/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2022 Intel Corporation * Implements SFF-8636 based QSFP+/QSFP28 Diagnostics Memory map. */ #include #include #include "sff_common.h" #include "sff_8636.h" #define SFF_MAX_DESC_SIZE 42 static const uint8_t sff_8636_rx_power_offset[SFF_MAX_CHANNEL_NUM] = { SFF_8636_RX_PWR_1_OFFSET, SFF_8636_RX_PWR_2_OFFSET, SFF_8636_RX_PWR_3_OFFSET, SFF_8636_RX_PWR_4_OFFSET, }; static const uint8_t sff_8636_tx_power_offset[SFF_MAX_CHANNEL_NUM] = { SFF_8636_TX_PWR_1_OFFSET, SFF_8636_TX_PWR_2_OFFSET, SFF_8636_TX_PWR_3_OFFSET, SFF_8636_TX_PWR_4_OFFSET, }; static const uint8_t sff_8636_tx_bias_offset[SFF_MAX_CHANNEL_NUM] = { SFF_8636_TX_BIAS_1_OFFSET, SFF_8636_TX_BIAS_2_OFFSET, SFF_8636_TX_BIAS_3_OFFSET, SFF_8636_TX_BIAS_4_OFFSET, }; static struct sff_8636_aw_flags { const char *str; /* Human-readable string, null at the end */ int offset; /* A2-relative address offset */ uint8_t value; /* Alarm is on if (offset & value) != 0. */ } sff_8636_aw_flags[] = { { "Laser bias current high alarm (Chan 1)", SFF_8636_TX_BIAS_12_AW_OFFSET, (SFF_8636_TX_BIAS_1_HALARM) }, { "Laser bias current low alarm (Chan 1)", SFF_8636_TX_BIAS_12_AW_OFFSET, (SFF_8636_TX_BIAS_1_LALARM) }, { "Laser bias current high warning (Chan 1)", SFF_8636_TX_BIAS_12_AW_OFFSET, (SFF_8636_TX_BIAS_1_HWARN) }, { "Laser bias current low warning (Chan 1)", SFF_8636_TX_BIAS_12_AW_OFFSET, (SFF_8636_TX_BIAS_1_LWARN) }, { "Laser bias current high alarm (Chan 2)", SFF_8636_TX_BIAS_12_AW_OFFSET, (SFF_8636_TX_BIAS_2_HALARM) }, { "Laser bias current low alarm (Chan 2)", SFF_8636_TX_BIAS_12_AW_OFFSET, (SFF_8636_TX_BIAS_2_LALARM) }, { "Laser bias current high warning (Chan 2)", SFF_8636_TX_BIAS_12_AW_OFFSET, (SFF_8636_TX_BIAS_2_HWARN) }, { "Laser bias current low warning (Chan 2)", SFF_8636_TX_BIAS_12_AW_OFFSET, (SFF_8636_TX_BIAS_2_LWARN) }, { "Laser bias current high alarm (Chan 3)", SFF_8636_TX_BIAS_34_AW_OFFSET, (SFF_8636_TX_BIAS_3_HALARM) }, { "Laser bias current low alarm (Chan 3)", SFF_8636_TX_BIAS_34_AW_OFFSET, (SFF_8636_TX_BIAS_3_LALARM) }, { "Laser bias current high warning (Chan 3)", SFF_8636_TX_BIAS_34_AW_OFFSET, (SFF_8636_TX_BIAS_3_HWARN) }, { "Laser bias current low warning (Chan 3)", SFF_8636_TX_BIAS_34_AW_OFFSET, (SFF_8636_TX_BIAS_3_LWARN) }, { "Laser bias current high alarm (Chan 4)", SFF_8636_TX_BIAS_34_AW_OFFSET, (SFF_8636_TX_BIAS_4_HALARM) }, { "Laser bias current low alarm (Chan 4)", SFF_8636_TX_BIAS_34_AW_OFFSET, (SFF_8636_TX_BIAS_4_LALARM) }, { "Laser bias current high warning (Chan 4)", SFF_8636_TX_BIAS_34_AW_OFFSET, (SFF_8636_TX_BIAS_4_HWARN) }, { "Laser bias current low warning (Chan 4)", SFF_8636_TX_BIAS_34_AW_OFFSET, (SFF_8636_TX_BIAS_4_LWARN) }, { "Module temperature high alarm", SFF_8636_TEMP_AW_OFFSET, (SFF_8636_TEMP_HALARM_STATUS) }, { "Module temperature low alarm", SFF_8636_TEMP_AW_OFFSET, (SFF_8636_TEMP_LALARM_STATUS) }, { "Module temperature high warning", SFF_8636_TEMP_AW_OFFSET, (SFF_8636_TEMP_HWARN_STATUS) }, { "Module temperature low warning", SFF_8636_TEMP_AW_OFFSET, (SFF_8636_TEMP_LWARN_STATUS) }, { "Module voltage high alarm", SFF_8636_VCC_AW_OFFSET, (SFF_8636_VCC_HALARM_STATUS) }, { "Module voltage low alarm", SFF_8636_VCC_AW_OFFSET, (SFF_8636_VCC_LALARM_STATUS) }, { "Module voltage high warning", SFF_8636_VCC_AW_OFFSET, (SFF_8636_VCC_HWARN_STATUS) }, { "Module voltage low warning", SFF_8636_VCC_AW_OFFSET, (SFF_8636_VCC_LWARN_STATUS) }, { "Laser tx power high alarm (Channel 1)", SFF_8636_TX_PWR_12_AW_OFFSET, (SFF_8636_TX_PWR_1_HALARM) }, { "Laser tx power low alarm (Channel 1)", SFF_8636_TX_PWR_12_AW_OFFSET, (SFF_8636_TX_PWR_1_LALARM) }, { "Laser tx power high warning (Channel 1)", SFF_8636_TX_PWR_12_AW_OFFSET, (SFF_8636_TX_PWR_1_HWARN) }, { "Laser tx power low warning (Channel 1)", SFF_8636_TX_PWR_12_AW_OFFSET, (SFF_8636_TX_PWR_1_LWARN) }, { "Laser tx power high alarm (Channel 2)", SFF_8636_TX_PWR_12_AW_OFFSET, (SFF_8636_TX_PWR_2_HALARM) }, { "Laser tx power low alarm (Channel 2)", SFF_8636_TX_PWR_12_AW_OFFSET, (SFF_8636_TX_PWR_2_LALARM) }, { "Laser tx power high warning (Channel 2)", SFF_8636_TX_PWR_12_AW_OFFSET, (SFF_8636_TX_PWR_2_HWARN) }, { "Laser tx power low warning (Channel 2)", SFF_8636_TX_PWR_12_AW_OFFSET, (SFF_8636_TX_PWR_2_LWARN) }, { "Laser tx power high alarm (Channel 3)", SFF_8636_TX_PWR_34_AW_OFFSET, (SFF_8636_TX_PWR_3_HALARM) }, { "Laser tx power low alarm (Channel 3)", SFF_8636_TX_PWR_34_AW_OFFSET, (SFF_8636_TX_PWR_3_LALARM) }, { "Laser tx power high warning (Channel 3)", SFF_8636_TX_PWR_34_AW_OFFSET, (SFF_8636_TX_PWR_3_HWARN) }, { "Laser tx power low warning (Channel 3)", SFF_8636_TX_PWR_34_AW_OFFSET, (SFF_8636_TX_PWR_3_LWARN) }, { "Laser tx power high alarm (Channel 4)", SFF_8636_TX_PWR_34_AW_OFFSET, (SFF_8636_TX_PWR_4_HALARM) }, { "Laser tx power low alarm (Channel 4)", SFF_8636_TX_PWR_34_AW_OFFSET, (SFF_8636_TX_PWR_4_LALARM) }, { "Laser tx power high warning (Channel 4)", SFF_8636_TX_PWR_34_AW_OFFSET, (SFF_8636_TX_PWR_4_HWARN) }, { "Laser tx power low warning (Channel 4)", SFF_8636_TX_PWR_34_AW_OFFSET, (SFF_8636_TX_PWR_4_LWARN) }, { "Laser rx power high alarm (Channel 1)", SFF_8636_RX_PWR_12_AW_OFFSET, (SFF_8636_RX_PWR_1_HALARM) }, { "Laser rx power low alarm (Channel 1)", SFF_8636_RX_PWR_12_AW_OFFSET, (SFF_8636_RX_PWR_1_LALARM) }, { "Laser rx power high warning (Channel 1)", SFF_8636_RX_PWR_12_AW_OFFSET, (SFF_8636_RX_PWR_1_HWARN) }, { "Laser rx power low warning (Channel 1)", SFF_8636_RX_PWR_12_AW_OFFSET, (SFF_8636_RX_PWR_1_LWARN) }, { "Laser rx power high alarm (Channel 2)", SFF_8636_RX_PWR_12_AW_OFFSET, (SFF_8636_RX_PWR_2_HALARM) }, { "Laser rx power low alarm (Channel 2)", SFF_8636_RX_PWR_12_AW_OFFSET, (SFF_8636_RX_PWR_2_LALARM) }, { "Laser rx power high warning (Channel 2)", SFF_8636_RX_PWR_12_AW_OFFSET, (SFF_8636_RX_PWR_2_HWARN) }, { "Laser rx power low warning (Channel 2)", SFF_8636_RX_PWR_12_AW_OFFSET, (SFF_8636_RX_PWR_2_LWARN) }, { "Laser rx power high alarm (Channel 3)", SFF_8636_RX_PWR_34_AW_OFFSET, (SFF_8636_RX_PWR_3_HALARM) }, { "Laser rx power low alarm (Channel 3)", SFF_8636_RX_PWR_34_AW_OFFSET, (SFF_8636_RX_PWR_3_LALARM) }, { "Laser rx power high warning (Channel 3)", SFF_8636_RX_PWR_34_AW_OFFSET, (SFF_8636_RX_PWR_3_HWARN) }, { "Laser rx power low warning (Channel 3)", SFF_8636_RX_PWR_34_AW_OFFSET, (SFF_8636_RX_PWR_3_LWARN) }, { "Laser rx power high alarm (Channel 4)", SFF_8636_RX_PWR_34_AW_OFFSET, (SFF_8636_RX_PWR_4_HALARM) }, { "Laser rx power low alarm (Channel 4)", SFF_8636_RX_PWR_34_AW_OFFSET, (SFF_8636_RX_PWR_4_LALARM) }, { "Laser rx power high warning (Channel 4)", SFF_8636_RX_PWR_34_AW_OFFSET, (SFF_8636_RX_PWR_4_HWARN) }, { "Laser rx power low warning (Channel 4)", SFF_8636_RX_PWR_34_AW_OFFSET, (SFF_8636_RX_PWR_4_LWARN) }, { NULL, 0, 0 }, }; static void sff_8636_show_identifier(const uint8_t *data, struct rte_tel_data *d) { sff_8024_show_identifier(data, SFF_8636_ID_OFFSET, d); } static void sff_8636_show_ext_identifier(const uint8_t *data, struct rte_tel_data *d) { static const char *name = "Extended identifier description"; char val_string[SFF_ITEM_VAL_COMPOSE_SIZE]; snprintf(val_string, sizeof(val_string), "0x%02x", data[SFF_8636_EXT_ID_OFFSET]); ssf_add_dict_string(d, "Extended identifier", val_string); switch (data[SFF_8636_EXT_ID_OFFSET] & SFF_8636_EXT_ID_PWR_CLASS_MASK) { case SFF_8636_EXT_ID_PWR_CLASS_1: ssf_add_dict_string(d, name, "1.5W max. Power consumption"); break; case SFF_8636_EXT_ID_PWR_CLASS_2: ssf_add_dict_string(d, name, "2.0W max. Power consumption"); break; case SFF_8636_EXT_ID_PWR_CLASS_3: ssf_add_dict_string(d, name, "2.5W max. Power consumption"); break; case SFF_8636_EXT_ID_PWR_CLASS_4: ssf_add_dict_string(d, name, "3.5W max. Power consumption"); break; } if (data[SFF_8636_EXT_ID_OFFSET] & SFF_8636_EXT_ID_CDR_TX_MASK) ssf_add_dict_string(d, name, "CDR present in TX"); else ssf_add_dict_string(d, name, "No CDR in TX"); if (data[SFF_8636_EXT_ID_OFFSET] & SFF_8636_EXT_ID_CDR_RX_MASK) ssf_add_dict_string(d, name, "CDR present in RX"); else ssf_add_dict_string(d, name, "No CDR in RX"); switch (data[SFF_8636_EXT_ID_OFFSET] & SFF_8636_EXT_ID_EPWR_CLASS_MASK) { case SFF_8636_EXT_ID_PWR_CLASS_LEGACY: snprintf(val_string, sizeof(val_string), "%s", ""); break; case SFF_8636_EXT_ID_PWR_CLASS_5: snprintf(val_string, sizeof(val_string), "%s", "4.0W max. Power consumption, "); break; case SFF_8636_EXT_ID_PWR_CLASS_6: snprintf(val_string, sizeof(val_string), "%s", "4.5W max. Power consumption, "); break; case SFF_8636_EXT_ID_PWR_CLASS_7: snprintf(val_string, sizeof(val_string), "%s", "5.0W max. Power consumption, "); break; } if (data[SFF_8636_PWR_MODE_OFFSET] & SFF_8636_HIGH_PWR_ENABLE) strlcat(val_string, "High Power Class (> 3.5 W) enabled", sizeof(val_string)); else strlcat(val_string, "High Power Class (> 3.5 W) not enabled", sizeof(val_string)); ssf_add_dict_string(d, name, val_string); } static void sff_8636_show_connector(const uint8_t *data, struct rte_tel_data *d) { sff_8024_show_connector(data, SFF_8636_CTOR_OFFSET, d); } static void sff_8636_show_transceiver(const uint8_t *data, struct rte_tel_data *d) { static const char *name = "Transceiver type"; char val_string[SFF_ITEM_VAL_COMPOSE_SIZE]; snprintf(val_string, sizeof(val_string), "0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x", data[SFF_8636_ETHERNET_COMP_OFFSET], data[SFF_8636_SONET_COMP_OFFSET], data[SFF_8636_SAS_COMP_OFFSET], data[SFF_8636_GIGE_COMP_OFFSET], data[SFF_8636_FC_LEN_OFFSET], data[SFF_8636_FC_TECH_OFFSET], data[SFF_8636_FC_TRANS_MEDIA_OFFSET], data[SFF_8636_FC_SPEED_OFFSET]); ssf_add_dict_string(d, "Transceiver codes", val_string); /* 10G/40G Ethernet Compliance Codes */ if (data[SFF_8636_ETHERNET_COMP_OFFSET] & SFF_8636_ETHERNET_10G_LRM) ssf_add_dict_string(d, name, "10G Ethernet: 10G Base-LRM"); if (data[SFF_8636_ETHERNET_COMP_OFFSET] & SFF_8636_ETHERNET_10G_LR) ssf_add_dict_string(d, name, "10G Ethernet: 10G Base-LR"); if (data[SFF_8636_ETHERNET_COMP_OFFSET] & SFF_8636_ETHERNET_10G_SR) ssf_add_dict_string(d, name, "10G Ethernet: 10G Base-SR"); if (data[SFF_8636_ETHERNET_COMP_OFFSET] & SFF_8636_ETHERNET_40G_CR4) ssf_add_dict_string(d, name, "40G Ethernet: 40G Base-CR4"); if (data[SFF_8636_ETHERNET_COMP_OFFSET] & SFF_8636_ETHERNET_40G_SR4) ssf_add_dict_string(d, name, "40G Ethernet: 40G Base-SR4"); if (data[SFF_8636_ETHERNET_COMP_OFFSET] & SFF_8636_ETHERNET_40G_LR4) ssf_add_dict_string(d, name, "40G Ethernet: 40G Base-LR4"); if (data[SFF_8636_ETHERNET_COMP_OFFSET] & SFF_8636_ETHERNET_40G_ACTIVE) ssf_add_dict_string(d, name, "40G Ethernet: 40G Active Cable (XLPPI)"); /* Extended Specification Compliance Codes from SFF-8024 */ if (data[SFF_8636_ETHERNET_COMP_OFFSET] & SFF_8636_ETHERNET_RSRVD) { switch (data[SFF_8636_OPTION_1_OFFSET]) { case SFF_8636_ETHERNET_UNSPECIFIED: ssf_add_dict_string(d, name, "(reserved or unknown)"); break; case SFF_8636_ETHERNET_100G_AOC: ssf_add_dict_string(d, name, "100G Ethernet: 100G AOC or 25GAUI C2M AOC with worst BER of 5x10^(-5)"); break; case SFF_8636_ETHERNET_100G_SR4: ssf_add_dict_string(d, name, "100G Ethernet: 100G Base-SR4 or 25GBase-SR"); break; case SFF_8636_ETHERNET_100G_LR4: ssf_add_dict_string(d, name, "100G Ethernet: 100G Base-LR4"); break; case SFF_8636_ETHERNET_100G_ER4: ssf_add_dict_string(d, name, "100G Ethernet: 100G Base-ER4"); break; case SFF_8636_ETHERNET_100G_SR10: ssf_add_dict_string(d, name, "100G Ethernet: 100G Base-SR10"); break; case SFF_8636_ETHERNET_100G_CWDM4_FEC: ssf_add_dict_string(d, name, "100G Ethernet: 100G CWDM4 MSA with FEC"); break; case SFF_8636_ETHERNET_100G_PSM4: ssf_add_dict_string(d, name, "100G Ethernet: 100G PSM4 Parallel SMF"); break; case SFF_8636_ETHERNET_100G_ACC: ssf_add_dict_string(d, name, "100G Ethernet: 100G ACC or 25GAUI C2M ACC with worst BER of 5x10^(-5)"); break; case SFF_8636_ETHERNET_100G_CWDM4_NO_FEC: ssf_add_dict_string(d, name, "100G Ethernet: 100G CWDM4 MSA without FEC"); break; case SFF_8636_ETHERNET_100G_RSVD1: ssf_add_dict_string(d, name, "(reserved or unknown)"); break; case SFF_8636_ETHERNET_100G_CR4: ssf_add_dict_string(d, name, "100G Ethernet: 100G Base-CR4 or 25G Base-CR CA-L"); break; case SFF_8636_ETHERNET_25G_CR_CA_S: ssf_add_dict_string(d, name, "25G Ethernet: 25G Base-CR CA-S"); break; case SFF_8636_ETHERNET_25G_CR_CA_N: ssf_add_dict_string(d, name, "25G Ethernet: 25G Base-CR CA-N"); break; case SFF_8636_ETHERNET_40G_ER4: ssf_add_dict_string(d, name, "40G Ethernet: 40G Base-ER4"); break; case SFF_8636_ETHERNET_4X10_SR: ssf_add_dict_string(d, name, "4x10G Ethernet: 10G Base-SR"); break; case SFF_8636_ETHERNET_40G_PSM4: ssf_add_dict_string(d, name, "40G Ethernet: 40G PSM4 Parallel SMF"); break; case SFF_8636_ETHERNET_G959_P1I1_2D1: ssf_add_dict_string(d, name, "Ethernet: G959.1 profile P1I1-2D1 (10709 MBd, 2km, 1310nm SM)"); break; case SFF_8636_ETHERNET_G959_P1S1_2D2: ssf_add_dict_string(d, name, "Ethernet: G959.1 profile P1S1-2D2 (10709 MBd, 40km, 1550nm SM)"); break; case SFF_8636_ETHERNET_G959_P1L1_2D2: ssf_add_dict_string(d, name, "Ethernet: G959.1 profile P1L1-2D2 (10709 MBd, 80km, 1550nm SM)"); break; case SFF_8636_ETHERNET_10GT_SFI: ssf_add_dict_string(d, name, "10G Ethernet: 10G Base-T with SFI electrical interface"); break; case SFF_8636_ETHERNET_100G_CLR4: ssf_add_dict_string(d, name, "100G Ethernet: 100G CLR4"); break; case SFF_8636_ETHERNET_100G_AOC2: ssf_add_dict_string(d, name, "100G Ethernet: 100G AOC or 25GAUI C2M AOC with worst BER of 10^(-12)"); break; case SFF_8636_ETHERNET_100G_ACC2: ssf_add_dict_string(d, name, "100G Ethernet: 100G ACC or 25GAUI C2M ACC with worst BER of 10^(-12)"); break; default: ssf_add_dict_string(d, name, "(reserved or unknown)"); break; } } /* SONET Compliance Codes */ if (data[SFF_8636_SONET_COMP_OFFSET] & SFF_8636_SONET_40G_OTN) ssf_add_dict_string(d, name, "40G OTN (OTU3B/OTU3C)"); if (data[SFF_8636_SONET_COMP_OFFSET] & SFF_8636_SONET_OC48_LR) ssf_add_dict_string(d, name, "SONET: OC-48, long reach"); if (data[SFF_8636_SONET_COMP_OFFSET] & SFF_8636_SONET_OC48_IR) ssf_add_dict_string(d, name, "SONET: OC-48, intermediate reach"); if (data[SFF_8636_SONET_COMP_OFFSET] & SFF_8636_SONET_OC48_SR) ssf_add_dict_string(d, name, "SONET: OC-48, short reach"); /* SAS/SATA Compliance Codes */ if (data[SFF_8636_SAS_COMP_OFFSET] & SFF_8636_SAS_6G) ssf_add_dict_string(d, name, "SAS 6.0G"); if (data[SFF_8636_SAS_COMP_OFFSET] & SFF_8636_SAS_3G) ssf_add_dict_string(d, name, "SAS 3.0G"); /* Ethernet Compliance Codes */ if (data[SFF_8636_GIGE_COMP_OFFSET] & SFF_8636_GIGE_1000_BASE_T) ssf_add_dict_string(d, name, "Ethernet: 1000BASE-T"); if (data[SFF_8636_GIGE_COMP_OFFSET] & SFF_8636_GIGE_1000_BASE_CX) ssf_add_dict_string(d, name, "Ethernet: 1000BASE-CX"); if (data[SFF_8636_GIGE_COMP_OFFSET] & SFF_8636_GIGE_1000_BASE_LX) ssf_add_dict_string(d, name, "Ethernet: 1000BASE-LX"); if (data[SFF_8636_GIGE_COMP_OFFSET] & SFF_8636_GIGE_1000_BASE_SX) ssf_add_dict_string(d, name, "Ethernet: 1000BASE-SX"); /* Fibre Channel link length */ if (data[SFF_8636_FC_LEN_OFFSET] & SFF_8636_FC_LEN_VERY_LONG) ssf_add_dict_string(d, name, "FC: very long distance (V)"); if (data[SFF_8636_FC_LEN_OFFSET] & SFF_8636_FC_LEN_SHORT) ssf_add_dict_string(d, name, "FC: short distance (S)"); if (data[SFF_8636_FC_LEN_OFFSET] & SFF_8636_FC_LEN_INT) ssf_add_dict_string(d, name, "FC: intermediate distance (I)"); if (data[SFF_8636_FC_LEN_OFFSET] & SFF_8636_FC_LEN_LONG) ssf_add_dict_string(d, name, "FC: long distance (L)"); if (data[SFF_8636_FC_LEN_OFFSET] & SFF_8636_FC_LEN_MED) ssf_add_dict_string(d, name, "FC: medium distance (M)"); /* Fibre Channel transmitter technology */ if (data[SFF_8636_FC_LEN_OFFSET] & SFF_8636_FC_TECH_LONG_LC) ssf_add_dict_string(d, name, "FC: Longwave laser (LC)"); if (data[SFF_8636_FC_LEN_OFFSET] & SFF_8636_FC_TECH_ELEC_INTER) ssf_add_dict_string(d, name, "FC: Electrical inter-enclosure (EL)"); if (data[SFF_8636_FC_TECH_OFFSET] & SFF_8636_FC_TECH_ELEC_INTRA) ssf_add_dict_string(d, name, "FC: Electrical intra-enclosure (EL)"); if (data[SFF_8636_FC_TECH_OFFSET] & SFF_8636_FC_TECH_SHORT_WO_OFC) ssf_add_dict_string(d, name, "FC: Shortwave laser w/o OFC (SN)"); if (data[SFF_8636_FC_TECH_OFFSET] & SFF_8636_FC_TECH_SHORT_W_OFC) ssf_add_dict_string(d, name, "FC: Shortwave laser with OFC (SL)"); if (data[SFF_8636_FC_TECH_OFFSET] & SFF_8636_FC_TECH_LONG_LL) ssf_add_dict_string(d, name, "FC: Longwave laser (LL)"); /* Fibre Channel transmission media */ if (data[SFF_8636_FC_TRANS_MEDIA_OFFSET] & SFF_8636_FC_TRANS_MEDIA_TW) ssf_add_dict_string(d, name, "FC: Twin Axial Pair (TW)"); if (data[SFF_8636_FC_TRANS_MEDIA_OFFSET] & SFF_8636_FC_TRANS_MEDIA_TP) ssf_add_dict_string(d, name, "FC: Twisted Pair (TP)"); if (data[SFF_8636_FC_TRANS_MEDIA_OFFSET] & SFF_8636_FC_TRANS_MEDIA_MI) ssf_add_dict_string(d, name, "FC: Miniature Coax (MI)"); if (data[SFF_8636_FC_TRANS_MEDIA_OFFSET] & SFF_8636_FC_TRANS_MEDIA_TV) ssf_add_dict_string(d, name, "FC: Video Coax (TV)"); if (data[SFF_8636_FC_TRANS_MEDIA_OFFSET] & SFF_8636_FC_TRANS_MEDIA_M6) ssf_add_dict_string(d, name, "FC: Multimode, 62.5m (M6)"); if (data[SFF_8636_FC_TRANS_MEDIA_OFFSET] & SFF_8636_FC_TRANS_MEDIA_M5) ssf_add_dict_string(d, name, "FC: Multimode, 50m (M5)"); if (data[SFF_8636_FC_TRANS_MEDIA_OFFSET] & SFF_8636_FC_TRANS_MEDIA_OM3) ssf_add_dict_string(d, name, "FC: Multimode, 50um (OM3)"); if (data[SFF_8636_FC_TRANS_MEDIA_OFFSET] & SFF_8636_FC_TRANS_MEDIA_SM) ssf_add_dict_string(d, name, "FC: Single Mode (SM)"); /* Fibre Channel speed */ if (data[SFF_8636_FC_SPEED_OFFSET] & SFF_8636_FC_SPEED_1200_MBPS) ssf_add_dict_string(d, name, "FC: 1200 MBytes/sec"); if (data[SFF_8636_FC_SPEED_OFFSET] & SFF_8636_FC_SPEED_800_MBPS) ssf_add_dict_string(d, name, "FC: 800 MBytes/sec"); if (data[SFF_8636_FC_SPEED_OFFSET] & SFF_8636_FC_SPEED_1600_MBPS) ssf_add_dict_string(d, name, "FC: 1600 MBytes/sec"); if (data[SFF_8636_FC_SPEED_OFFSET] & SFF_8636_FC_SPEED_400_MBPS) ssf_add_dict_string(d, name, "FC: 400 MBytes/sec"); if (data[SFF_8636_FC_SPEED_OFFSET] & SFF_8636_FC_SPEED_200_MBPS) ssf_add_dict_string(d, name, "FC: 200 MBytes/sec"); if (data[SFF_8636_FC_SPEED_OFFSET] & SFF_8636_FC_SPEED_100_MBPS) ssf_add_dict_string(d, name, "FC: 100 MBytes/sec"); } static void sff_8636_show_encoding(const uint8_t *data, struct rte_tel_data *d) { sff_8024_show_encoding(data, SFF_8636_ENCODING_OFFSET, RTE_ETH_MODULE_SFF_8636, d); } static void sff_8636_show_rate_identifier(const uint8_t *data, struct rte_tel_data *d) { char val_string[20]; snprintf(val_string, sizeof(val_string), "0x%02x", data[SFF_8636_EXT_RS_OFFSET]); ssf_add_dict_string(d, "Rate identifier", val_string); } static void sff_8636_show_oui(const uint8_t *data, struct rte_tel_data *d) { sff_8024_show_oui(data, SFF_8636_VENDOR_OUI_OFFSET, d); } static void sff_8636_show_wavelength_or_copper_compliance(const uint8_t *data, struct rte_tel_data *d) { char val_string[SFF_ITEM_VAL_COMPOSE_SIZE]; snprintf(val_string, sizeof(val_string), "0x%02x", (data[SFF_8636_DEVICE_TECH_OFFSET] & SFF_8636_TRANS_TECH_MASK)); switch (data[SFF_8636_DEVICE_TECH_OFFSET] & SFF_8636_TRANS_TECH_MASK) { case SFF_8636_TRANS_850_VCSEL: strlcat(val_string, " (850 nm VCSEL)", sizeof(val_string)); break; case SFF_8636_TRANS_1310_VCSEL: strlcat(val_string, " (1310 nm VCSEL)", sizeof(val_string)); break; case SFF_8636_TRANS_1550_VCSEL: strlcat(val_string, " (1550 nm VCSEL)", sizeof(val_string)); break; case SFF_8636_TRANS_1310_FP: strlcat(val_string, " (1310 nm FP)", sizeof(val_string)); break; case SFF_8636_TRANS_1310_DFB: strlcat(val_string, " (1310 nm DFB)", sizeof(val_string)); break; case SFF_8636_TRANS_1550_DFB: strlcat(val_string, " (1550 nm DFB)", sizeof(val_string)); break; case SFF_8636_TRANS_1310_EML: strlcat(val_string, " (1310 nm EML)", sizeof(val_string)); break; case SFF_8636_TRANS_1550_EML: strlcat(val_string, " (1550 nm EML)", sizeof(val_string)); break; case SFF_8636_TRANS_OTHERS: strlcat(val_string, " (Others/Undefined)", sizeof(val_string)); break; case SFF_8636_TRANS_1490_DFB: strlcat(val_string, " (1490 nm DFB)", sizeof(val_string)); break; case SFF_8636_TRANS_COPPER_PAS_UNEQUAL: strlcat(val_string, " (Copper cable unequalized)", sizeof(val_string)); break; case SFF_8636_TRANS_COPPER_PAS_EQUAL: strlcat(val_string, " (Copper cable passive equalized)", sizeof(val_string)); break; case SFF_8636_TRANS_COPPER_LNR_FAR_EQUAL: strlcat(val_string, " (Copper cable, near and far end limiting active equalizers)", sizeof(val_string)); break; case SFF_8636_TRANS_COPPER_FAR_EQUAL: strlcat(val_string, " (Copper cable, far end limiting active equalizers)", sizeof(val_string)); break; case SFF_8636_TRANS_COPPER_NEAR_EQUAL: strlcat(val_string, " (Copper cable, near end limiting active equalizers)", sizeof(val_string)); break; case SFF_8636_TRANS_COPPER_LNR_EQUAL: strlcat(val_string, " (Copper cable, linear active equalizers)", sizeof(val_string)); break; } ssf_add_dict_string(d, "Transmitter technology", val_string); if ((data[SFF_8636_DEVICE_TECH_OFFSET] & SFF_8636_TRANS_TECH_MASK) >= SFF_8636_TRANS_COPPER_PAS_UNEQUAL) { snprintf(val_string, sizeof(val_string), "%udb", data[SFF_8636_WAVELEN_HIGH_BYTE_OFFSET]); ssf_add_dict_string(d, "Attenuation at 2.5GHz", val_string); snprintf(val_string, sizeof(val_string), "%udb", data[SFF_8636_WAVELEN_HIGH_BYTE_OFFSET]); ssf_add_dict_string(d, "Attenuation at 5.0GHz", val_string); snprintf(val_string, sizeof(val_string), "%udb", data[SFF_8636_WAVELEN_HIGH_BYTE_OFFSET]); ssf_add_dict_string(d, "Attenuation at 7.0GHz", val_string); snprintf(val_string, sizeof(val_string), "%udb", data[SFF_8636_WAVELEN_HIGH_BYTE_OFFSET]); ssf_add_dict_string(d, "Attenuation at 12.9GHz", val_string); } else { snprintf(val_string, sizeof(val_string), "%.3lfnm", (((data[SFF_8636_WAVELEN_HIGH_BYTE_OFFSET] << 8) | data[SFF_8636_WAVELEN_LOW_BYTE_OFFSET])*0.05)); ssf_add_dict_string(d, "Laser wavelength", val_string); snprintf(val_string, sizeof(val_string), "%.3lfnm", (((data[SFF_8636_WAVE_TOL_HIGH_BYTE_OFFSET] << 8) | data[SFF_8636_WAVE_TOL_LOW_BYTE_OFFSET])*0.005)); ssf_add_dict_string(d, "Laser wavelength tolerance", val_string); } } static void sff_8636_show_revision_compliance(const uint8_t *data, struct rte_tel_data *d) { static const char *name = "Revision Compliance"; switch (data[SFF_8636_REV_COMPLIANCE_OFFSET]) { case SFF_8636_REV_UNSPECIFIED: ssf_add_dict_string(d, name, "Revision not specified"); break; case SFF_8636_REV_8436_48: ssf_add_dict_string(d, name, "SFF-8436 Rev 4.8 or earlier"); break; case SFF_8636_REV_8436_8636: ssf_add_dict_string(d, name, "SFF-8436 Rev 4.8 or earlier"); break; case SFF_8636_REV_8636_13: ssf_add_dict_string(d, name, "SFF-8636 Rev 1.3 or earlier"); break; case SFF_8636_REV_8636_14: ssf_add_dict_string(d, name, "SFF-8636 Rev 1.4"); break; case SFF_8636_REV_8636_15: ssf_add_dict_string(d, name, "SFF-8636 Rev 1.5"); break; case SFF_8636_REV_8636_20: ssf_add_dict_string(d, name, "SFF-8636 Rev 2.0"); break; case SFF_8636_REV_8636_27: ssf_add_dict_string(d, name, "SFF-8636 Rev 2.5/2.6/2.7"); break; default: ssf_add_dict_string(d, name, "Unallocated"); break; } } /* * 2-byte internal temperature conversions: * First byte is a signed 8-bit integer, which is the temp decimal part * Second byte are 1/256th of degree, which are added to the dec part. */ #define SFF_8636_OFFSET_TO_TEMP(offset) ((int16_t)SFF_OFFSET_TO_U16(offset)) static void sff_8636_dom_parse(const uint8_t *data, struct sff_diags *sd) { int i = 0; /* Monitoring Thresholds for Alarms and Warnings */ sd->sfp_voltage[SFF_MCURR] = SFF_OFFSET_TO_U16(SFF_8636_VCC_CURR); sd->sfp_voltage[SFF_HALRM] = SFF_OFFSET_TO_U16(SFF_8636_VCC_HALRM); sd->sfp_voltage[SFF_LALRM] = SFF_OFFSET_TO_U16(SFF_8636_VCC_LALRM); sd->sfp_voltage[SFF_HWARN] = SFF_OFFSET_TO_U16(SFF_8636_VCC_HWARN); sd->sfp_voltage[SFF_LWARN] = SFF_OFFSET_TO_U16(SFF_8636_VCC_LWARN); sd->sfp_temp[SFF_MCURR] = SFF_8636_OFFSET_TO_TEMP(SFF_8636_TEMP_CURR); sd->sfp_temp[SFF_HALRM] = SFF_8636_OFFSET_TO_TEMP(SFF_8636_TEMP_HALRM); sd->sfp_temp[SFF_LALRM] = SFF_8636_OFFSET_TO_TEMP(SFF_8636_TEMP_LALRM); sd->sfp_temp[SFF_HWARN] = SFF_8636_OFFSET_TO_TEMP(SFF_8636_TEMP_HWARN); sd->sfp_temp[SFF_LWARN] = SFF_8636_OFFSET_TO_TEMP(SFF_8636_TEMP_LWARN); sd->bias_cur[SFF_HALRM] = SFF_OFFSET_TO_U16(SFF_8636_TX_BIAS_HALRM); sd->bias_cur[SFF_LALRM] = SFF_OFFSET_TO_U16(SFF_8636_TX_BIAS_LALRM); sd->bias_cur[SFF_HWARN] = SFF_OFFSET_TO_U16(SFF_8636_TX_BIAS_HWARN); sd->bias_cur[SFF_LWARN] = SFF_OFFSET_TO_U16(SFF_8636_TX_BIAS_LWARN); sd->tx_power[SFF_HALRM] = SFF_OFFSET_TO_U16(SFF_8636_TX_PWR_HALRM); sd->tx_power[SFF_LALRM] = SFF_OFFSET_TO_U16(SFF_8636_TX_PWR_LALRM); sd->tx_power[SFF_HWARN] = SFF_OFFSET_TO_U16(SFF_8636_TX_PWR_HWARN); sd->tx_power[SFF_LWARN] = SFF_OFFSET_TO_U16(SFF_8636_TX_PWR_LWARN); sd->rx_power[SFF_HALRM] = SFF_OFFSET_TO_U16(SFF_8636_RX_PWR_HALRM); sd->rx_power[SFF_LALRM] = SFF_OFFSET_TO_U16(SFF_8636_RX_PWR_LALRM); sd->rx_power[SFF_HWARN] = SFF_OFFSET_TO_U16(SFF_8636_RX_PWR_HWARN); sd->rx_power[SFF_LWARN] = SFF_OFFSET_TO_U16(SFF_8636_RX_PWR_LWARN); /* Channel Specific Data */ for (i = 0; i < SFF_MAX_CHANNEL_NUM; i++) { sd->scd[i].bias_cur = SFF_OFFSET_TO_U16(sff_8636_tx_bias_offset[i]); sd->scd[i].rx_power = SFF_OFFSET_TO_U16(sff_8636_rx_power_offset[i]); sd->scd[i].tx_power = SFF_OFFSET_TO_U16(sff_8636_tx_power_offset[i]); } } static void sff_8636_show_dom(const uint8_t *data, uint32_t eeprom_len, struct rte_tel_data *d) { struct sff_diags sd = {0}; const char *rx_power_string = NULL; char power_string[SFF_MAX_DESC_SIZE]; char val_string[SFF_ITEM_VAL_COMPOSE_SIZE]; int i; /* * There is no clear identifier to signify the existence of * optical diagnostics similar to SFF-8472. So checking existence * of page 3, will provide the guarantee for existence of alarms * and thresholds * If pagging support exists, then supports_alarms is marked as 1 */ if (eeprom_len == RTE_ETH_MODULE_SFF_8636_MAX_LEN) { if (!(data[SFF_8636_STATUS_2_OFFSET] & SFF_8636_STATUS_PAGE_3_PRESENT)) { sd.supports_alarms = 1; } } sd.rx_power_type = data[SFF_8636_DIAG_TYPE_OFFSET] & SFF_8636_RX_PWR_TYPE_MASK; sd.tx_power_type = data[SFF_8636_DIAG_TYPE_OFFSET] & SFF_8636_RX_PWR_TYPE_MASK; sff_8636_dom_parse(data, &sd); SFF_SPRINT_TEMP(val_string, sd.sfp_temp[SFF_MCURR]); ssf_add_dict_string(d, "Module temperature", val_string); SFF_SPRINT_VCC(val_string, sd.sfp_voltage[SFF_MCURR]); ssf_add_dict_string(d, "Module voltage", val_string); /* * SFF-8636/8436 spec is not clear whether RX power/ TX bias * current fields are supported or not. A valid temperature * reading is used as existence for TX/RX power. */ if ((sd.sfp_temp[SFF_MCURR] == 0x0) || (sd.sfp_temp[SFF_MCURR] == (int16_t)0xFFFF)) return; ssf_add_dict_string(d, "Alarm/warning flags implemented", (sd.supports_alarms ? "Yes" : "No")); for (i = 0; i < SFF_MAX_CHANNEL_NUM; i++) { snprintf(power_string, SFF_MAX_DESC_SIZE, "%s (Channel %d)", "Laser tx bias current", i+1); SFF_SPRINT_BIAS(val_string, sd.scd[i].bias_cur); ssf_add_dict_string(d, power_string, val_string); } for (i = 0; i < SFF_MAX_CHANNEL_NUM; i++) { snprintf(power_string, SFF_MAX_DESC_SIZE, "%s (Channel %d)", "Transmit avg optical power", i+1); SFF_SPRINT_xX_PWR(val_string, sd.scd[i].tx_power); ssf_add_dict_string(d, power_string, val_string); } if (!sd.rx_power_type) rx_power_string = "Receiver signal OMA"; else rx_power_string = "Rcvr signal avg optical power"; for (i = 0; i < SFF_MAX_CHANNEL_NUM; i++) { snprintf(power_string, SFF_MAX_DESC_SIZE, "%s(Channel %d)", rx_power_string, i+1); SFF_SPRINT_xX_PWR(val_string, sd.scd[i].rx_power); ssf_add_dict_string(d, power_string, val_string); } if (sd.supports_alarms) { for (i = 0; sff_8636_aw_flags[i].str; ++i) { ssf_add_dict_string(d, sff_8636_aw_flags[i].str, data[sff_8636_aw_flags[i].offset] & sff_8636_aw_flags[i].value ? "On" : "Off"); } sff_show_thresholds(sd, d); } } void sff_8636_show_all(const uint8_t *data, uint32_t eeprom_len, struct rte_tel_data *d) { sff_8636_show_identifier(data, d); if ((data[SFF_8636_ID_OFFSET] == SFF_8024_ID_QSFP) || (data[SFF_8636_ID_OFFSET] == SFF_8024_ID_QSFP_PLUS) || (data[SFF_8636_ID_OFFSET] == SFF_8024_ID_QSFP28)) { sff_8636_show_ext_identifier(data, d); sff_8636_show_connector(data, d); sff_8636_show_transceiver(data, d); sff_8636_show_encoding(data, d); sff_show_value_with_unit(data, SFF_8636_BR_NOMINAL_OFFSET, "BR, Nominal", 100, "Mbps", d); sff_8636_show_rate_identifier(data, d); sff_show_value_with_unit(data, SFF_8636_SM_LEN_OFFSET, "Length (SMF,km)", 1, "km", d); sff_show_value_with_unit(data, SFF_8636_OM3_LEN_OFFSET, "Length (OM3 50um)", 2, "m", d); sff_show_value_with_unit(data, SFF_8636_OM2_LEN_OFFSET, "Length (OM2 50um)", 1, "m", d); sff_show_value_with_unit(data, SFF_8636_OM1_LEN_OFFSET, "Length (OM1 62.5um)", 1, "m", d); sff_show_value_with_unit(data, SFF_8636_CBL_LEN_OFFSET, "Length (Copper or Active cable)", 1, "m", d); sff_8636_show_wavelength_or_copper_compliance(data, d); sff_show_ascii(data, SFF_8636_VENDOR_NAME_START_OFFSET, SFF_8636_VENDOR_NAME_END_OFFSET, "Vendor name", d); sff_8636_show_oui(data, d); sff_show_ascii(data, SFF_8636_VENDOR_PN_START_OFFSET, SFF_8636_VENDOR_PN_END_OFFSET, "Vendor PN", d); sff_show_ascii(data, SFF_8636_VENDOR_REV_START_OFFSET, SFF_8636_VENDOR_REV_END_OFFSET, "Vendor rev", d); sff_show_ascii(data, SFF_8636_VENDOR_SN_START_OFFSET, SFF_8636_VENDOR_SN_END_OFFSET, "Vendor SN", d); sff_show_ascii(data, SFF_8636_DATE_YEAR_OFFSET, SFF_8636_DATE_VENDOR_LOT_OFFSET + 1, "Date code", d); sff_8636_show_revision_compliance(data, d); sff_8636_show_dom(data, eeprom_len, d); } }