt_inst_w4.s.param2 = auth_data_len; /* * In cn9k, cn10k since we have a limitation of * IV & Offset control word not part of instruction * and need to be part of Data Buffer, we check if * head room is there and then only do the Direct mode processing */ if (likely((flags & ROC_SE_SINGLE_BUF_INPLACE) && (flags & ROC_SE_SINGLE_BUF_HEADROOM))) { void *dm_vaddr = fc_params->bufs[0].vaddr; /* Use Direct mode */ offset_vaddr = (uint8_t *)dm_vaddr - ROC_SE_OFF_CTRL_LEN - iv_len; /* DPTR */ inst->dptr = (uint64_t)offset_vaddr; /* RPTR should just exclude offset control word */ inst->rptr = (uint64_t)dm_vaddr - iv_len; cpt_inst_w4.s.dlen = inputlen + ROC_SE_OFF_CTRL_LEN; if (likely(iv_len)) { uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN); uint64_t *src = fc_params->iv_buf; dest[0] = src[0]; dest[1] = src[1]; } } else { void *m_vaddr = fc_params->meta_buf.vaddr; uint32_t i, g_size_bytes, s_size_bytes; struct roc_se_sglist_comp *gather_comp; struct roc_se_sglist_comp *scatter_comp; uint8_t *in_buffer; /* This falls under strict SG mode */ offset_vaddr = m_vaddr; size = ROC_SE_OFF_CTRL_LEN + iv_len; m_vaddr = (uint8_t *)m_vaddr + size; cpt_inst_w4.s.opcode_major |= (uint64_t)ROC_SE_DMA_MODE; if (likely(iv_len)) { uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN); uint64_t *src = fc_params->iv_buf; dest[0] = src[0]; dest[1] = src[1]; } /* DPTR has SG list */ in_buffer = m_vaddr; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; /* TODO Add error check if space will be sufficient */ gather_comp = (struct roc_se_sglist_comp *)((uint8_t *)m_vaddr + 8); /* * Input Gather List */ i = 0; /* Offset control word that includes iv */ i = fill_sg_comp(gather_comp, i, (uint64_t)offset_vaddr, ROC_SE_OFF_CTRL_LEN + iv_len); /* Add input data */ size = inputlen - iv_len; if (likely(size)) { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (unlikely(flags & ROC_SE_SINGLE_BUF_INPLACE)) { i = fill_sg_comp_from_buf_min( gather_comp, i, fc_params->bufs, &size); } else { i = fill_sg_comp_from_iov( gather_comp, i, fc_params->src_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp); /* * Output Scatter list */ i = 0; scatter_comp = (struct roc_se_sglist_comp *)((uint8_t *)gather_comp + g_size_bytes); /* Add IV */ if (likely(iv_len)) { i = fill_sg_comp(scatter_comp, i, (uint64_t)offset_vaddr + ROC_SE_OFF_CTRL_LEN, iv_len); } /* output data or output data + digest*/ if (unlikely(flags & ROC_SE_VALID_MAC_BUF)) { size = outputlen - iv_len - mac_len; if (size) { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (unlikely(flags & ROC_SE_SINGLE_BUF_INPLACE)) { i = fill_sg_comp_from_buf_min( scatter_comp, i, fc_params->bufs, &size); } else { i = fill_sg_comp_from_iov( scatter_comp, i, fc_params->dst_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { plt_dp_err("Insufficient buffer" " space, size %d needed", size); return -1; } } /* mac_data */ if (mac_len) { i = fill_sg_comp_from_buf(scatter_comp, i, &fc_params->mac_buf); } } else { /* Output including mac */ size = outputlen - iv_len; if (likely(size)) { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (unlikely(flags & ROC_SE_SINGLE_BUF_INPLACE)) { i = fill_sg_comp_from_buf_min( scatter_comp, i, fc_params->bufs, &size); } else { i = fill_sg_comp_from_iov( scatter_comp, i, fc_params->dst_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { plt_dp_err("Insufficient buffer" " space, size %d needed", size); return -1; } } } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp); size = g_size_bytes + s_size_bytes + ROC_SE_SG_LIST_HDR_SIZE; /* This is DPTR len in case of SG mode */ cpt_inst_w4.s.dlen = size; inst->dptr = (uint64_t)in_buffer; } if (unlikely((encr_offset >> 16) || (iv_offset >> 8) || (auth_offset >> 8))) { plt_dp_err("Offset not supported"); plt_dp_err("enc_offset: %d", encr_offset); plt_dp_err("iv_offset : %d", iv_offset); plt_dp_err("auth_offset: %d", auth_offset); return -1; } *(uint64_t *)offset_vaddr = rte_cpu_to_be_64( ((uint64_t)encr_offset << 16) | ((uint64_t)iv_offset << 8) | ((uint64_t)auth_offset)); inst->w4.u64 = cpt_inst_w4.u64; return 0; } static __rte_always_inline int cpt_dec_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *fc_params, struct cpt_inst_s *inst) { uint32_t iv_offset = 0, size; int32_t inputlen, outputlen, enc_dlen, auth_dlen; struct roc_se_ctx *se_ctx; int32_t hash_type, mac_len; uint8_t iv_len = 16; struct roc_se_buf_ptr *aad_buf = NULL; uint32_t encr_offset, auth_offset; uint32_t encr_data_len, auth_data_len, aad_len = 0; uint32_t passthrough_len = 0; union cpt_inst_w4 cpt_inst_w4; void *offset_vaddr; uint8_t op_minor; encr_offset = ROC_SE_ENCR_OFFSET(d_offs); auth_offset = ROC_SE_AUTH_OFFSET(d_offs); encr_data_len = ROC_SE_ENCR_DLEN(d_lens); auth_data_len = ROC_SE_AUTH_DLEN(d_lens); if (unlikely(flags & ROC_SE_VALID_AAD_BUF)) { /* We don't support both AAD and auth data separately */ auth_data_len = 0; auth_offset = 0; aad_len = fc_params->aad_buf.size; aad_buf = &fc_params->aad_buf; } se_ctx = fc_params->ctx_buf.vaddr; hash_type = se_ctx->hash_type; mac_len = se_ctx->mac_len; op_minor = se_ctx->template_w4.s.opcode_minor; if (unlikely(!(flags & ROC_SE_VALID_IV_BUF))) { iv_len = 0; iv_offset = ROC_SE_ENCR_IV_OFFSET(d_offs); } if (unlikely(flags & ROC_SE_VALID_AAD_BUF)) { /* * When AAD is given, data above encr_offset is pass through * Since AAD is given as separate pointer and not as offset, * this is a special case as we need to fragment input data * into passthrough + encr_data and then insert AAD in between. */ if (hash_type != ROC_SE_GMAC_TYPE) { passthrough_len = encr_offset; auth_offset = passthrough_len + iv_len; encr_offset = passthrough_len + aad_len + iv_len; auth_data_len = aad_len + encr_data_len; } else { passthrough_len = 16 + aad_len; auth_offset = passthrough_len + iv_len; auth_data_len = aad_len; } } else { encr_offset += iv_len; auth_offset += iv_len; } /* Decryption */ cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_FC; cpt_inst_w4.s.opcode_minor = ROC_SE_FC_MINOR_OP_DECRYPT; cpt_inst_w4.s.opcode_minor |= (uint64_t)op_minor; if (hash_type == ROC_SE_GMAC_TYPE) { encr_offset = 0; encr_data_len = 0; } enc_dlen = encr_offset + encr_data_len; auth_dlen = auth_offset + auth_data_len; if (auth_dlen > enc_dlen) { inputlen = auth_dlen + mac_len; outputlen = auth_dlen; } else { inputlen = enc_dlen + mac_len; outputlen = enc_dlen; } if (op_minor & ROC_SE_FC_MINOR_OP_HMAC_FIRST) outputlen = inputlen = enc_dlen; cpt_inst_w4.s.param1 = encr_data_len; cpt_inst_w4.s.param2 = auth_data_len; /* * In cn9k, cn10k since we have a limitation of * IV & Offset control word not part of instruction * and need to be part of Data Buffer, we check if * head room is there and then only do the Direct mode processing */ if (likely((flags & ROC_SE_SINGLE_BUF_INPLACE) && (flags & ROC_SE_SINGLE_BUF_HEADROOM))) { void *dm_vaddr = fc_params->bufs[0].vaddr; /* Use Direct mode */ offset_vaddr = (uint8_t *)dm_vaddr - ROC_SE_OFF_CTRL_LEN - iv_len; inst->dptr = (uint64_t)offset_vaddr; /* RPTR should just exclude offset control word */ inst->rptr = (uint64_t)dm_vaddr - iv_len; cpt_inst_w4.s.dlen = inputlen + ROC_SE_OFF_CTRL_LEN; if (likely(iv_len)) { uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN); uint64_t *src = fc_params->iv_buf; dest[0] = src[0]; dest[1] = src[1]; } } else { void *m_vaddr = fc_params->meta_buf.vaddr; uint32_t g_size_bytes, s_size_bytes; struct roc_se_sglist_comp *gather_comp; struct roc_se_sglist_comp *scatter_comp; uint8_t *in_buffer; uint8_t i = 0; /* This falls under strict SG mode */ offset_vaddr = m_vaddr; size = ROC_SE_OFF_CTRL_LEN + iv_len; m_vaddr = (uint8_t *)m_vaddr + size; cpt_inst_w4.s.opcode_major |= (uint64_t)ROC_SE_DMA_MODE; if (likely(iv_len)) { uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN); uint64_t *src = fc_params->iv_buf; dest[0] = src[0]; dest[1] = src[1]; } /* DPTR has SG list */ in_buffer = m_vaddr; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; /* TODO Add error check if space will be sufficient */ gather_comp = (struct roc_se_sglist_comp *)((uint8_t *)m_vaddr + 8); /* * Input Gather List */ i = 0; /* Offset control word that includes iv */ i = fill_sg_comp(gather_comp, i, (uint64_t)offset_vaddr, ROC_SE_OFF_CTRL_LEN + iv_len); /* Add input data */ if (flags & ROC_SE_VALID_MAC_BUF) { size = inputlen - iv_len - mac_len; if (size) { /* input data only */ if (unlikely(flags & ROC_SE_SINGLE_BUF_INPLACE)) { i = fill_sg_comp_from_buf_min( gather_comp, i, fc_params->bufs, &size); } else { uint32_t aad_offset = aad_len ? passthrough_len : 0; i = fill_sg_comp_from_iov( gather_comp, i, fc_params->src_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { plt_dp_err("Insufficient buffer" " space, size %d needed", size); return -1; } } /* mac data */ if (mac_len) { i = fill_sg_comp_from_buf(gather_comp, i, &fc_params->mac_buf); } } else { /* input data + mac */ size = inputlen - iv_len; if (size) { if (unlikely(flags & ROC_SE_SINGLE_BUF_INPLACE)) { i = fill_sg_comp_from_buf_min( gather_comp, i, fc_params->bufs, &size); } else { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (unlikely(!fc_params->src_iov)) { plt_dp_err("Bad input args"); return -1; } i = fill_sg_comp_from_iov( gather_comp, i, fc_params->src_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { plt_dp_err("Insufficient buffer" " space, size %d needed", size); return -1; } } } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp); /* * Output Scatter List */ i = 0; scatter_comp = (struct roc_se_sglist_comp *)((uint8_t *)gather_comp + g_size_bytes); /* Add iv */ if (iv_len) { i = fill_sg_comp(scatter_comp, i, (uint64_t)offset_vaddr + ROC_SE_OFF_CTRL_LEN, iv_len); } /* Add output data */ size = outputlen - iv_len; if (size) { if (unlikely(flags & ROC_SE_SINGLE_BUF_INPLACE)) { /* handle single buffer here */ i = fill_sg_comp_from_buf_min(scatter_comp, i, fc_params->bufs, &size); } else { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (unlikely(!fc_params->dst_iov)) { plt_dp_err("Bad input args"); return -1; } i = fill_sg_comp_from_iov( scatter_comp, i, fc_params->dst_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp); size = g_size_bytes + s_size_bytes + ROC_SE_SG_LIST_HDR_SIZE; /* This is DPTR len in case of SG mode */ cpt_inst_w4.s.dlen = size; inst->dptr = (uint64_t)in_buffer; } if (unlikely((encr_offset >> 16) || (iv_offset >> 8) || (auth_offset >> 8))) { plt_dp_err("Offset not supported"); plt_dp_err("enc_offset: %d", encr_offset); plt_dp_err("iv_offset : %d", iv_offset); plt_dp_err("auth_offset: %d", auth_offset); return -1; } *(uint64_t *)offset_vaddr = rte_cpu_to_be_64( ((uint64_t)encr_offset << 16) | ((uint64_t)iv_offset << 8) | ((uint64_t)auth_offset)); inst->w4.u64 = cpt_inst_w4.u64; return 0; } static __rte_always_inline int cpt_zuc_snow3g_prep(uint32_t req_flags, uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *params, struct cpt_inst_s *inst) { uint32_t size; int32_t inputlen, outputlen; struct roc_se_ctx *se_ctx; uint32_t mac_len = 0; uint8_t pdcp_alg_type; uint32_t encr_offset, auth_offset; uint32_t encr_data_len, auth_data_len; int flags, iv_len; uint64_t offset_ctrl; uint64_t *offset_vaddr; uint8_t *iv_s; uint8_t pack_iv = 0; union cpt_inst_w4 cpt_inst_w4; se_ctx = params->ctx_buf.vaddr; flags = se_ctx->zsk_flags; mac_len = se_ctx->mac_len; pdcp_alg_type = se_ctx->pdcp_alg_type; cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_ZUC_SNOW3G; cpt_inst_w4.s.opcode_minor = se_ctx->template_w4.s.opcode_minor; if (flags == 0x1) { iv_s = params->auth_iv_buf; iv_len = params->auth_iv_len; if (iv_len == 25) { roc_se_zuc_bytes_swap(iv_s, iv_len); iv_len -= 2; pack_iv = 1; } /* * Microcode expects offsets in bytes * TODO: Rounding off */ auth_data_len = ROC_SE_AUTH_DLEN(d_lens); /* EIA3 or UIA2 */ auth_offset = ROC_SE_AUTH_OFFSET(d_offs); auth_offset = auth_offset / 8; /* consider iv len */ auth_offset += iv_len; inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8); outputlen = mac_len; offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset); encr_data_len = 0; encr_offset = 0; } else { iv_s = params->iv_buf; iv_len = params->cipher_iv_len; if (iv_len == 25) { roc_se_zuc_bytes_swap(iv_s, iv_len); iv_len -= 2; pack_iv = 1; } /* EEA3 or UEA2 */ /* * Microcode expects offsets in bytes * TODO: Rounding off */ encr_data_len = ROC_SE_ENCR_DLEN(d_lens); encr_offset = ROC_SE_ENCR_OFFSET(d_offs); encr_offset = encr_offset / 8; /* consider iv len */ encr_offset += iv_len; inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8); outputlen = inputlen; /* iv offset is 0 */ offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16); auth_data_len = 0; auth_offset = 0; } if (unlikely((encr_offset >> 16) || (auth_offset >> 8))) { plt_dp_err("Offset not supported"); plt_dp_err("enc_offset: %d", encr_offset); plt_dp_err("auth_offset: %d", auth_offset); return -1; } /* * GP op header, lengths are expected in bits. */ cpt_inst_w4.s.param1 = encr_data_len; cpt_inst_w4.s.param2 = auth_data_len; /* * In cn9k, cn10k since we have a limitation of * IV & Offset control word not part of instruction * and need to be part of Data Buffer, we check if * head room is there and then only do the Direct mode processing */ if (likely((req_flags & ROC_SE_SINGLE_BUF_INPLACE) && (req_flags & ROC_SE_SINGLE_BUF_HEADROOM))) { void *dm_vaddr = params->bufs[0].vaddr; /* Use Direct mode */ offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr - ROC_SE_OFF_CTRL_LEN - iv_len); /* DPTR */ inst->dptr = (uint64_t)offset_vaddr; /* RPTR should just exclude offset control word */ inst->rptr = (uint64_t)dm_vaddr - iv_len; cpt_inst_w4.s.dlen = inputlen + ROC_SE_OFF_CTRL_LEN; uint8_t *iv_d = ((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN); pdcp_iv_copy(iv_d, iv_s, pdcp_alg_type, pack_iv); *offset_vaddr = offset_ctrl; } else { void *m_vaddr = params->meta_buf.vaddr; uint32_t i, g_size_bytes, s_size_bytes; struct roc_se_sglist_comp *gather_comp; struct roc_se_sglist_comp *scatter_comp; uint8_t *in_buffer; uint8_t *iv_d; /* save space for iv */ offset_vaddr = m_vaddr; m_vaddr = (uint8_t *)m_vaddr + ROC_SE_OFF_CTRL_LEN + RTE_ALIGN_CEIL(iv_len, 8); cpt_inst_w4.s.opcode_major |= (uint64_t)ROC_SE_DMA_MODE; /* DPTR has SG list */ in_buffer = m_vaddr; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; /* TODO Add error check if space will be sufficient */ gather_comp = (struct roc_se_sglist_comp *)((uint8_t *)m_vaddr + 8); /* * Input Gather List */ i = 0; /* Offset control word followed by iv */ i = fill_sg_comp(gather_comp, i, (uint64_t)offset_vaddr, ROC_SE_OFF_CTRL_LEN + iv_len); /* iv offset is 0 */ *offset_vaddr = offset_ctrl; iv_d = ((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN); pdcp_iv_copy(iv_d, iv_s, pdcp_alg_type, pack_iv); /* input data */ size = inputlen - iv_len; if (size) { i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp); /* * Output Scatter List */ i = 0; scatter_comp = (struct roc_se_sglist_comp *)((uint8_t *)gather_comp + g_size_bytes); if (flags == 0x1) { /* IV in SLIST only for EEA3 & UEA2 */ iv_len = 0; } if (iv_len) { i = fill_sg_comp(scatter_comp, i, (uint64_t)offset_vaddr + ROC_SE_OFF_CTRL_LEN, iv_len); } /* Add output data */ if (req_flags & ROC_SE_VALID_MAC_BUF) { size = outputlen - iv_len - mac_len; if (size) { i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } /* mac data */ if (mac_len) { i = fill_sg_comp_from_buf(scatter_comp, i, ¶ms->mac_buf); } } else { /* Output including mac */ size = outputlen - iv_len; if (size) { i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp); size = g_size_bytes + s_size_bytes + ROC_SE_SG_LIST_HDR_SIZE; /* This is DPTR len in case of SG mode */ cpt_inst_w4.s.dlen = size; inst->dptr = (uint64_t)in_buffer; } inst->w4.u64 = cpt_inst_w4.u64; return 0; } static __rte_always_inline int cpt_kasumi_enc_prep(uint32_t req_flags, uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *params, struct cpt_inst_s *inst) { void *m_vaddr = params->meta_buf.vaddr; uint32_t size; int32_t inputlen = 0, outputlen = 0; struct roc_se_ctx *se_ctx; uint32_t mac_len = 0; uint8_t i = 0; uint32_t encr_offset, auth_offset; uint32_t encr_data_len, auth_data_len; int flags; uint8_t *iv_s, *iv_d, iv_len = 8; uint8_t dir = 0; uint64_t *offset_vaddr; union cpt_inst_w4 cpt_inst_w4; uint8_t *in_buffer; uint32_t g_size_bytes, s_size_bytes; struct roc_se_sglist_comp *gather_comp; struct roc_se_sglist_comp *scatter_comp; encr_offset = ROC_SE_ENCR_OFFSET(d_offs) / 8; auth_offset = ROC_SE_AUTH_OFFSET(d_offs) / 8; encr_data_len = ROC_SE_ENCR_DLEN(d_lens); auth_data_len = ROC_SE_AUTH_DLEN(d_lens); se_ctx = params->ctx_buf.vaddr; flags = se_ctx->zsk_flags; mac_len = se_ctx->mac_len; if (flags == 0x0) iv_s = params->iv_buf; else iv_s = params->auth_iv_buf; dir = iv_s[8] & 0x1; cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_KASUMI | ROC_SE_DMA_MODE; /* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */ cpt_inst_w4.s.opcode_minor = ((1 << 6) | (se_ctx->k_ecb << 5) | (dir << 4) | (0 << 3) | (flags & 0x7)); /* * GP op header, lengths are expected in bits. */ cpt_inst_w4.s.param1 = encr_data_len; cpt_inst_w4.s.param2 = auth_data_len; /* consider iv len */ if (flags == 0x0) { encr_offset += iv_len; auth_offset += iv_len; } /* save space for offset ctrl and iv */ offset_vaddr = m_vaddr; m_vaddr = (uint8_t *)m_vaddr + ROC_SE_OFF_CTRL_LEN + iv_len; /* DPTR has SG list */ in_buffer = m_vaddr; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; /* TODO Add error check if space will be sufficient */ gather_comp = (struct roc_se_sglist_comp *)((uint8_t *)m_vaddr + 8); /* * Input Gather List */ i = 0; /* Offset control word followed by iv */ if (flags == 0x0) { inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8); outputlen = inputlen; /* iv offset is 0 */ *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16); if (unlikely((encr_offset >> 16))) { plt_dp_err("Offset not supported"); plt_dp_err("enc_offset: %d", encr_offset); return -1; } } else { inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8); outputlen = mac_len; /* iv offset is 0 */ *offset_vaddr = rte_cpu_to_be_64((uint64_t)auth_offset); if (unlikely((auth_offset >> 8))) { plt_dp_err("Offset not supported"); plt_dp_err("auth_offset: %d", auth_offset); return -1; } } i = fill_sg_comp(gather_comp, i, (uint64_t)offset_vaddr, ROC_SE_OFF_CTRL_LEN + iv_len); /* IV */ iv_d = (uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN; memcpy(iv_d, iv_s, iv_len); /* input data */ size = inputlen - iv_len; if (size) { i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp); /* * Output Scatter List */ i = 0; scatter_comp = (struct roc_se_sglist_comp *)((uint8_t *)gather_comp + g_size_bytes); if (flags == 0x1) { /* IV in SLIST only for F8 */ iv_len = 0; } /* IV */ if (iv_len) { i = fill_sg_comp(scatter_comp, i, (uint64_t)offset_vaddr + ROC_SE_OFF_CTRL_LEN, iv_len); } /* Add output data */ if (req_flags & ROC_SE_VALID_MAC_BUF) { size = outputlen - iv_len - mac_len; if (size) { i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } /* mac data */ if (mac_len) { i = fill_sg_comp_from_buf(scatter_comp, i, ¶ms->mac_buf); } } else { /* Output including mac */ size = outputlen - iv_len; if (size) { i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp); size = g_size_bytes + s_size_bytes + ROC_SE_SG_LIST_HDR_SIZE; /* This is DPTR len in case of SG mode */ cpt_inst_w4.s.dlen = size; inst->dptr = (uint64_t)in_buffer; inst->w4.u64 = cpt_inst_w4.u64; return 0; } static __rte_always_inline int cpt_kasumi_dec_prep(uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *params, struct cpt_inst_s *inst) { void *m_vaddr = params->meta_buf.vaddr; uint32_t size; int32_t inputlen = 0, outputlen; struct roc_se_ctx *se_ctx; uint8_t i = 0, iv_len = 8; uint32_t encr_offset; uint32_t encr_data_len; int flags; uint8_t dir = 0; uint64_t *offset_vaddr; union cpt_inst_w4 cpt_inst_w4; uint8_t *in_buffer; uint32_t g_size_bytes, s_size_bytes; struct roc_se_sglist_comp *gather_comp; struct roc_se_sglist_comp *scatter_comp; encr_offset = ROC_SE_ENCR_OFFSET(d_offs) / 8; encr_data_len = ROC_SE_ENCR_DLEN(d_lens); se_ctx = params->ctx_buf.vaddr; flags = se_ctx->zsk_flags; cpt_inst_w4.u64 = 0; cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_KASUMI | ROC_SE_DMA_MODE; /* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */ cpt_inst_w4.s.opcode_minor = ((1 << 6) | (se_ctx->k_ecb << 5) | (dir << 4) | (0 << 3) | (flags & 0x7)); /* * GP op header, lengths are expected in bits. */ cpt_inst_w4.s.param1 = encr_data_len; /* consider iv len */ encr_offset += iv_len; inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8); outputlen = inputlen; /* save space for offset ctrl & iv */ offset_vaddr = m_vaddr; m_vaddr = (uint8_t *)m_vaddr + ROC_SE_OFF_CTRL_LEN + iv_len; /* DPTR has SG list */ in_buffer = m_vaddr; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; /* TODO Add error check if space will be sufficient */ gather_comp = (struct roc_se_sglist_comp *)((uint8_t *)m_vaddr + 8); /* * Input Gather List */ i = 0; /* Offset control word followed by iv */ *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16); if (unlikely((encr_offset >> 16))) { plt_dp_err("Offset not supported"); plt_dp_err("enc_offset: %d", encr_offset); return -1; } i = fill_sg_comp(gather_comp, i, (uint64_t)offset_vaddr, ROC_SE_OFF_CTRL_LEN + iv_len); /* IV */ memcpy((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN, params->iv_buf, iv_len); /* Add input data */ size = inputlen - iv_len; if (size) { i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp); /* * Output Scatter List */ i = 0; scatter_comp = (struct roc_se_sglist_comp *)((uint8_t *)gather_comp + g_size_bytes); /* IV */ i = fill_sg_comp(scatter_comp, i, (uint64_t)offset_vaddr + ROC_SE_OFF_CTRL_LEN, iv_len); /* Add output data */ size = outputlen - iv_len; if (size) { i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp); size = g_size_bytes + s_size_bytes + ROC_SE_SG_LIST_HDR_SIZE; /* This is DPTR len in case of SG mode */ cpt_inst_w4.s.dlen = size; inst->dptr = (uint64_t)in_buffer; inst->w4.u64 = cpt_inst_w4.u64; return 0; } static __rte_always_inline int cpt_fc_dec_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *fc_params, struct cpt_inst_s *inst) { struct roc_se_ctx *ctx = fc_params->ctx_buf.vaddr; uint8_t fc_type; int ret = -1; fc_type = ctx->fc_type; if (likely(fc_type == ROC_SE_FC_GEN)) { ret = cpt_dec_hmac_prep(flags, d_offs, d_lens, fc_params, inst); } else if (fc_type == ROC_SE_PDCP) { ret = cpt_zuc_snow3g_prep(flags, d_offs, d_lens, fc_params, inst); } else if (fc_type == ROC_SE_KASUMI) { ret = cpt_kasumi_dec_prep(d_offs, d_lens, fc_params, inst); } /* * For AUTH_ONLY case, * MC only supports digest generation and verification * should be done in software by memcmp() */ return ret; } static __rte_always_inline int cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *fc_params, struct cpt_inst_s *inst) { struct roc_se_ctx *ctx = fc_params->ctx_buf.vaddr; uint8_t fc_type; int ret = -1; fc_type = ctx->fc_type; if (likely(fc_type == ROC_SE_FC_GEN)) { ret = cpt_enc_hmac_prep(flags, d_offs, d_lens, fc_params, inst); } else if (fc_type == ROC_SE_PDCP) { ret = cpt_zuc_snow3g_prep(flags, d_offs, d_lens, fc_params, inst); } else if (fc_type == ROC_SE_KASUMI) { ret = cpt_kasumi_enc_prep(flags, d_offs, d_lens, fc_params, inst); } else if (fc_type == ROC_SE_HASH_HMAC) { ret = cpt_digest_gen_prep(flags, d_lens, fc_params, inst); } return ret; } static __rte_always_inline int fill_sess_aead(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess) { struct rte_crypto_aead_xform *aead_form; roc_se_cipher_type enc_type = 0; /* NULL Cipher type */ roc_se_auth_type auth_type = 0; /* NULL Auth type */ uint32_t cipher_key_len = 0; uint8_t aes_gcm = 0; aead_form = &xform->aead; if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT) { sess->cpt_op |= ROC_SE_OP_CIPHER_ENCRYPT; sess->cpt_op |= ROC_SE_OP_AUTH_GENERATE; } else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT) { sess->cpt_op |= ROC_SE_OP_CIPHER_DECRYPT; sess->cpt_op |= ROC_SE_OP_AUTH_VERIFY; } else { plt_dp_err("Unknown aead operation\n"); return -1; } switch (aead_form->algo) { case RTE_CRYPTO_AEAD_AES_GCM: enc_type = ROC_SE_AES_GCM; cipher_key_len = 16; aes_gcm = 1; break; case RTE_CRYPTO_AEAD_AES_CCM: plt_dp_err("Crypto: Unsupported cipher algo %u", aead_form->algo); return -1; case RTE_CRYPTO_AEAD_CHACHA20_POLY1305: enc_type = ROC_SE_CHACHA20; auth_type = ROC_SE_POLY1305; cipher_key_len = 32; sess->chacha_poly = 1; break; default: plt_dp_err("Crypto: Undefined cipher algo %u specified", aead_form->algo); return -1; } if (aead_form->key.length < cipher_key_len) { plt_dp_err("Invalid cipher params keylen %u", aead_form->key.length); return -1; } sess->zsk_flag = 0; sess->aes_gcm = aes_gcm; sess->mac_len = aead_form->digest_length; sess->iv_offset = aead_form->iv.offset; sess->iv_length = aead_form->iv.length; sess->aad_length = aead_form->aad_length; if (unlikely(roc_se_ciph_key_set(&sess->roc_se_ctx, enc_type, aead_form->key.data, aead_form->key.length, NULL))) return -1; if (unlikely(roc_se_auth_key_set(&sess->roc_se_ctx, auth_type, NULL, 0, aead_form->digest_length))) return -1; return 0; } static __rte_always_inline int fill_sess_cipher(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess) { struct rte_crypto_cipher_xform *c_form; roc_se_cipher_type enc_type = 0; /* NULL Cipher type */ uint32_t cipher_key_len = 0; uint8_t zsk_flag = 0, aes_ctr = 0, is_null = 0; c_form = &xform->cipher; if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) sess->cpt_op |= ROC_SE_OP_CIPHER_ENCRYPT; else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT) { sess->cpt_op |= ROC_SE_OP_CIPHER_DECRYPT; if (xform->next != NULL && xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) { /* Perform decryption followed by auth verify */ sess->roc_se_ctx.template_w4.s.opcode_minor = ROC_SE_FC_MINOR_OP_HMAC_FIRST; } } else { plt_dp_err("Unknown cipher operation\n"); return -1; } switch (c_form->algo) { case RTE_CRYPTO_CIPHER_AES_CBC: enc_type = ROC_SE_AES_CBC; cipher_key_len = 16; break; case RTE_CRYPTO_CIPHER_3DES_CBC: enc_type = ROC_SE_DES3_CBC; cipher_key_len = 24; break; case RTE_CRYPTO_CIPHER_DES_CBC: /* DES is implemented using 3DES in hardware */ enc_type = ROC_SE_DES3_CBC; cipher_key_len = 8; break; case RTE_CRYPTO_CIPHER_AES_CTR: enc_type = ROC_SE_AES_CTR; cipher_key_len = 16; aes_ctr = 1; break; case RTE_CRYPTO_CIPHER_NULL: enc_type = 0; is_null = 1; break; case RTE_CRYPTO_CIPHER_KASUMI_F8: enc_type = ROC_SE_KASUMI_F8_ECB; cipher_key_len = 16; zsk_flag = ROC_SE_K_F8; break; case RTE_CRYPTO_CIPHER_SNOW3G_UEA2: enc_type = ROC_SE_SNOW3G_UEA2; cipher_key_len = 16; zsk_flag = ROC_SE_ZS_EA; break; case RTE_CRYPTO_CIPHER_ZUC_EEA3: enc_type = ROC_SE_ZUC_EEA3; cipher_key_len = c_form->key.length; zsk_flag = ROC_SE_ZS_EA; break; case RTE_CRYPTO_CIPHER_AES_XTS: enc_type = ROC_SE_AES_XTS; cipher_key_len = 16; break; case RTE_CRYPTO_CIPHER_3DES_ECB: enc_type = ROC_SE_DES3_ECB; cipher_key_len = 24; break; case RTE_CRYPTO_CIPHER_AES_ECB: enc_type = ROC_SE_AES_ECB; cipher_key_len = 16; break; case RTE_CRYPTO_CIPHER_3DES_CTR: case RTE_CRYPTO_CIPHER_AES_F8: case RTE_CRYPTO_CIPHER_ARC4: plt_dp_err("Crypto: Unsupported cipher algo %u", c_form->algo); return -1; default: plt_dp_err("Crypto: Undefined cipher algo %u specified", c_form->algo); return -1; } if (c_form->key.length < cipher_key_len) { plt_dp_err("Invalid cipher params keylen %u", c_form->key.length); return -1; } sess->zsk_flag = zsk_flag; sess->aes_gcm = 0; sess->aes_ctr = aes_ctr; sess->iv_offset = c_form->iv.offset; sess->iv_length = c_form->iv.length; sess->is_null = is_null; if (unlikely(roc_se_ciph_key_set(&sess->roc_se_ctx, enc_type, c_form->key.data, c_form->key.length, NULL))) return -1; if ((enc_type >= ROC_SE_ZUC_EEA3) && (enc_type <= ROC_SE_AES_CTR_EEA2)) roc_se_ctx_swap(&sess->roc_se_ctx); return 0; } static __rte_always_inline int fill_sess_auth(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess) { struct rte_crypto_auth_xform *a_form; roc_se_auth_type auth_type = 0; /* NULL Auth type */ uint8_t zsk_flag = 0, aes_gcm = 0, is_null = 0; if (xform->next != NULL && xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER && xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { /* Perform auth followed by encryption */ sess->roc_se_ctx.template_w4.s.opcode_minor = ROC_SE_FC_MINOR_OP_HMAC_FIRST; } a_form = &xform->auth; if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY) sess->cpt_op |= ROC_SE_OP_AUTH_VERIFY; else if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE) sess->cpt_op |= ROC_SE_OP_AUTH_GENERATE; else { plt_dp_err("Unknown auth operation"); return -1; } switch (a_form->algo) { case RTE_CRYPTO_AUTH_SHA1_HMAC: /* Fall through */ case RTE_CRYPTO_AUTH_SHA1: auth_type = ROC_SE_SHA1_TYPE; break; case RTE_CRYPTO_AUTH_SHA256_HMAC: case RTE_CRYPTO_AUTH_SHA256: auth_type = ROC_SE_SHA2_SHA256; break; case RTE_CRYPTO_AUTH_SHA512_HMAC: case RTE_CRYPTO_AUTH_SHA512: auth_type = ROC_SE_SHA2_SHA512; break; case RTE_CRYPTO_AUTH_AES_GMAC: auth_type = ROC_SE_GMAC_TYPE; aes_gcm = 1; break; case RTE_CRYPTO_AUTH_SHA224_HMAC: case RTE_CRYPTO_AUTH_SHA224: auth_type = ROC_SE_SHA2_SHA224; break; case RTE_CRYPTO_AUTH_SHA384_HMAC: case RTE_CRYPTO_AUTH_SHA384: auth_type = ROC_SE_SHA2_SHA384; break; case RTE_CRYPTO_AUTH_MD5_HMAC: case RTE_CRYPTO_AUTH_MD5: auth_type = ROC_SE_MD5_TYPE; break; case RTE_CRYPTO_AUTH_KASUMI_F9: auth_type = ROC_SE_KASUMI_F9_ECB; /* * Indicate that direction needs to be taken out * from end of src */ zsk_flag = ROC_SE_K_F9; break; case RTE_CRYPTO_AUTH_SNOW3G_UIA2: auth_type = ROC_SE_SNOW3G_UIA2; zsk_flag = ROC_SE_ZS_IA; break; case RTE_CRYPTO_AUTH_ZUC_EIA3: auth_type = ROC_SE_ZUC_EIA3; zsk_flag = ROC_SE_ZS_IA; break; case RTE_CRYPTO_AUTH_NULL: auth_type = 0; is_null = 1; break; case RTE_CRYPTO_AUTH_AES_XCBC_MAC: case RTE_CRYPTO_AUTH_AES_CMAC: case RTE_CRYPTO_AUTH_AES_CBC_MAC: plt_dp_err("Crypto: Unsupported hash algo %u", a_form->algo); return -1; default: plt_dp_err("Crypto: Undefined Hash algo %u specified", a_form->algo); return -1; } sess->zsk_flag = zsk_flag; sess->aes_gcm = aes_gcm; sess->mac_len = a_form->digest_length; sess->is_null = is_null; if (zsk_flag) { sess->auth_iv_offset = a_form->iv.offset; sess->auth_iv_length = a_form->iv.length; } if (unlikely(roc_se_auth_key_set(&sess->roc_se_ctx, auth_type, a_form->key.data, a_form->key.length, a_form->digest_length))) return -1; if ((auth_type >= ROC_SE_ZUC_EIA3) && (auth_type <= ROC_SE_AES_CMAC_EIA2)) roc_se_ctx_swap(&sess->roc_se_ctx); return 0; } static __rte_always_inline int fill_sess_gmac(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess) { struct rte_crypto_auth_xform *a_form; roc_se_cipher_type enc_type = 0; /* NULL Cipher type */ roc_se_auth_type auth_type = 0; /* NULL Auth type */ a_form = &xform->auth; if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE) sess->cpt_op |= ROC_SE_OP_ENCODE; else if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY) sess->cpt_op |= ROC_SE_OP_DECODE; else { plt_dp_err("Unknown auth operation"); return -1; } switch (a_form->algo) { case RTE_CRYPTO_AUTH_AES_GMAC: enc_type = ROC_SE_AES_GCM; auth_type = ROC_SE_GMAC_TYPE; break; default: plt_dp_err("Crypto: Undefined cipher algo %u specified", a_form->algo); return -1; } sess->zsk_flag = 0; sess->aes_gcm = 0; sess->is_gmac = 1; sess->iv_offset = a_form->iv.offset; sess->iv_length = a_form->iv.length; sess->mac_len = a_form->digest_length; if (unlikely(roc_se_ciph_key_set(&sess->roc_se_ctx, enc_type, a_form->key.data, a_form->key.length, NULL))) return -1; if (unlikely(roc_se_auth_key_set(&sess->roc_se_ctx, auth_type, NULL, 0, a_form->digest_length))) return -1; return 0; } static __rte_always_inline void * alloc_op_meta(struct roc_se_buf_ptr *buf, int32_t len, struct rte_mempool *cpt_meta_pool, struct cpt_inflight_req *infl_req) { uint8_t *mdata; if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0)) return NULL; buf->vaddr = mdata; buf->size = len; infl_req->mdata = mdata; infl_req->op_flags |= CPT_OP_FLAGS_METABUF; return mdata; } static __rte_always_inline uint32_t prepare_iov_from_pkt(struct rte_mbuf *pkt, struct roc_se_iov_ptr *iovec, uint32_t start_offset) { uint16_t index = 0; void *seg_data = NULL; int32_t seg_size = 0; if (!pkt) { iovec->buf_cnt = 0; return 0; } if (!start_offset) { seg_data = rte_pktmbuf_mtod(pkt, void *); seg_size = pkt->data_len; } else { while (start_offset >= pkt->data_len) { start_offset -= pkt->data_len; pkt = pkt->next; } seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset); seg_size = pkt->data_len - start_offset; if (!seg_size) return 1; } /* first seg */ iovec->bufs[index].vaddr = seg_data; iovec->bufs[index].size = seg_size; index++; pkt = pkt->next; while (unlikely(pkt != NULL)) { seg_data = rte_pktmbuf_mtod(pkt, void *); seg_size = pkt->data_len; if (!seg_size) break; iovec->bufs[index].vaddr = seg_data; iovec->bufs[index].size = seg_size; index++; pkt = pkt->next; } iovec->buf_cnt = index; return 0; } static __rte_always_inline uint32_t prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt, struct roc_se_fc_params *param, uint32_t *flags) { uint16_t index = 0; void *seg_data = NULL; uint32_t seg_size = 0; struct roc_se_iov_ptr *iovec; seg_data = rte_pktmbuf_mtod(pkt, void *); seg_size = pkt->data_len; /* first seg */ if (likely(!pkt->next)) { uint32_t headroom; *flags |= ROC_SE_SINGLE_BUF_INPLACE; headroom = rte_pktmbuf_headroom(pkt); if (likely(headroom >= 24)) *flags |= ROC_SE_SINGLE_BUF_HEADROOM; param->bufs[0].vaddr = seg_data; param->bufs[0].size = seg_size; return 0; } iovec = param->src_iov; iovec->bufs[index].vaddr = seg_data; iovec->bufs[index].size = seg_size; index++; pkt = pkt->next; while (unlikely(pkt != NULL)) { seg_data = rte_pktmbuf_mtod(pkt, void *); seg_size = pkt->data_len; if (!seg_size) break; iovec->bufs[index].vaddr = seg_data; iovec->bufs[index].size = seg_size; index++; pkt = pkt->next; } iovec->buf_cnt = index; return 0; } static __rte_always_inline int fill_fc_params(struct rte_crypto_op *cop, struct cnxk_se_sess *sess, struct cpt_qp_meta_info *m_info, struct cpt_inflight_req *infl_req, struct cpt_inst_s *inst) { struct roc_se_ctx *ctx = &sess->roc_se_ctx; uint8_t op_minor = ctx->template_w4.s.opcode_minor; struct rte_crypto_sym_op *sym_op = cop->sym; void *mdata = NULL; uint32_t mc_hash_off; uint32_t flags = 0; uint64_t d_offs, d_lens; struct rte_mbuf *m_src, *m_dst; uint8_t cpt_op = sess->cpt_op; #ifdef CPT_ALWAYS_USE_SG_MODE uint8_t inplace = 0; #else uint8_t inplace = 1; #endif struct roc_se_fc_params fc_params; char src[SRC_IOV_SIZE]; char dst[SRC_IOV_SIZE]; uint32_t iv_buf[4]; int ret; fc_params.cipher_iv_len = sess->iv_length; fc_params.auth_iv_len = sess->auth_iv_length; if (likely(sess->iv_length)) { flags |= ROC_SE_VALID_IV_BUF; fc_params.iv_buf = rte_crypto_op_ctod_offset(cop, uint8_t *, sess->iv_offset); if (sess->aes_ctr && unlikely(sess->iv_length != 16)) { memcpy((uint8_t *)iv_buf, rte_crypto_op_ctod_offset(cop, uint8_t *, sess->iv_offset), 12); iv_buf[3] = rte_cpu_to_be_32(0x1); fc_params.iv_buf = iv_buf; } } if (sess->zsk_flag) { fc_params.auth_iv_buf = rte_crypto_op_ctod_offset( cop, uint8_t *, sess->auth_iv_offset); if (sess->zsk_flag != ROC_SE_ZS_EA) inplace = 0; } m_src = sym_op->m_src; m_dst = sym_op->m_dst; if (sess->aes_gcm || sess->chacha_poly) { uint8_t *salt; uint8_t *aad_data; uint16_t aad_len; d_offs = sym_op->aead.data.offset; d_lens = sym_op->aead.data.length; mc_hash_off = sym_op->aead.data.offset + sym_op->aead.data.length; aad_data = sym_op->aead.aad.data; aad_len = sess->aad_length; if (likely((aad_data + aad_len) == rte_pktmbuf_mtod_offset(m_src, uint8_t *, sym_op->aead.data.offset))) { d_offs = (d_offs - aad_len) | (d_offs << 16); d_lens = (d_lens + aad_len) | (d_lens << 32); } else { fc_params.aad_buf.vaddr = sym_op->aead.aad.data; fc_params.aad_buf.size = aad_len; flags |= ROC_SE_VALID_AAD_BUF; inplace = 0; d_offs = d_offs << 16; d_lens = d_lens << 32; } salt = fc_params.iv_buf; if (unlikely(*(uint32_t *)salt != sess->salt)) { cpt_fc_salt_update(&sess->roc_se_ctx, salt); sess->salt = *(uint32_t *)salt; } fc_params.iv_buf = salt + 4; if (likely(sess->mac_len)) { struct rte_mbuf *m = (cpt_op & ROC_SE_OP_ENCODE) ? m_dst : m_src; if (!m) m = m_src; /* hmac immediately following data is best case */ if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) + mc_hash_off != (uint8_t *)sym_op->aead.digest.data)) { flags |= ROC_SE_VALID_MAC_BUF; fc_params.mac_buf.size = sess->mac_len; fc_params.mac_buf.vaddr = sym_op->aead.digest.data; inplace = 0; } } } else { d_offs = sym_op->cipher.data.offset; d_lens = sym_op->cipher.data.length; mc_hash_off = sym_op->cipher.data.offset + sym_op->cipher.data.length; d_offs = (d_offs << 16) | sym_op->auth.data.offset; d_lens = (d_lens << 32) | sym_op->auth.data.length; if (mc_hash_off < (sym_op->auth.data.offset + sym_op->auth.data.length)) { mc_hash_off = (sym_op->auth.data.offset + sym_op->auth.data.length); } /* for gmac, salt should be updated like in gcm */ if (unlikely(sess->is_gmac)) { uint8_t *salt; salt = fc_params.iv_buf; if (unlikely(*(uint32_t *)salt != sess->salt)) { cpt_fc_salt_update(&sess->roc_se_ctx, salt); sess->salt = *(uint32_t *)salt; } fc_params.iv_buf = salt + 4; } if (likely(sess->mac_len)) { struct rte_mbuf *m; m = (cpt_op & ROC_SE_OP_ENCODE) ? m_dst : m_src; if (!m) m = m_src; /* hmac immediately following data is best case */ if (!(op_minor & ROC_SE_FC_MINOR_OP_HMAC_FIRST) && (unlikely(rte_pktmbuf_mtod(m, uint8_t *) + mc_hash_off != (uint8_t *)sym_op->auth.digest.data))) { flags |= ROC_SE_VALID_MAC_BUF; fc_params.mac_buf.size = sess->mac_len; fc_params.mac_buf.vaddr = sym_op->auth.digest.data; inplace = 0; } } } fc_params.ctx_buf.vaddr = &sess->roc_se_ctx; if (!(op_minor & ROC_SE_FC_MINOR_OP_HMAC_FIRST) && unlikely(sess->is_null || sess->cpt_op == ROC_SE_OP_DECODE)) inplace = 0; if (likely(!m_dst && inplace)) { /* Case of single buffer without AAD buf or * separate mac buf in place and * not air crypto */ fc_params.dst_iov = fc_params.src_iov = (void *)src; if (unlikely(prepare_iov_from_pkt_inplace(m_src, &fc_params, &flags))) { plt_dp_err("Prepare inplace src iov failed"); ret = -EINVAL; goto err_exit; } } else { /* Out of place processing */ fc_params.src_iov = (void *)src; fc_params.dst_iov = (void *)dst; /* Store SG I/O in the api for reuse */ if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) { plt_dp_err("Prepare src iov failed"); ret = -EINVAL; goto err_exit; } if (unlikely(m_dst != NULL)) { uint32_t pkt_len; /* Try to make room as much as src has */ pkt_len = rte_pktmbuf_pkt_len(m_dst); if (unlikely(pkt_len < rte_pktmbuf_pkt_len(m_src))) { pkt_len = rte_pktmbuf_pkt_len(m_src) - pkt_len; if (!rte_pktmbuf_append(m_dst, pkt_len)) { plt_dp_err("Not enough space in " "m_dst %p, need %u" " more", m_dst, pkt_len); ret = -EINVAL; goto err_exit; } } if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) { plt_dp_err("Prepare dst iov failed for " "m_dst %p", m_dst); ret = -EINVAL; goto err_exit; } } else { fc_params.dst_iov = (void *)src; } } if (unlikely(!((flags & ROC_SE_SINGLE_BUF_INPLACE) && (flags & ROC_SE_SINGLE_BUF_HEADROOM) && ((ctx->fc_type == ROC_SE_FC_GEN) || (ctx->fc_type == ROC_SE_PDCP))))) { mdata = alloc_op_meta(&fc_params.meta_buf, m_info->mlen, m_info->pool, infl_req); if (mdata == NULL) { plt_dp_err("Error allocating meta buffer for request"); return -ENOMEM; } } /* Finally prepare the instruction */ if (cpt_op & ROC_SE_OP_ENCODE) ret = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, &fc_params, inst); else ret = cpt_fc_dec_hmac_prep(flags, d_offs, d_lens, &fc_params, inst); if (unlikely(ret)) { plt_dp_err("Preparing request failed due to bad input arg"); goto free_mdata_and_exit; } return 0; free_mdata_and_exit: if (infl_req->op_flags & CPT_OP_FLAGS_METABUF) rte_mempool_put(m_info->pool, infl_req->mdata); err_exit: return ret; } static __rte_always_inline void compl_auth_verify(struct rte_crypto_op *op, uint8_t *gen_mac, uint64_t mac_len) { uint8_t *mac; struct rte_crypto_sym_op *sym_op = op->sym; if (sym_op->auth.digest.data) mac = sym_op->auth.digest.data; else mac = rte_pktmbuf_mtod_offset(sym_op->m_src, uint8_t *, sym_op->auth.data.length + sym_op->auth.data.offset); if (!mac) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; return; } if (memcmp(mac, gen_mac, mac_len)) op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; else op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; } static __rte_always_inline void find_kasumif9_direction_and_length(uint8_t *src, uint32_t counter_num_bytes, uint32_t *addr_length_in_bits, uint8_t *addr_direction) { uint8_t found = 0; uint32_t pos; uint8_t last_byte; while (!found && counter_num_bytes > 0) { counter_num_bytes--; if (src[counter_num_bytes] == 0x00) continue; pos = rte_bsf32(src[counter_num_bytes]); if (pos == 7) { if (likely(counter_num_bytes > 0)) { last_byte = src[counter_num_bytes - 1]; *addr_direction = last_byte & 0x1; *addr_length_in_bits = counter_num_bytes * 8 - 1; } } else { last_byte = src[counter_num_bytes]; *addr_direction = (last_byte >> (pos + 1)) & 0x1; *addr_length_in_bits = counter_num_bytes * 8 + (8 - (pos + 2)); } found = 1; } } /* * This handles all auth only except AES_GMAC */ static __rte_always_inline int fill_digest_params(struct rte_crypto_op *cop, struct cnxk_se_sess *sess, struct cpt_qp_meta_info *m_info, struct cpt_inflight_req *infl_req, struct cpt_inst_s *inst) { uint32_t space = 0; struct rte_crypto_sym_op *sym_op = cop->sym; void *mdata; uint32_t auth_range_off; uint32_t flags = 0; uint64_t d_offs = 0, d_lens; struct rte_mbuf *m_src, *m_dst; uint16_t auth_op = sess->cpt_op & ROC_SE_OP_AUTH_MASK; uint16_t mac_len = sess->mac_len; struct roc_se_fc_params params; char src[SRC_IOV_SIZE]; uint8_t iv_buf[16]; int ret; memset(¶ms, 0, sizeof(struct roc_se_fc_params)); m_src = sym_op->m_src; mdata = alloc_op_meta(¶ms.meta_buf, m_info->mlen, m_info->pool, infl_req); if (mdata == NULL) { ret = -ENOMEM; goto err_exit; } auth_range_off = sym_op->auth.data.offset; flags = ROC_SE_VALID_MAC_BUF; params.src_iov = (void *)src; if (unlikely(sess->zsk_flag)) { /* * Since for Zuc, Kasumi, Snow3g offsets are in bits * we will send pass through even for auth only case, * let MC handle it */ d_offs = auth_range_off; auth_range_off = 0; params.auth_iv_len = sess->auth_iv_length; params.auth_iv_buf = rte_crypto_op_ctod_offset( cop, uint8_t *, sess->auth_iv_offset); if (sess->zsk_flag == ROC_SE_K_F9) { uint32_t length_in_bits, num_bytes; uint8_t *src, direction = 0; memcpy(iv_buf, rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *), 8); /* * This is kasumi f9, take direction from * source buffer */ length_in_bits = cop->sym->auth.data.length; num_bytes = (length_in_bits >> 3); src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *); find_kasumif9_direction_and_length( src, num_bytes, &length_in_bits, &direction); length_in_bits -= 64; cop->sym->auth.data.offset += 64; d_offs = cop->sym->auth.data.offset; auth_range_off = d_offs / 8; cop->sym->auth.data.length = length_in_bits; /* Store it at end of auth iv */ iv_buf[8] = direction; params.auth_iv_buf = iv_buf; } } d_lens = sym_op->auth.data.length; params.ctx_buf.vaddr = &sess->roc_se_ctx; if (auth_op == ROC_SE_OP_AUTH_GENERATE) { if (sym_op->auth.digest.data) { /* * Digest to be generated * in separate buffer */ params.mac_buf.size = sess->mac_len; params.mac_buf.vaddr = sym_op->auth.digest.data; } else { uint32_t off = sym_op->auth.data.offset + sym_op->auth.data.length; int32_t dlen, space; m_dst = sym_op->m_dst ? sym_op->m_dst : sym_op->m_src; dlen = rte_pktmbuf_pkt_len(m_dst); space = off + mac_len - dlen; if (space > 0) if (!rte_pktmbuf_append(m_dst, space)) { plt_dp_err("Failed to extend " "mbuf by %uB", space); ret = -EINVAL; goto free_mdata_and_exit; } params.mac_buf.vaddr = rte_pktmbuf_mtod_offset(m_dst, void *, off); params.mac_buf.size = mac_len; } } else { uint64_t *op = mdata; /* Need space for storing generated mac */ space += 2 * sizeof(uint64_t); params.mac_buf.vaddr = (uint8_t *)mdata + space; params.mac_buf.size = mac_len; space += RTE_ALIGN_CEIL(mac_len, 8); op[0] = (uintptr_t)params.mac_buf.vaddr; op[1] = mac_len; infl_req->op_flags |= CPT_OP_FLAGS_AUTH_VERIFY; } params.meta_buf.vaddr = (uint8_t *)mdata + space; params.meta_buf.size -= space; /* Out of place processing */ params.src_iov = (void *)src; /*Store SG I/O in the api for reuse */ if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) { plt_dp_err("Prepare src iov failed"); ret = -EINVAL; goto free_mdata_and_exit; } ret = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, ¶ms, inst); if (ret) goto free_mdata_and_exit; return 0; free_mdata_and_exit: if (infl_req->op_flags & CPT_OP_FLAGS_METABUF) rte_mempool_put(m_info->pool, infl_req->mdata); err_exit: return ret; } #endif /*_CNXK_SE_H_ */