/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2020 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ice_generic_flow.h" #include "ice_dcf_ethdev.h" #include "ice_rxtx.h" static uint16_t ice_dcf_recv_pkts(__rte_unused void *rx_queue, __rte_unused struct rte_mbuf **bufs, __rte_unused uint16_t nb_pkts) { return 0; } static uint16_t ice_dcf_xmit_pkts(__rte_unused void *tx_queue, __rte_unused struct rte_mbuf **bufs, __rte_unused uint16_t nb_pkts) { return 0; } static int ice_dcf_init_rxq(struct rte_eth_dev *dev, struct ice_rx_queue *rxq) { struct ice_dcf_adapter *dcf_ad = dev->data->dev_private; struct rte_eth_dev_data *dev_data = dev->data; struct iavf_hw *hw = &dcf_ad->real_hw.avf; uint16_t buf_size, max_pkt_len, len; buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM; rxq->rx_hdr_len = 0; rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S)); len = ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len; max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len); /* Check if the jumbo frame and maximum packet length are set * correctly. */ if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) { if (max_pkt_len <= RTE_ETHER_MAX_LEN || max_pkt_len > ICE_FRAME_SIZE_MAX) { PMD_DRV_LOG(ERR, "maximum packet length must be " "larger than %u and smaller than %u, " "as jumbo frame is enabled", (uint32_t)RTE_ETHER_MAX_LEN, (uint32_t)ICE_FRAME_SIZE_MAX); return -EINVAL; } } else { if (max_pkt_len < RTE_ETHER_MIN_LEN || max_pkt_len > RTE_ETHER_MAX_LEN) { PMD_DRV_LOG(ERR, "maximum packet length must be " "larger than %u and smaller than %u, " "as jumbo frame is disabled", (uint32_t)RTE_ETHER_MIN_LEN, (uint32_t)RTE_ETHER_MAX_LEN); return -EINVAL; } } rxq->max_pkt_len = max_pkt_len; if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) || (rxq->max_pkt_len + 2 * ICE_VLAN_TAG_SIZE) > buf_size) { dev_data->scattered_rx = 1; } rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id); IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1); IAVF_WRITE_FLUSH(hw); return 0; } static int ice_dcf_init_rx_queues(struct rte_eth_dev *dev) { struct ice_rx_queue **rxq = (struct ice_rx_queue **)dev->data->rx_queues; int i, ret; for (i = 0; i < dev->data->nb_rx_queues; i++) { if (!rxq[i] || !rxq[i]->q_set) continue; ret = ice_dcf_init_rxq(dev, rxq[i]); if (ret) return ret; } ice_set_rx_function(dev); ice_set_tx_function(dev); return 0; } #define IAVF_MISC_VEC_ID RTE_INTR_VEC_ZERO_OFFSET #define IAVF_RX_VEC_START RTE_INTR_VEC_RXTX_OFFSET #define IAVF_ITR_INDEX_DEFAULT 0 #define IAVF_QUEUE_ITR_INTERVAL_DEFAULT 32 /* 32 us */ #define IAVF_QUEUE_ITR_INTERVAL_MAX 8160 /* 8160 us */ static inline uint16_t iavf_calc_itr_interval(int16_t interval) { if (interval < 0 || interval > IAVF_QUEUE_ITR_INTERVAL_MAX) interval = IAVF_QUEUE_ITR_INTERVAL_DEFAULT; /* Convert to hardware count, as writing each 1 represents 2 us */ return interval / 2; } static int ice_dcf_config_rx_queues_irqs(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle) { struct ice_dcf_adapter *adapter = dev->data->dev_private; struct ice_dcf_hw *hw = &adapter->real_hw; uint16_t interval, i; int vec; if (rte_intr_cap_multiple(intr_handle) && dev->data->dev_conf.intr_conf.rxq) { if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues)) return -1; } if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) { intr_handle->intr_vec = rte_zmalloc("intr_vec", dev->data->nb_rx_queues * sizeof(int), 0); if (!intr_handle->intr_vec) { PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec", dev->data->nb_rx_queues); return -1; } } if (!dev->data->dev_conf.intr_conf.rxq || !rte_intr_dp_is_en(intr_handle)) { /* Rx interrupt disabled, Map interrupt only for writeback */ hw->nb_msix = 1; if (hw->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) { /* If WB_ON_ITR supports, enable it */ hw->msix_base = IAVF_RX_VEC_START; IAVF_WRITE_REG(&hw->avf, IAVF_VFINT_DYN_CTLN1(hw->msix_base - 1), IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK); } else { /* If no WB_ON_ITR offload flags, need to set * interrupt for descriptor write back. */ hw->msix_base = IAVF_MISC_VEC_ID; /* set ITR to max */ interval = iavf_calc_itr_interval(IAVF_QUEUE_ITR_INTERVAL_MAX); IAVF_WRITE_REG(&hw->avf, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | (IAVF_ITR_INDEX_DEFAULT << IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) | (interval << IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT)); } IAVF_WRITE_FLUSH(&hw->avf); /* map all queues to the same interrupt */ for (i = 0; i < dev->data->nb_rx_queues; i++) hw->rxq_map[hw->msix_base] |= 1 << i; } else { if (!rte_intr_allow_others(intr_handle)) { hw->nb_msix = 1; hw->msix_base = IAVF_MISC_VEC_ID; for (i = 0; i < dev->data->nb_rx_queues; i++) { hw->rxq_map[hw->msix_base] |= 1 << i; intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID; } PMD_DRV_LOG(DEBUG, "vector %u are mapping to all Rx queues", hw->msix_base); } else { /* If Rx interrupt is reuquired, and we can use * multi interrupts, then the vec is from 1 */ hw->nb_msix = RTE_MIN(hw->vf_res->max_vectors, intr_handle->nb_efd); hw->msix_base = IAVF_MISC_VEC_ID; vec = IAVF_MISC_VEC_ID; for (i = 0; i < dev->data->nb_rx_queues; i++) { hw->rxq_map[vec] |= 1 << i; intr_handle->intr_vec[i] = vec++; if (vec >= hw->nb_msix) vec = IAVF_RX_VEC_START; } PMD_DRV_LOG(DEBUG, "%u vectors are mapping to %u Rx queues", hw->nb_msix, dev->data->nb_rx_queues); } } if (ice_dcf_config_irq_map(hw)) { PMD_DRV_LOG(ERR, "config interrupt mapping failed"); return -1; } return 0; } static int alloc_rxq_mbufs(struct ice_rx_queue *rxq) { volatile union ice_rx_flex_desc *rxd; struct rte_mbuf *mbuf = NULL; uint64_t dma_addr; uint16_t i; for (i = 0; i < rxq->nb_rx_desc; i++) { mbuf = rte_mbuf_raw_alloc(rxq->mp); if (unlikely(!mbuf)) { PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX"); return -ENOMEM; } rte_mbuf_refcnt_set(mbuf, 1); mbuf->next = NULL; mbuf->data_off = RTE_PKTMBUF_HEADROOM; mbuf->nb_segs = 1; mbuf->port = rxq->port_id; dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf)); rxd = &rxq->rx_ring[i]; rxd->read.pkt_addr = dma_addr; rxd->read.hdr_addr = 0; #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC rxd->read.rsvd1 = 0; rxd->read.rsvd2 = 0; #endif rxq->sw_ring[i].mbuf = (void *)mbuf; } return 0; } static int ice_dcf_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct ice_dcf_adapter *ad = dev->data->dev_private; struct iavf_hw *hw = &ad->real_hw.avf; struct ice_rx_queue *rxq; int err = 0; if (rx_queue_id >= dev->data->nb_rx_queues) return -EINVAL; rxq = dev->data->rx_queues[rx_queue_id]; err = alloc_rxq_mbufs(rxq); if (err) { PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf"); return err; } rte_wmb(); /* Init the RX tail register. */ IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1); IAVF_WRITE_FLUSH(hw); /* Ready to switch the queue on */ err = ice_dcf_switch_queue(&ad->real_hw, rx_queue_id, true, true); if (err) { PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on", rx_queue_id); return err; } dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; return 0; } static inline void reset_rx_queue(struct ice_rx_queue *rxq) { uint16_t len; uint32_t i; if (!rxq) return; len = rxq->nb_rx_desc + ICE_RX_MAX_BURST; for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++) ((volatile char *)rxq->rx_ring)[i] = 0; memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf)); for (i = 0; i < ICE_RX_MAX_BURST; i++) rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf; /* for rx bulk */ rxq->rx_nb_avail = 0; rxq->rx_next_avail = 0; rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1); rxq->rx_tail = 0; rxq->nb_rx_hold = 0; rxq->pkt_first_seg = NULL; rxq->pkt_last_seg = NULL; } static inline void reset_tx_queue(struct ice_tx_queue *txq) { struct ice_tx_entry *txe; uint32_t i, size; uint16_t prev; if (!txq) { PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL"); return; } txe = txq->sw_ring; size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc; for (i = 0; i < size; i++) ((volatile char *)txq->tx_ring)[i] = 0; prev = (uint16_t)(txq->nb_tx_desc - 1); for (i = 0; i < txq->nb_tx_desc; i++) { txq->tx_ring[i].cmd_type_offset_bsz = rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE); txe[i].mbuf = NULL; txe[i].last_id = i; txe[prev].next_id = i; prev = i; } txq->tx_tail = 0; txq->nb_tx_used = 0; txq->last_desc_cleaned = txq->nb_tx_desc - 1; txq->nb_tx_free = txq->nb_tx_desc - 1; txq->tx_next_dd = txq->tx_rs_thresh - 1; txq->tx_next_rs = txq->tx_rs_thresh - 1; } static int ice_dcf_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct ice_dcf_adapter *ad = dev->data->dev_private; struct ice_dcf_hw *hw = &ad->real_hw; struct ice_rx_queue *rxq; int err; if (rx_queue_id >= dev->data->nb_rx_queues) return -EINVAL; err = ice_dcf_switch_queue(hw, rx_queue_id, true, false); if (err) { PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off", rx_queue_id); return err; } rxq = dev->data->rx_queues[rx_queue_id]; rxq->rx_rel_mbufs(rxq); reset_rx_queue(rxq); dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } static int ice_dcf_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct ice_dcf_adapter *ad = dev->data->dev_private; struct iavf_hw *hw = &ad->real_hw.avf; struct ice_tx_queue *txq; int err = 0; if (tx_queue_id >= dev->data->nb_tx_queues) return -EINVAL; txq = dev->data->tx_queues[tx_queue_id]; /* Init the RX tail register. */ txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(tx_queue_id); IAVF_PCI_REG_WRITE(txq->qtx_tail, 0); IAVF_WRITE_FLUSH(hw); /* Ready to switch the queue on */ err = ice_dcf_switch_queue(&ad->real_hw, tx_queue_id, false, true); if (err) { PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on", tx_queue_id); return err; } dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; return 0; } static int ice_dcf_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct ice_dcf_adapter *ad = dev->data->dev_private; struct ice_dcf_hw *hw = &ad->real_hw; struct ice_tx_queue *txq; int err; if (tx_queue_id >= dev->data->nb_tx_queues) return -EINVAL; err = ice_dcf_switch_queue(hw, tx_queue_id, false, false); if (err) { PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off", tx_queue_id); return err; } txq = dev->data->tx_queues[tx_queue_id]; txq->tx_rel_mbufs(txq); reset_tx_queue(txq); dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } static int ice_dcf_start_queues(struct rte_eth_dev *dev) { struct ice_rx_queue *rxq; struct ice_tx_queue *txq; int nb_rxq = 0; int nb_txq, i; for (nb_txq = 0; nb_txq < dev->data->nb_tx_queues; nb_txq++) { txq = dev->data->tx_queues[nb_txq]; if (txq->tx_deferred_start) continue; if (ice_dcf_tx_queue_start(dev, nb_txq) != 0) { PMD_DRV_LOG(ERR, "Fail to start queue %u", nb_txq); goto tx_err; } } for (nb_rxq = 0; nb_rxq < dev->data->nb_rx_queues; nb_rxq++) { rxq = dev->data->rx_queues[nb_rxq]; if (rxq->rx_deferred_start) continue; if (ice_dcf_rx_queue_start(dev, nb_rxq) != 0) { PMD_DRV_LOG(ERR, "Fail to start queue %u", nb_rxq); goto rx_err; } } return 0; /* stop the started queues if failed to start all queues */ rx_err: for (i = 0; i < nb_rxq; i++) ice_dcf_rx_queue_stop(dev, i); tx_err: for (i = 0; i < nb_txq; i++) ice_dcf_tx_queue_stop(dev, i); return -1; } static int ice_dcf_dev_start(struct rte_eth_dev *dev) { struct ice_dcf_adapter *dcf_ad = dev->data->dev_private; struct rte_intr_handle *intr_handle = dev->intr_handle; struct ice_adapter *ad = &dcf_ad->parent; struct ice_dcf_hw *hw = &dcf_ad->real_hw; int ret; ad->pf.adapter_stopped = 0; hw->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues, dev->data->nb_tx_queues); ret = ice_dcf_init_rx_queues(dev); if (ret) { PMD_DRV_LOG(ERR, "Fail to init queues"); return ret; } if (hw->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { ret = ice_dcf_init_rss(hw); if (ret) { PMD_DRV_LOG(ERR, "Failed to configure RSS"); return ret; } } ret = ice_dcf_configure_queues(hw); if (ret) { PMD_DRV_LOG(ERR, "Fail to config queues"); return ret; } ret = ice_dcf_config_rx_queues_irqs(dev, intr_handle); if (ret) { PMD_DRV_LOG(ERR, "Fail to config rx queues' irqs"); return ret; } if (dev->data->dev_conf.intr_conf.rxq != 0) { rte_intr_disable(intr_handle); rte_intr_enable(intr_handle); } ret = ice_dcf_start_queues(dev); if (ret) { PMD_DRV_LOG(ERR, "Failed to enable queues"); return ret; } ret = ice_dcf_add_del_all_mac_addr(hw, true); if (ret) { PMD_DRV_LOG(ERR, "Failed to add mac addr"); return ret; } dev->data->dev_link.link_status = ETH_LINK_UP; return 0; } static void ice_dcf_stop_queues(struct rte_eth_dev *dev) { struct ice_dcf_adapter *ad = dev->data->dev_private; struct ice_dcf_hw *hw = &ad->real_hw; struct ice_rx_queue *rxq; struct ice_tx_queue *txq; int ret, i; /* Stop All queues */ ret = ice_dcf_disable_queues(hw); if (ret) PMD_DRV_LOG(WARNING, "Fail to stop queues"); for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; if (!txq) continue; txq->tx_rel_mbufs(txq); reset_tx_queue(txq); dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; } for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; if (!rxq) continue; rxq->rx_rel_mbufs(rxq); reset_rx_queue(rxq); dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; } } static int ice_dcf_dev_stop(struct rte_eth_dev *dev) { struct ice_dcf_adapter *dcf_ad = dev->data->dev_private; struct rte_intr_handle *intr_handle = dev->intr_handle; struct ice_adapter *ad = &dcf_ad->parent; if (ad->pf.adapter_stopped == 1) { PMD_DRV_LOG(DEBUG, "Port is already stopped"); return 0; } ice_dcf_stop_queues(dev); rte_intr_efd_disable(intr_handle); if (intr_handle->intr_vec) { rte_free(intr_handle->intr_vec); intr_handle->intr_vec = NULL; } ice_dcf_add_del_all_mac_addr(&dcf_ad->real_hw, false); dev->data->dev_link.link_status = ETH_LINK_DOWN; ad->pf.adapter_stopped = 1; return 0; } static int ice_dcf_dev_configure(struct rte_eth_dev *dev) { struct ice_dcf_adapter *dcf_ad = dev->data->dev_private; struct ice_adapter *ad = &dcf_ad->parent; ad->rx_bulk_alloc_allowed = true; ad->tx_simple_allowed = true; if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH; return 0; } static int ice_dcf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct ice_dcf_adapter *adapter = dev->data->dev_private; struct ice_dcf_hw *hw = &adapter->real_hw; dev_info->max_mac_addrs = 1; dev_info->max_rx_queues = hw->vsi_res->num_queue_pairs; dev_info->max_tx_queues = hw->vsi_res->num_queue_pairs; dev_info->min_rx_bufsize = ICE_BUF_SIZE_MIN; dev_info->max_rx_pktlen = ICE_FRAME_SIZE_MAX; dev_info->hash_key_size = hw->vf_res->rss_key_size; dev_info->reta_size = hw->vf_res->rss_lut_size; dev_info->flow_type_rss_offloads = ICE_RSS_OFFLOAD_ALL; dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP | DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_RX_OFFLOAD_SCATTER | DEV_RX_OFFLOAD_JUMBO_FRAME | DEV_RX_OFFLOAD_VLAN_FILTER | DEV_RX_OFFLOAD_RSS_HASH; dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_SCTP_CKSUM | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_IPIP_TNL_TSO | DEV_TX_OFFLOAD_GENEVE_TNL_TSO | DEV_TX_OFFLOAD_MULTI_SEGS; dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_thresh = { .pthresh = ICE_DEFAULT_RX_PTHRESH, .hthresh = ICE_DEFAULT_RX_HTHRESH, .wthresh = ICE_DEFAULT_RX_WTHRESH, }, .rx_free_thresh = ICE_DEFAULT_RX_FREE_THRESH, .rx_drop_en = 0, .offloads = 0, }; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_thresh = { .pthresh = ICE_DEFAULT_TX_PTHRESH, .hthresh = ICE_DEFAULT_TX_HTHRESH, .wthresh = ICE_DEFAULT_TX_WTHRESH, }, .tx_free_thresh = ICE_DEFAULT_TX_FREE_THRESH, .tx_rs_thresh = ICE_DEFAULT_TX_RSBIT_THRESH, .offloads = 0, }; dev_info->rx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = ICE_MAX_RING_DESC, .nb_min = ICE_MIN_RING_DESC, .nb_align = ICE_ALIGN_RING_DESC, }; dev_info->tx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = ICE_MAX_RING_DESC, .nb_min = ICE_MIN_RING_DESC, .nb_align = ICE_ALIGN_RING_DESC, }; return 0; } static int ice_dcf_dev_promiscuous_enable(__rte_unused struct rte_eth_dev *dev) { return 0; } static int ice_dcf_dev_promiscuous_disable(__rte_unused struct rte_eth_dev *dev) { return 0; } static int ice_dcf_dev_allmulticast_enable(__rte_unused struct rte_eth_dev *dev) { return 0; } static int ice_dcf_dev_allmulticast_disable(__rte_unused struct rte_eth_dev *dev) { return 0; } static int ice_dcf_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, enum rte_filter_op filter_op, void *arg) { int ret = 0; if (!dev) return -EINVAL; switch (filter_type) { case RTE_ETH_FILTER_GENERIC: if (filter_op != RTE_ETH_FILTER_GET) return -EINVAL; *(const void **)arg = &ice_flow_ops; break; default: PMD_DRV_LOG(WARNING, "Filter type (%d) not supported", filter_type); ret = -EINVAL; break; } return ret; } #define ICE_DCF_32_BIT_WIDTH (CHAR_BIT * 4) #define ICE_DCF_48_BIT_WIDTH (CHAR_BIT * 6) #define ICE_DCF_48_BIT_MASK RTE_LEN2MASK(ICE_DCF_48_BIT_WIDTH, uint64_t) static void ice_dcf_stat_update_48(uint64_t *offset, uint64_t *stat) { if (*stat >= *offset) *stat = *stat - *offset; else *stat = (uint64_t)((*stat + ((uint64_t)1 << ICE_DCF_48_BIT_WIDTH)) - *offset); *stat &= ICE_DCF_48_BIT_MASK; } static void ice_dcf_stat_update_32(uint64_t *offset, uint64_t *stat) { if (*stat >= *offset) *stat = (uint64_t)(*stat - *offset); else *stat = (uint64_t)((*stat + ((uint64_t)1 << ICE_DCF_32_BIT_WIDTH)) - *offset); } static void ice_dcf_update_stats(struct virtchnl_eth_stats *oes, struct virtchnl_eth_stats *nes) { ice_dcf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes); ice_dcf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast); ice_dcf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast); ice_dcf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast); ice_dcf_stat_update_32(&oes->rx_discards, &nes->rx_discards); ice_dcf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes); ice_dcf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast); ice_dcf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast); ice_dcf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast); ice_dcf_stat_update_32(&oes->tx_errors, &nes->tx_errors); ice_dcf_stat_update_32(&oes->tx_discards, &nes->tx_discards); } static int ice_dcf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { struct ice_dcf_adapter *ad = dev->data->dev_private; struct ice_dcf_hw *hw = &ad->real_hw; struct virtchnl_eth_stats pstats; int ret; ret = ice_dcf_query_stats(hw, &pstats); if (ret == 0) { ice_dcf_update_stats(&hw->eth_stats_offset, &pstats); stats->ipackets = pstats.rx_unicast + pstats.rx_multicast + pstats.rx_broadcast - pstats.rx_discards; stats->opackets = pstats.tx_broadcast + pstats.tx_multicast + pstats.tx_unicast; stats->imissed = pstats.rx_discards; stats->oerrors = pstats.tx_errors + pstats.tx_discards; stats->ibytes = pstats.rx_bytes; stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN; stats->obytes = pstats.tx_bytes; } else { PMD_DRV_LOG(ERR, "Get statistics failed"); } return ret; } static int ice_dcf_stats_reset(struct rte_eth_dev *dev) { struct ice_dcf_adapter *ad = dev->data->dev_private; struct ice_dcf_hw *hw = &ad->real_hw; struct virtchnl_eth_stats pstats; int ret; /* read stat values to clear hardware registers */ ret = ice_dcf_query_stats(hw, &pstats); if (ret != 0) return ret; /* set stats offset base on current values */ hw->eth_stats_offset = pstats; return 0; } static int ice_dcf_dev_close(struct rte_eth_dev *dev) { struct ice_dcf_adapter *adapter = dev->data->dev_private; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; ice_dcf_uninit_parent_adapter(dev); ice_dcf_uninit_hw(dev, &adapter->real_hw); return 0; } static int ice_dcf_link_update(__rte_unused struct rte_eth_dev *dev, __rte_unused int wait_to_complete) { return 0; } static const struct eth_dev_ops ice_dcf_eth_dev_ops = { .dev_start = ice_dcf_dev_start, .dev_stop = ice_dcf_dev_stop, .dev_close = ice_dcf_dev_close, .dev_configure = ice_dcf_dev_configure, .dev_infos_get = ice_dcf_dev_info_get, .rx_queue_setup = ice_rx_queue_setup, .tx_queue_setup = ice_tx_queue_setup, .rx_queue_release = ice_rx_queue_release, .tx_queue_release = ice_tx_queue_release, .rx_queue_start = ice_dcf_rx_queue_start, .tx_queue_start = ice_dcf_tx_queue_start, .rx_queue_stop = ice_dcf_rx_queue_stop, .tx_queue_stop = ice_dcf_tx_queue_stop, .link_update = ice_dcf_link_update, .stats_get = ice_dcf_stats_get, .stats_reset = ice_dcf_stats_reset, .promiscuous_enable = ice_dcf_dev_promiscuous_enable, .promiscuous_disable = ice_dcf_dev_promiscuous_disable, .allmulticast_enable = ice_dcf_dev_allmulticast_enable, .allmulticast_disable = ice_dcf_dev_allmulticast_disable, .filter_ctrl = ice_dcf_dev_filter_ctrl, }; static int ice_dcf_dev_init(struct rte_eth_dev *eth_dev) { struct ice_dcf_adapter *adapter = eth_dev->data->dev_private; eth_dev->dev_ops = &ice_dcf_eth_dev_ops; eth_dev->rx_pkt_burst = ice_dcf_recv_pkts; eth_dev->tx_pkt_burst = ice_dcf_xmit_pkts; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; adapter->real_hw.vc_event_msg_cb = ice_dcf_handle_pf_event_msg; if (ice_dcf_init_hw(eth_dev, &adapter->real_hw) != 0) { PMD_INIT_LOG(ERR, "Failed to init DCF hardware"); return -1; } if (ice_dcf_init_parent_adapter(eth_dev) != 0) { PMD_INIT_LOG(ERR, "Failed to init DCF parent adapter"); ice_dcf_uninit_hw(eth_dev, &adapter->real_hw); return -1; } return 0; } static int ice_dcf_dev_uninit(struct rte_eth_dev *eth_dev) { ice_dcf_dev_close(eth_dev); return 0; } static int ice_dcf_cap_check_handler(__rte_unused const char *key, const char *value, __rte_unused void *opaque) { if (strcmp(value, "dcf")) return -1; return 0; } static int ice_dcf_cap_selected(struct rte_devargs *devargs) { struct rte_kvargs *kvlist; const char *key = "cap"; int ret = 0; if (devargs == NULL) return 0; kvlist = rte_kvargs_parse(devargs->args, NULL); if (kvlist == NULL) return 0; if (!rte_kvargs_count(kvlist, key)) goto exit; /* dcf capability selected when there's a key-value pair: cap=dcf */ if (rte_kvargs_process(kvlist, key, ice_dcf_cap_check_handler, NULL) < 0) goto exit; ret = 1; exit: rte_kvargs_free(kvlist); return ret; } static int eth_ice_dcf_pci_probe(__rte_unused struct rte_pci_driver *pci_drv, struct rte_pci_device *pci_dev) { if (!ice_dcf_cap_selected(pci_dev->device.devargs)) return 1; return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct ice_dcf_adapter), ice_dcf_dev_init); } static int eth_ice_dcf_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, ice_dcf_dev_uninit); } static const struct rte_pci_id pci_id_ice_dcf_map[] = { { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) }, { .vendor_id = 0, /* sentinel */ }, }; static struct rte_pci_driver rte_ice_dcf_pmd = { .id_table = pci_id_ice_dcf_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING, .probe = eth_ice_dcf_pci_probe, .remove = eth_ice_dcf_pci_remove, }; RTE_PMD_REGISTER_PCI(net_ice_dcf, rte_ice_dcf_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_ice_dcf, pci_id_ice_dcf_map); RTE_PMD_REGISTER_KMOD_DEP(net_ice_dcf, "* igb_uio | vfio-pci"); RTE_PMD_REGISTER_PARAM_STRING(net_ice_dcf, "cap=dcf");