/* * SPDX-License-Identifier: BSD-3-Clause * Copyright (C) IBM Corporation 2016. */ #include "acl_run.h" #include "acl_vect.h" struct _altivec_acl_const { rte_xmm_t xmm_shuffle_input; rte_xmm_t xmm_index_mask; rte_xmm_t xmm_ones_16; rte_xmm_t range_base; } altivec_acl_const __rte_cache_aligned = { { .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c} }, { .u32 = {RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX} }, { .u16 = {1, 1, 1, 1, 1, 1, 1, 1} }, { .u32 = {0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c} }, }; /* * Resolve priority for multiple results (altivec version). * This consists comparing the priority of the current traversal with the * running set of results for the packet. * For each result, keep a running array of the result (rule number) and * its priority for each category. */ static inline void resolve_priority_altivec(uint64_t transition, int n, const struct rte_acl_ctx *ctx, struct parms *parms, const struct rte_acl_match_results *p, uint32_t categories) { uint32_t x; xmm_t results, priority, results1, priority1; __vector bool int selector; xmm_t *saved_results, *saved_priority; for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) { saved_results = (xmm_t *)(&parms[n].cmplt->results[x]); saved_priority = (xmm_t *)(&parms[n].cmplt->priority[x]); /* get results and priorities for completed trie */ results = *(const xmm_t *)&p[transition].results[x]; priority = *(const xmm_t *)&p[transition].priority[x]; /* if this is not the first completed trie */ if (parms[n].cmplt->count != ctx->num_tries) { /* get running best results and their priorities */ results1 = *saved_results; priority1 = *saved_priority; /* select results that are highest priority */ selector = vec_cmpgt(priority1, priority); results = vec_sel(results, results1, selector); priority = vec_sel(priority, priority1, selector); } /* save running best results and their priorities */ *saved_results = results; *saved_priority = priority; } } /* * Check for any match in 4 transitions */ static __rte_always_inline uint32_t check_any_match_x4(uint64_t val[]) { return (val[0] | val[1] | val[2] | val[3]) & RTE_ACL_NODE_MATCH; } static __rte_always_inline void acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms, struct acl_flow_data *flows, uint64_t transitions[]) { while (check_any_match_x4(transitions)) { transitions[0] = acl_match_check(transitions[0], slot, ctx, parms, flows, resolve_priority_altivec); transitions[1] = acl_match_check(transitions[1], slot + 1, ctx, parms, flows, resolve_priority_altivec); transitions[2] = acl_match_check(transitions[2], slot + 2, ctx, parms, flows, resolve_priority_altivec); transitions[3] = acl_match_check(transitions[3], slot + 3, ctx, parms, flows, resolve_priority_altivec); } } /* * Process 4 transitions (in 2 XMM registers) in parallel */ static __rte_always_inline xmm_t transition4(xmm_t next_input, const uint64_t *trans, xmm_t *indices1, xmm_t *indices2) { xmm_t addr, tr_lo, tr_hi; xmm_t in, node_type, r, t; xmm_t dfa_ofs, quad_ofs; xmm_t *index_mask, *tp; __vector bool int dfa_msk; __vector signed char zeroes = {}; union { uint64_t d64[2]; uint32_t d32[4]; } v; /* Move low 32 into tr_lo and high 32 into tr_hi */ tr_lo = (xmm_t){(*indices1)[0], (*indices1)[2], (*indices2)[0], (*indices2)[2]}; tr_hi = (xmm_t){(*indices1)[1], (*indices1)[3], (*indices2)[1], (*indices2)[3]}; /* Calculate the address (array index) for all 4 transitions. */ index_mask = (xmm_t *)&altivec_acl_const.xmm_index_mask.u32; t = vec_xor(*index_mask, *index_mask); in = vec_perm(next_input, (xmm_t){}, *(__vector unsigned char *)&altivec_acl_const.xmm_shuffle_input); /* Calc node type and node addr */ node_type = vec_and(vec_nor(*index_mask, *index_mask), tr_lo); addr = vec_and(tr_lo, *index_mask); /* mask for DFA type(0) nodes */ dfa_msk = vec_cmpeq(node_type, t); /* DFA calculations. */ r = vec_sr(in, (__vector unsigned int){30, 30, 30, 30}); tp = (xmm_t *)&altivec_acl_const.range_base.u32; r = vec_add(r, *tp); t = vec_sr(in, (__vector unsigned int){24, 24, 24, 24}); r = vec_perm(tr_hi, (xmm_t){(uint16_t)0 << 16}, (__vector unsigned char)r); dfa_ofs = vec_sub(t, r); /* QUAD/SINGLE calculations. */ t = (xmm_t)vec_cmpgt((__vector signed char)in, (__vector signed char)tr_hi); t = (xmm_t)vec_sel( vec_sel( (__vector signed char)vec_sub( zeroes, (__vector signed char)t), (__vector signed char)t, vec_cmpgt((__vector signed char)t, zeroes)), zeroes, vec_cmpeq((__vector signed char)t, zeroes)); t = (xmm_t)vec_msum((__vector signed char)t, (__vector unsigned char)t, (xmm_t){}); quad_ofs = (xmm_t)vec_msum((__vector signed short)t, *(__vector signed short *)&altivec_acl_const.xmm_ones_16.u16, (xmm_t){}); /* blend DFA and QUAD/SINGLE. */ t = vec_sel(quad_ofs, dfa_ofs, dfa_msk); /* calculate address for next transitions. */ addr = vec_add(addr, t); v.d64[0] = (uint64_t)trans[addr[0]]; v.d64[1] = (uint64_t)trans[addr[1]]; *indices1 = (xmm_t){v.d32[0], v.d32[1], v.d32[2], v.d32[3]}; v.d64[0] = (uint64_t)trans[addr[2]]; v.d64[1] = (uint64_t)trans[addr[3]]; *indices2 = (xmm_t){v.d32[0], v.d32[1], v.d32[2], v.d32[3]}; return vec_sr(next_input, (__vector unsigned int){CHAR_BIT, CHAR_BIT, CHAR_BIT, CHAR_BIT}); } /* * Execute trie traversal with 8 traversals in parallel */ static inline int search_altivec_8(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, uint32_t total_packets, uint32_t categories) { int n; struct acl_flow_data flows; uint64_t index_array[MAX_SEARCHES_ALTIVEC8]; struct completion cmplt[MAX_SEARCHES_ALTIVEC8]; struct parms parms[MAX_SEARCHES_ALTIVEC8]; xmm_t input0, input1; acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, total_packets, categories, ctx->trans_table); for (n = 0; n < MAX_SEARCHES_ALTIVEC8; n++) { cmplt[n].count = 0; index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); } /* Check for any matches. */ acl_match_check_x4(0, ctx, parms, &flows, (uint64_t *)&index_array[0]); acl_match_check_x4(4, ctx, parms, &flows, (uint64_t *)&index_array[4]); while (flows.started > 0) { /* Gather 4 bytes of input data for each stream. */ input0 = (xmm_t){GET_NEXT_4BYTES(parms, 0), GET_NEXT_4BYTES(parms, 1), GET_NEXT_4BYTES(parms, 2), GET_NEXT_4BYTES(parms, 3)}; input1 = (xmm_t){GET_NEXT_4BYTES(parms, 4), GET_NEXT_4BYTES(parms, 5), GET_NEXT_4BYTES(parms, 6), GET_NEXT_4BYTES(parms, 7)}; /* Process the 4 bytes of input on each stream. */ input0 = transition4(input0, flows.trans, (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]); input1 = transition4(input1, flows.trans, (xmm_t *)&index_array[4], (xmm_t *)&index_array[6]); input0 = transition4(input0, flows.trans, (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]); input1 = transition4(input1, flows.trans, (xmm_t *)&index_array[4], (xmm_t *)&index_array[6]); input0 = transition4(input0, flows.trans, (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]); input1 = transition4(input1, flows.trans, (xmm_t *)&index_array[4], (xmm_t *)&index_array[6]); input0 = transition4(input0, flows.trans, (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]); input1 = transition4(input1, flows.trans, (xmm_t *)&index_array[4], (xmm_t *)&index_array[6]); /* Check for any matches. */ acl_match_check_x4(0, ctx, parms, &flows, (uint64_t *)&index_array[0]); acl_match_check_x4(4, ctx, parms, &flows, (uint64_t *)&index_array[4]); } return 0; } /* * Execute trie traversal with 4 traversals in parallel */ static inline int search_altivec_4(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, int total_packets, uint32_t categories) { int n; struct acl_flow_data flows; uint64_t index_array[MAX_SEARCHES_ALTIVEC4]; struct completion cmplt[MAX_SEARCHES_ALTIVEC4]; struct parms parms[MAX_SEARCHES_ALTIVEC4]; xmm_t input; acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, total_packets, categories, ctx->trans_table); for (n = 0; n < MAX_SEARCHES_ALTIVEC4; n++) { cmplt[n].count = 0; index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); } /* Check for any matches. */ acl_match_check_x4(0, ctx, parms, &flows, index_array); while (flows.started > 0) { /* Gather 4 bytes of input data for each stream. */ input = (xmm_t){GET_NEXT_4BYTES(parms, 0), GET_NEXT_4BYTES(parms, 1), GET_NEXT_4BYTES(parms, 2), GET_NEXT_4BYTES(parms, 3)}; /* Process the 4 bytes of input on each stream. */ input = transition4(input, flows.trans, (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]); input = transition4(input, flows.trans, (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]); input = transition4(input, flows.trans, (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]); input = transition4(input, flows.trans, (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]); /* Check for any matches. */ acl_match_check_x4(0, ctx, parms, &flows, index_array); } return 0; }