/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 1982, 1986, 1990, 1993 * The Regents of the University of California. * Copyright(c) 2010-2014 Intel Corporation. * Copyright(c) 2014 6WIND S.A. * All rights reserved. */ #ifndef _RTE_IP_H_ #define _RTE_IP_H_ /** * @file * * IP-related defines */ #include #ifdef RTE_EXEC_ENV_WINDOWS #include #else #include #include #include #include #include #include #endif #include #include #ifdef __cplusplus extern "C" { #endif /** * IPv4 Header */ struct rte_ipv4_hdr { __extension__ union { uint8_t version_ihl; /**< version and header length */ struct { #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN uint8_t ihl:4; /**< header length */ uint8_t version:4; /**< version */ #elif RTE_BYTE_ORDER == RTE_BIG_ENDIAN uint8_t version:4; /**< version */ uint8_t ihl:4; /**< header length */ #endif }; }; uint8_t type_of_service; /**< type of service */ rte_be16_t total_length; /**< length of packet */ rte_be16_t packet_id; /**< packet ID */ rte_be16_t fragment_offset; /**< fragmentation offset */ uint8_t time_to_live; /**< time to live */ uint8_t next_proto_id; /**< protocol ID */ rte_be16_t hdr_checksum; /**< header checksum */ rte_be32_t src_addr; /**< source address */ rte_be32_t dst_addr; /**< destination address */ } __rte_packed; /** Create IPv4 address */ #define RTE_IPV4(a, b, c, d) ((uint32_t)(((a) & 0xff) << 24) | \ (((b) & 0xff) << 16) | \ (((c) & 0xff) << 8) | \ ((d) & 0xff)) /** Maximal IPv4 packet length (including a header) */ #define RTE_IPV4_MAX_PKT_LEN 65535 /** Internet header length mask for version_ihl field */ #define RTE_IPV4_HDR_IHL_MASK (0x0f) /** * Internet header length field multiplier (IHL field specifies overall header * length in number of 4-byte words) */ #define RTE_IPV4_IHL_MULTIPLIER (4) /* Type of Service fields */ #define RTE_IPV4_HDR_DSCP_MASK (0xfc) #define RTE_IPV4_HDR_ECN_MASK (0x03) #define RTE_IPV4_HDR_ECN_CE RTE_IPV4_HDR_ECN_MASK /* Fragment Offset * Flags. */ #define RTE_IPV4_HDR_DF_SHIFT 14 #define RTE_IPV4_HDR_MF_SHIFT 13 #define RTE_IPV4_HDR_FO_SHIFT 3 #define RTE_IPV4_HDR_DF_FLAG (1 << RTE_IPV4_HDR_DF_SHIFT) #define RTE_IPV4_HDR_MF_FLAG (1 << RTE_IPV4_HDR_MF_SHIFT) #define RTE_IPV4_HDR_OFFSET_MASK ((1 << RTE_IPV4_HDR_MF_SHIFT) - 1) #define RTE_IPV4_HDR_OFFSET_UNITS 8 /* * IPv4 address types */ #define RTE_IPV4_ANY ((uint32_t)0x00000000) /**< 0.0.0.0 */ #define RTE_IPV4_LOOPBACK ((uint32_t)0x7f000001) /**< 127.0.0.1 */ #define RTE_IPV4_BROADCAST ((uint32_t)0xe0000000) /**< 224.0.0.0 */ #define RTE_IPV4_ALLHOSTS_GROUP ((uint32_t)0xe0000001) /**< 224.0.0.1 */ #define RTE_IPV4_ALLRTRS_GROUP ((uint32_t)0xe0000002) /**< 224.0.0.2 */ #define RTE_IPV4_MAX_LOCAL_GROUP ((uint32_t)0xe00000ff) /**< 224.0.0.255 */ /* * IPv4 Multicast-related macros */ #define RTE_IPV4_MIN_MCAST \ RTE_IPV4(224, 0, 0, 0) /**< Minimal IPv4-multicast address */ #define RTE_IPV4_MAX_MCAST \ RTE_IPV4(239, 255, 255, 255) /**< Maximum IPv4 multicast address */ #define RTE_IS_IPV4_MCAST(x) \ ((x) >= RTE_IPV4_MIN_MCAST && (x) <= RTE_IPV4_MAX_MCAST) /**< check if IPv4 address is multicast */ /* IPv4 default fields values */ #define RTE_IPV4_MIN_IHL (0x5) #define RTE_IPV4_VHL_DEF ((IPVERSION << 4) | RTE_IPV4_MIN_IHL) /** * Get the length of an IPv4 header. * * @param ipv4_hdr * Pointer to the IPv4 header. * @return * The length of the IPv4 header (with options if present) in bytes. */ static inline uint8_t rte_ipv4_hdr_len(const struct rte_ipv4_hdr *ipv4_hdr) { return (uint8_t)((ipv4_hdr->version_ihl & RTE_IPV4_HDR_IHL_MASK) * RTE_IPV4_IHL_MULTIPLIER); } /** * @internal Calculate a sum of all words in the buffer. * Helper routine for the rte_raw_cksum(). * * @param buf * Pointer to the buffer. * @param len * Length of the buffer. * @param sum * Initial value of the sum. * @return * sum += Sum of all words in the buffer. */ static inline uint32_t __rte_raw_cksum(const void *buf, size_t len, uint32_t sum) { /* extend strict-aliasing rules */ typedef uint16_t __attribute__((__may_alias__)) u16_p; const u16_p *u16_buf = (const u16_p *)buf; const u16_p *end = u16_buf + len / sizeof(*u16_buf); for (; u16_buf != end; ++u16_buf) sum += *u16_buf; /* if length is odd, keeping it byte order independent */ if (unlikely(len % 2)) { uint16_t left = 0; *(unsigned char *)&left = *(const unsigned char *)end; sum += left; } return sum; } /** * @internal Reduce a sum to the non-complemented checksum. * Helper routine for the rte_raw_cksum(). * * @param sum * Value of the sum. * @return * The non-complemented checksum. */ static inline uint16_t __rte_raw_cksum_reduce(uint32_t sum) { sum = ((sum & 0xffff0000) >> 16) + (sum & 0xffff); sum = ((sum & 0xffff0000) >> 16) + (sum & 0xffff); return (uint16_t)sum; } /** * Process the non-complemented checksum of a buffer. * * @param buf * Pointer to the buffer. * @param len * Length of the buffer. * @return * The non-complemented checksum. */ static inline uint16_t rte_raw_cksum(const void *buf, size_t len) { uint32_t sum; sum = __rte_raw_cksum(buf, len, 0); return __rte_raw_cksum_reduce(sum); } /** * Compute the raw (non complemented) checksum of a packet. * * @param m * The pointer to the mbuf. * @param off * The offset in bytes to start the checksum. * @param len * The length in bytes of the data to checksum. * @param cksum * A pointer to the checksum, filled on success. * @return * 0 on success, -1 on error (bad length or offset). */ static inline int rte_raw_cksum_mbuf(const struct rte_mbuf *m, uint32_t off, uint32_t len, uint16_t *cksum) { const struct rte_mbuf *seg; const char *buf; uint32_t sum, tmp; uint32_t seglen, done; /* easy case: all data in the first segment */ if (off + len <= rte_pktmbuf_data_len(m)) { *cksum = rte_raw_cksum(rte_pktmbuf_mtod_offset(m, const char *, off), len); return 0; } if (unlikely(off + len > rte_pktmbuf_pkt_len(m))) return -1; /* invalid params, return a dummy value */ /* else browse the segment to find offset */ seglen = 0; for (seg = m; seg != NULL; seg = seg->next) { seglen = rte_pktmbuf_data_len(seg); if (off < seglen) break; off -= seglen; } RTE_ASSERT(seg != NULL); if (seg == NULL) return -1; seglen -= off; buf = rte_pktmbuf_mtod_offset(seg, const char *, off); if (seglen >= len) { /* all in one segment */ *cksum = rte_raw_cksum(buf, len); return 0; } /* hard case: process checksum of several segments */ sum = 0; done = 0; for (;;) { tmp = __rte_raw_cksum(buf, seglen, 0); if (done & 1) tmp = rte_bswap16((uint16_t)tmp); sum += tmp; done += seglen; if (done == len) break; seg = seg->next; buf = rte_pktmbuf_mtod(seg, const char *); seglen = rte_pktmbuf_data_len(seg); if (seglen > len - done) seglen = len - done; } *cksum = __rte_raw_cksum_reduce(sum); return 0; } /** * Process the IPv4 checksum of an IPv4 header. * * The checksum field must be set to 0 by the caller. * * @param ipv4_hdr * The pointer to the contiguous IPv4 header. * @return * The complemented checksum to set in the IP packet. */ static inline uint16_t rte_ipv4_cksum(const struct rte_ipv4_hdr *ipv4_hdr) { uint16_t cksum; cksum = rte_raw_cksum(ipv4_hdr, rte_ipv4_hdr_len(ipv4_hdr)); return (uint16_t)~cksum; } /** * Process the pseudo-header checksum of an IPv4 header. * * The checksum field must be set to 0 by the caller. * * Depending on the ol_flags, the pseudo-header checksum expected by the * drivers is not the same. For instance, when TSO is enabled, the IP * payload length must not be included in the packet. * * When ol_flags is 0, it computes the standard pseudo-header checksum. * * @param ipv4_hdr * The pointer to the contiguous IPv4 header. * @param ol_flags * The ol_flags of the associated mbuf. * @return * The non-complemented checksum to set in the L4 header. */ static inline uint16_t rte_ipv4_phdr_cksum(const struct rte_ipv4_hdr *ipv4_hdr, uint64_t ol_flags) { struct ipv4_psd_header { uint32_t src_addr; /* IP address of source host. */ uint32_t dst_addr; /* IP address of destination host. */ uint8_t zero; /* zero. */ uint8_t proto; /* L4 protocol type. */ uint16_t len; /* L4 length. */ } psd_hdr; uint32_t l3_len; psd_hdr.src_addr = ipv4_hdr->src_addr; psd_hdr.dst_addr = ipv4_hdr->dst_addr; psd_hdr.zero = 0; psd_hdr.proto = ipv4_hdr->next_proto_id; if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) { psd_hdr.len = 0; } else { l3_len = rte_be_to_cpu_16(ipv4_hdr->total_length); psd_hdr.len = rte_cpu_to_be_16((uint16_t)(l3_len - rte_ipv4_hdr_len(ipv4_hdr))); } return rte_raw_cksum(&psd_hdr, sizeof(psd_hdr)); } /** * @internal Calculate the non-complemented IPv4 L4 checksum */ static inline uint16_t __rte_ipv4_udptcp_cksum(const struct rte_ipv4_hdr *ipv4_hdr, const void *l4_hdr) { uint32_t cksum; uint32_t l3_len, l4_len; uint8_t ip_hdr_len; ip_hdr_len = rte_ipv4_hdr_len(ipv4_hdr); l3_len = rte_be_to_cpu_16(ipv4_hdr->total_length); if (l3_len < ip_hdr_len) return 0; l4_len = l3_len - ip_hdr_len; cksum = rte_raw_cksum(l4_hdr, l4_len); cksum += rte_ipv4_phdr_cksum(ipv4_hdr, 0); cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff); return (uint16_t)cksum; } /** * Process the IPv4 UDP or TCP checksum. * * The layer 4 checksum must be set to 0 in the L4 header by the caller. * * @param ipv4_hdr * The pointer to the contiguous IPv4 header. * @param l4_hdr * The pointer to the beginning of the L4 header. * @return * The complemented checksum to set in the L4 header. */ static inline uint16_t rte_ipv4_udptcp_cksum(const struct rte_ipv4_hdr *ipv4_hdr, const void *l4_hdr) { uint16_t cksum = __rte_ipv4_udptcp_cksum(ipv4_hdr, l4_hdr); cksum = ~cksum; /* * Per RFC 768: If the computed checksum is zero for UDP, * it is transmitted as all ones * (the equivalent in one's complement arithmetic). */ if (cksum == 0 && ipv4_hdr->next_proto_id == IPPROTO_UDP) cksum = 0xffff; return cksum; } /** * Validate the IPv4 UDP or TCP checksum. * * In case of UDP, the caller must first check if udp_hdr->dgram_cksum is 0 * (i.e. no checksum). * * @param ipv4_hdr * The pointer to the contiguous IPv4 header. * @param l4_hdr * The pointer to the beginning of the L4 header. * @return * Return 0 if the checksum is correct, else -1. */ __rte_experimental static inline int rte_ipv4_udptcp_cksum_verify(const struct rte_ipv4_hdr *ipv4_hdr, const void *l4_hdr) { uint16_t cksum = __rte_ipv4_udptcp_cksum(ipv4_hdr, l4_hdr); if (cksum != 0xffff) return -1; return 0; } /** * IPv6 Header */ struct rte_ipv6_hdr { rte_be32_t vtc_flow; /**< IP version, traffic class & flow label. */ rte_be16_t payload_len; /**< IP payload size, including ext. headers */ uint8_t proto; /**< Protocol, next header. */ uint8_t hop_limits; /**< Hop limits. */ uint8_t src_addr[16]; /**< IP address of source host. */ uint8_t dst_addr[16]; /**< IP address of destination host(s). */ } __rte_packed; /* IPv6 vtc_flow: IPv / TC / flow_label */ #define RTE_IPV6_HDR_FL_SHIFT 0 #define RTE_IPV6_HDR_TC_SHIFT 20 #define RTE_IPV6_HDR_FL_MASK ((1u << RTE_IPV6_HDR_TC_SHIFT) - 1) #define RTE_IPV6_HDR_TC_MASK (0xff << RTE_IPV6_HDR_TC_SHIFT) #define RTE_IPV6_HDR_DSCP_MASK (0xfc << RTE_IPV6_HDR_TC_SHIFT) #define RTE_IPV6_HDR_ECN_MASK (0x03 << RTE_IPV6_HDR_TC_SHIFT) #define RTE_IPV6_HDR_ECN_CE RTE_IPV6_HDR_ECN_MASK #define RTE_IPV6_MIN_MTU 1280 /**< Minimum MTU for IPv6, see RFC 8200. */ /** * Process the pseudo-header checksum of an IPv6 header. * * Depending on the ol_flags, the pseudo-header checksum expected by the * drivers is not the same. For instance, when TSO is enabled, the IPv6 * payload length must not be included in the packet. * * When ol_flags is 0, it computes the standard pseudo-header checksum. * * @param ipv6_hdr * The pointer to the contiguous IPv6 header. * @param ol_flags * The ol_flags of the associated mbuf. * @return * The non-complemented checksum to set in the L4 header. */ static inline uint16_t rte_ipv6_phdr_cksum(const struct rte_ipv6_hdr *ipv6_hdr, uint64_t ol_flags) { uint32_t sum; struct { rte_be32_t len; /* L4 length. */ rte_be32_t proto; /* L4 protocol - top 3 bytes must be zero */ } psd_hdr; psd_hdr.proto = (uint32_t)(ipv6_hdr->proto << 24); if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) { psd_hdr.len = 0; } else { psd_hdr.len = ipv6_hdr->payload_len; } sum = __rte_raw_cksum(ipv6_hdr->src_addr, sizeof(ipv6_hdr->src_addr) + sizeof(ipv6_hdr->dst_addr), 0); sum = __rte_raw_cksum(&psd_hdr, sizeof(psd_hdr), sum); return __rte_raw_cksum_reduce(sum); } /** * @internal Calculate the non-complemented IPv6 L4 checksum */ static inline uint16_t __rte_ipv6_udptcp_cksum(const struct rte_ipv6_hdr *ipv6_hdr, const void *l4_hdr) { uint32_t cksum; uint32_t l4_len; l4_len = rte_be_to_cpu_16(ipv6_hdr->payload_len); cksum = rte_raw_cksum(l4_hdr, l4_len); cksum += rte_ipv6_phdr_cksum(ipv6_hdr, 0); cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff); return (uint16_t)cksum; } /** * Process the IPv6 UDP or TCP checksum. * * The IPv6 header must not be followed by extension headers. The layer 4 * checksum must be set to 0 in the L4 header by the caller. * * @param ipv6_hdr * The pointer to the contiguous IPv6 header. * @param l4_hdr * The pointer to the beginning of the L4 header. * @return * The complemented checksum to set in the L4 header. */ static inline uint16_t rte_ipv6_udptcp_cksum(const struct rte_ipv6_hdr *ipv6_hdr, const void *l4_hdr) { uint16_t cksum = __rte_ipv6_udptcp_cksum(ipv6_hdr, l4_hdr); cksum = ~cksum; /* * Per RFC 768: If the computed checksum is zero for UDP, * it is transmitted as all ones * (the equivalent in one's complement arithmetic). */ if (cksum == 0 && ipv6_hdr->proto == IPPROTO_UDP) cksum = 0xffff; return cksum; } /** * Validate the IPv6 UDP or TCP checksum. * * In case of UDP, the caller must first check if udp_hdr->dgram_cksum is 0: * this is either invalid or means no checksum in some situations. See 8.1 * (Upper-Layer Checksums) in RFC 8200. * * @param ipv6_hdr * The pointer to the contiguous IPv6 header. * @param l4_hdr * The pointer to the beginning of the L4 header. * @return * Return 0 if the checksum is correct, else -1. */ __rte_experimental static inline int rte_ipv6_udptcp_cksum_verify(const struct rte_ipv6_hdr *ipv6_hdr, const void *l4_hdr) { uint16_t cksum = __rte_ipv6_udptcp_cksum(ipv6_hdr, l4_hdr); if (cksum != 0xffff) return -1; return 0; } /** IPv6 fragment extension header. */ #define RTE_IPV6_EHDR_MF_SHIFT 0 #define RTE_IPV6_EHDR_MF_MASK 1 #define RTE_IPV6_EHDR_FO_SHIFT 3 #define RTE_IPV6_EHDR_FO_MASK (~((1 << RTE_IPV6_EHDR_FO_SHIFT) - 1)) #define RTE_IPV6_EHDR_FO_ALIGN (1 << RTE_IPV6_EHDR_FO_SHIFT) #define RTE_IPV6_FRAG_USED_MASK (RTE_IPV6_EHDR_MF_MASK | RTE_IPV6_EHDR_FO_MASK) #define RTE_IPV6_GET_MF(x) ((x) & RTE_IPV6_EHDR_MF_MASK) #define RTE_IPV6_GET_FO(x) ((x) >> RTE_IPV6_EHDR_FO_SHIFT) #define RTE_IPV6_SET_FRAG_DATA(fo, mf) \ (((fo) & RTE_IPV6_EHDR_FO_MASK) | ((mf) & RTE_IPV6_EHDR_MF_MASK)) struct rte_ipv6_fragment_ext { uint8_t next_header; /**< Next header type */ uint8_t reserved; /**< Reserved */ rte_be16_t frag_data; /**< All fragmentation data */ rte_be32_t id; /**< Packet ID */ } __rte_packed; /* IPv6 fragment extension header size */ #define RTE_IPV6_FRAG_HDR_SIZE sizeof(struct rte_ipv6_fragment_ext) /** * Parse next IPv6 header extension * * This function checks if proto number is an IPv6 extensions and parses its * data if so, providing information on next header and extension length. * * @param p * Pointer to an extension raw data. * @param proto * Protocol number extracted from the "next header" field from * the IPv6 header or the previous extension. * @param ext_len * Extension data length. * @return * next protocol number if proto is an IPv6 extension, -EINVAL otherwise */ __rte_experimental static inline int rte_ipv6_get_next_ext(const uint8_t *p, int proto, size_t *ext_len) { int next_proto; switch (proto) { case IPPROTO_AH: next_proto = *p++; *ext_len = (*p + 2) * sizeof(uint32_t); break; case IPPROTO_HOPOPTS: case IPPROTO_ROUTING: case IPPROTO_DSTOPTS: next_proto = *p++; *ext_len = (*p + 1) * sizeof(uint64_t); break; case IPPROTO_FRAGMENT: next_proto = *p; *ext_len = RTE_IPV6_FRAG_HDR_SIZE; break; default: return -EINVAL; } return next_proto; } #ifdef __cplusplus } #endif #endif /* _RTE_IP_H_ */