/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Vladimir Medvedkin * Copyright(c) 2019 Intel Corporation */ #include #include #include #include #include #include #include #include #include #define RTE_RIB_VALID_NODE 1 #define RIB6_MAXDEPTH 128 /* Maximum length of a RIB6 name. */ #define RTE_RIB6_NAMESIZE 64 TAILQ_HEAD(rte_rib6_list, rte_tailq_entry); static struct rte_tailq_elem rte_rib6_tailq = { .name = "RTE_RIB6", }; EAL_REGISTER_TAILQ(rte_rib6_tailq) struct rte_rib6_node { struct rte_rib6_node *left; struct rte_rib6_node *right; struct rte_rib6_node *parent; uint64_t nh; uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE]; uint8_t depth; uint8_t flag; __extension__ uint64_t ext[]; }; struct rte_rib6 { char name[RTE_RIB6_NAMESIZE]; struct rte_rib6_node *tree; struct rte_mempool *node_pool; uint32_t cur_nodes; uint32_t cur_routes; int max_nodes; }; static inline bool is_valid_node(const struct rte_rib6_node *node) { return (node->flag & RTE_RIB_VALID_NODE) == RTE_RIB_VALID_NODE; } static inline bool is_right_node(const struct rte_rib6_node *node) { return node->parent->right == node; } /* * Check if ip1 is covered by ip2/depth prefix */ static inline bool is_covered(const uint8_t ip1[RTE_RIB6_IPV6_ADDR_SIZE], const uint8_t ip2[RTE_RIB6_IPV6_ADDR_SIZE], uint8_t depth) { int i; for (i = 0; i < RTE_RIB6_IPV6_ADDR_SIZE; i++) if ((ip1[i] ^ ip2[i]) & get_msk_part(depth, i)) return false; return true; } static inline int get_dir(const uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE], uint8_t depth) { uint8_t index, msk; /* * depth & 127 clamps depth to values that will not * read off the end of ip. * depth is the number of bits deep into ip to traverse, and * is incremented in blocks of 8 (1 byte). This means the last * 3 bits are irrelevant to what the index of ip should be. */ index = (depth & INT8_MAX) / CHAR_BIT; /* * msk is the bitmask used to extract the bit used to decide the * direction of the next step of the binary search. */ msk = 1 << (7 - (depth & 7)); return (ip[index] & msk) != 0; } static inline struct rte_rib6_node * get_nxt_node(struct rte_rib6_node *node, const uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE]) { if (node->depth == RIB6_MAXDEPTH) return NULL; return (get_dir(ip, node->depth)) ? node->right : node->left; } static struct rte_rib6_node * node_alloc(struct rte_rib6 *rib) { struct rte_rib6_node *ent; int ret; ret = rte_mempool_get(rib->node_pool, (void *)&ent); if (unlikely(ret != 0)) return NULL; ++rib->cur_nodes; return ent; } static void node_free(struct rte_rib6 *rib, struct rte_rib6_node *ent) { --rib->cur_nodes; rte_mempool_put(rib->node_pool, ent); } struct rte_rib6_node * rte_rib6_lookup(struct rte_rib6 *rib, const uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE]) { struct rte_rib6_node *cur; struct rte_rib6_node *prev = NULL; if (unlikely(rib == NULL)) { rte_errno = EINVAL; return NULL; } cur = rib->tree; while ((cur != NULL) && is_covered(ip, cur->ip, cur->depth)) { if (is_valid_node(cur)) prev = cur; cur = get_nxt_node(cur, ip); } return prev; } struct rte_rib6_node * rte_rib6_lookup_parent(struct rte_rib6_node *ent) { struct rte_rib6_node *tmp; if (ent == NULL) return NULL; tmp = ent->parent; while ((tmp != NULL) && (!is_valid_node(tmp))) tmp = tmp->parent; return tmp; } struct rte_rib6_node * rte_rib6_lookup_exact(struct rte_rib6 *rib, const uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE], uint8_t depth) { struct rte_rib6_node *cur; uint8_t tmp_ip[RTE_RIB6_IPV6_ADDR_SIZE]; int i; if (unlikely(rib == NULL || ip == NULL || depth > RIB6_MAXDEPTH)) { rte_errno = EINVAL; return NULL; } cur = rib->tree; for (i = 0; i < RTE_RIB6_IPV6_ADDR_SIZE; i++) tmp_ip[i] = ip[i] & get_msk_part(depth, i); while (cur != NULL) { if (rte_rib6_is_equal(cur->ip, tmp_ip) && (cur->depth == depth) && is_valid_node(cur)) return cur; if (!(is_covered(tmp_ip, cur->ip, cur->depth)) || (cur->depth >= depth)) break; cur = get_nxt_node(cur, tmp_ip); } return NULL; } /* * Traverses on subtree and retrieves more specific routes * for a given in args ip/depth prefix * last = NULL means the first invocation */ struct rte_rib6_node * rte_rib6_get_nxt(struct rte_rib6 *rib, const uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE], uint8_t depth, struct rte_rib6_node *last, int flag) { struct rte_rib6_node *tmp, *prev = NULL; uint8_t tmp_ip[RTE_RIB6_IPV6_ADDR_SIZE]; int i; if (unlikely(rib == NULL || ip == NULL || depth > RIB6_MAXDEPTH)) { rte_errno = EINVAL; return NULL; } for (i = 0; i < RTE_RIB6_IPV6_ADDR_SIZE; i++) tmp_ip[i] = ip[i] & get_msk_part(depth, i); if (last == NULL) { tmp = rib->tree; while ((tmp) && (tmp->depth < depth)) tmp = get_nxt_node(tmp, tmp_ip); } else { tmp = last; while ((tmp->parent != NULL) && (is_right_node(tmp) || (tmp->parent->right == NULL))) { tmp = tmp->parent; if (is_valid_node(tmp) && (is_covered(tmp->ip, tmp_ip, depth) && (tmp->depth > depth))) return tmp; } tmp = (tmp->parent != NULL) ? tmp->parent->right : NULL; } while (tmp) { if (is_valid_node(tmp) && (is_covered(tmp->ip, tmp_ip, depth) && (tmp->depth > depth))) { prev = tmp; if (flag == RTE_RIB6_GET_NXT_COVER) return prev; } tmp = (tmp->left != NULL) ? tmp->left : tmp->right; } return prev; } void rte_rib6_remove(struct rte_rib6 *rib, const uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE], uint8_t depth) { struct rte_rib6_node *cur, *prev, *child; cur = rte_rib6_lookup_exact(rib, ip, depth); if (cur == NULL) return; --rib->cur_routes; cur->flag &= ~RTE_RIB_VALID_NODE; while (!is_valid_node(cur)) { if ((cur->left != NULL) && (cur->right != NULL)) return; child = (cur->left == NULL) ? cur->right : cur->left; if (child != NULL) child->parent = cur->parent; if (cur->parent == NULL) { rib->tree = child; node_free(rib, cur); return; } if (cur->parent->left == cur) cur->parent->left = child; else cur->parent->right = child; prev = cur; cur = cur->parent; node_free(rib, prev); } } struct rte_rib6_node * rte_rib6_insert(struct rte_rib6 *rib, const uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE], uint8_t depth) { struct rte_rib6_node **tmp; struct rte_rib6_node *prev = NULL; struct rte_rib6_node *new_node = NULL; struct rte_rib6_node *common_node = NULL; uint8_t common_prefix[RTE_RIB6_IPV6_ADDR_SIZE]; uint8_t tmp_ip[RTE_RIB6_IPV6_ADDR_SIZE]; int i, d; uint8_t common_depth, ip_xor; if (unlikely((rib == NULL || ip == NULL || depth > RIB6_MAXDEPTH))) { rte_errno = EINVAL; return NULL; } tmp = &rib->tree; for (i = 0; i < RTE_RIB6_IPV6_ADDR_SIZE; i++) tmp_ip[i] = ip[i] & get_msk_part(depth, i); new_node = rte_rib6_lookup_exact(rib, tmp_ip, depth); if (new_node != NULL) { rte_errno = EEXIST; return NULL; } new_node = node_alloc(rib); if (new_node == NULL) { rte_errno = ENOMEM; return NULL; } new_node->left = NULL; new_node->right = NULL; new_node->parent = NULL; rte_rib6_copy_addr(new_node->ip, tmp_ip); new_node->depth = depth; new_node->flag = RTE_RIB_VALID_NODE; /* traverse down the tree to find matching node or closest matching */ while (1) { /* insert as the last node in the branch */ if (*tmp == NULL) { *tmp = new_node; new_node->parent = prev; ++rib->cur_routes; return *tmp; } /* * Intermediate node found. * Previous rte_rib6_lookup_exact() returned NULL * but node with proper search criteria is found. * Validate intermediate node and return. */ if (rte_rib6_is_equal(tmp_ip, (*tmp)->ip) && (depth == (*tmp)->depth)) { node_free(rib, new_node); (*tmp)->flag |= RTE_RIB_VALID_NODE; ++rib->cur_routes; return *tmp; } if (!is_covered(tmp_ip, (*tmp)->ip, (*tmp)->depth) || ((*tmp)->depth >= depth)) { break; } prev = *tmp; tmp = (get_dir(tmp_ip, (*tmp)->depth)) ? &(*tmp)->right : &(*tmp)->left; } /* closest node found, new_node should be inserted in the middle */ common_depth = RTE_MIN(depth, (*tmp)->depth); for (i = 0, d = 0; i < RTE_RIB6_IPV6_ADDR_SIZE; i++) { ip_xor = tmp_ip[i] ^ (*tmp)->ip[i]; if (ip_xor == 0) d += 8; else { d += __builtin_clz(ip_xor << 24); break; } } common_depth = RTE_MIN(d, common_depth); for (i = 0; i < RTE_RIB6_IPV6_ADDR_SIZE; i++) common_prefix[i] = tmp_ip[i] & get_msk_part(common_depth, i); if (rte_rib6_is_equal(common_prefix, tmp_ip) && (common_depth == depth)) { /* insert as a parent */ if (get_dir((*tmp)->ip, depth)) new_node->right = *tmp; else new_node->left = *tmp; new_node->parent = (*tmp)->parent; (*tmp)->parent = new_node; *tmp = new_node; } else { /* create intermediate node */ common_node = node_alloc(rib); if (common_node == NULL) { node_free(rib, new_node); rte_errno = ENOMEM; return NULL; } rte_rib6_copy_addr(common_node->ip, common_prefix); common_node->depth = common_depth; common_node->flag = 0; common_node->parent = (*tmp)->parent; new_node->parent = common_node; (*tmp)->parent = common_node; if (get_dir((*tmp)->ip, common_depth) == 1) { common_node->left = new_node; common_node->right = *tmp; } else { common_node->left = *tmp; common_node->right = new_node; } *tmp = common_node; } ++rib->cur_routes; return new_node; } int rte_rib6_get_ip(const struct rte_rib6_node *node, uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE]) { if (unlikely(node == NULL || ip == NULL)) { rte_errno = EINVAL; return -1; } rte_rib6_copy_addr(ip, node->ip); return 0; } int rte_rib6_get_depth(const struct rte_rib6_node *node, uint8_t *depth) { if (unlikely(node == NULL || depth == NULL)) { rte_errno = EINVAL; return -1; } *depth = node->depth; return 0; } void * rte_rib6_get_ext(struct rte_rib6_node *node) { return (node == NULL) ? NULL : &node->ext[0]; } int rte_rib6_get_nh(const struct rte_rib6_node *node, uint64_t *nh) { if (unlikely(node == NULL || nh == NULL)) { rte_errno = EINVAL; return -1; } *nh = node->nh; return 0; } int rte_rib6_set_nh(struct rte_rib6_node *node, uint64_t nh) { if (unlikely(node == NULL)) { rte_errno = EINVAL; return -1; } node->nh = nh; return 0; } struct rte_rib6 * rte_rib6_create(const char *name, int socket_id, const struct rte_rib6_conf *conf) { char mem_name[RTE_RIB6_NAMESIZE]; struct rte_rib6 *rib = NULL; struct rte_tailq_entry *te; struct rte_rib6_list *rib6_list; struct rte_mempool *node_pool; /* Check user arguments. */ if (unlikely(name == NULL || conf == NULL || conf->max_nodes <= 0)) { rte_errno = EINVAL; return NULL; } snprintf(mem_name, sizeof(mem_name), "MP_%s", name); node_pool = rte_mempool_create(mem_name, conf->max_nodes, sizeof(struct rte_rib6_node) + conf->ext_sz, 0, 0, NULL, NULL, NULL, NULL, socket_id, 0); if (node_pool == NULL) { RTE_LOG(ERR, LPM, "Can not allocate mempool for RIB6 %s\n", name); return NULL; } snprintf(mem_name, sizeof(mem_name), "RIB6_%s", name); rib6_list = RTE_TAILQ_CAST(rte_rib6_tailq.head, rte_rib6_list); rte_mcfg_tailq_write_lock(); /* guarantee there's no existing */ TAILQ_FOREACH(te, rib6_list, next) { rib = (struct rte_rib6 *)te->data; if (strncmp(name, rib->name, RTE_RIB6_NAMESIZE) == 0) break; } rib = NULL; if (te != NULL) { rte_errno = EEXIST; goto exit; } /* allocate tailq entry */ te = rte_zmalloc("RIB6_TAILQ_ENTRY", sizeof(*te), 0); if (unlikely(te == NULL)) { RTE_LOG(ERR, LPM, "Can not allocate tailq entry for RIB6 %s\n", name); rte_errno = ENOMEM; goto exit; } /* Allocate memory to store the RIB6 data structures. */ rib = rte_zmalloc_socket(mem_name, sizeof(struct rte_rib6), RTE_CACHE_LINE_SIZE, socket_id); if (unlikely(rib == NULL)) { RTE_LOG(ERR, LPM, "RIB6 %s memory allocation failed\n", name); rte_errno = ENOMEM; goto free_te; } rte_strlcpy(rib->name, name, sizeof(rib->name)); rib->tree = NULL; rib->max_nodes = conf->max_nodes; rib->node_pool = node_pool; te->data = (void *)rib; TAILQ_INSERT_TAIL(rib6_list, te, next); rte_mcfg_tailq_write_unlock(); return rib; free_te: rte_free(te); exit: rte_mcfg_tailq_write_unlock(); rte_mempool_free(node_pool); return NULL; } struct rte_rib6 * rte_rib6_find_existing(const char *name) { struct rte_rib6 *rib = NULL; struct rte_tailq_entry *te; struct rte_rib6_list *rib6_list; if (unlikely(name == NULL)) { rte_errno = EINVAL; return NULL; } rib6_list = RTE_TAILQ_CAST(rte_rib6_tailq.head, rte_rib6_list); rte_mcfg_tailq_read_lock(); TAILQ_FOREACH(te, rib6_list, next) { rib = (struct rte_rib6 *) te->data; if (strncmp(name, rib->name, RTE_RIB6_NAMESIZE) == 0) break; } rte_mcfg_tailq_read_unlock(); if (te == NULL) { rte_errno = ENOENT; return NULL; } return rib; } void rte_rib6_free(struct rte_rib6 *rib) { struct rte_tailq_entry *te; struct rte_rib6_list *rib6_list; struct rte_rib6_node *tmp = NULL; if (unlikely(rib == NULL)) { rte_errno = EINVAL; return; } rib6_list = RTE_TAILQ_CAST(rte_rib6_tailq.head, rte_rib6_list); rte_mcfg_tailq_write_lock(); /* find our tailq entry */ TAILQ_FOREACH(te, rib6_list, next) { if (te->data == (void *)rib) break; } if (te != NULL) TAILQ_REMOVE(rib6_list, te, next); rte_mcfg_tailq_write_unlock(); while ((tmp = rte_rib6_get_nxt(rib, 0, 0, tmp, RTE_RIB6_GET_NXT_ALL)) != NULL) rte_rib6_remove(rib, tmp->ip, tmp->depth); rte_mempool_free(rib->node_pool); rte_free(rib); rte_free(te); }