/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2021 Intel Corporation */ #ifndef _RTE_THASH_X86_GFNI_H_ #define _RTE_THASH_X86_GFNI_H_ /** * @file * * Optimized Toeplitz hash functions implementation * using Galois Fields New Instructions. */ #include #ifdef __cplusplus extern "C" { #endif #if defined(__GFNI__) && defined(__AVX512F__) #define RTE_THASH_GFNI_DEFINED #define RTE_THASH_FIRST_ITER_MSK 0x0f0f0f0f0f0e0c08 #define RTE_THASH_PERM_MSK 0x0f0f0f0f0f0f0f0f #define RTE_THASH_FIRST_ITER_MSK_2 0xf0f0f0f0f0e0c080 #define RTE_THASH_PERM_MSK_2 0xf0f0f0f0f0f0f0f0 #define RTE_THASH_REWIND_MSK 0x0000000000113377 __rte_internal static inline void __rte_thash_xor_reduce(__m512i xor_acc, uint32_t *val_1, uint32_t *val_2) { __m256i tmp_256_1, tmp_256_2; __m128i tmp128_1, tmp128_2; tmp_256_1 = _mm512_castsi512_si256(xor_acc); tmp_256_2 = _mm512_extracti32x8_epi32(xor_acc, 1); tmp_256_1 = _mm256_xor_si256(tmp_256_1, tmp_256_2); tmp128_1 = _mm256_castsi256_si128(tmp_256_1); tmp128_2 = _mm256_extracti32x4_epi32(tmp_256_1, 1); tmp128_1 = _mm_xor_si128(tmp128_1, tmp128_2); #ifdef RTE_ARCH_X86_64 uint64_t tmp_1, tmp_2; tmp_1 = _mm_extract_epi64(tmp128_1, 0); tmp_2 = _mm_extract_epi64(tmp128_1, 1); tmp_1 ^= tmp_2; *val_1 = (uint32_t)tmp_1; *val_2 = (uint32_t)(tmp_1 >> 32); #else uint32_t tmp_1, tmp_2; tmp_1 = _mm_extract_epi32(tmp128_1, 0); tmp_2 = _mm_extract_epi32(tmp128_1, 1); tmp_1 ^= _mm_extract_epi32(tmp128_1, 2); tmp_2 ^= _mm_extract_epi32(tmp128_1, 3); *val_1 = tmp_1; *val_2 = tmp_2; #endif } __rte_internal static inline __m512i __rte_thash_gfni(const uint64_t *mtrx, const uint8_t *tuple, const uint8_t *secondary_tuple, int len) { __m512i permute_idx = _mm512_set_epi32(0x07060504, 0x07060504, 0x06050403, 0x06050403, 0x05040302, 0x05040302, 0x04030201, 0x04030201, 0x03020100, 0x03020100, 0x020100FF, 0x020100FF, 0x0100FFFE, 0x0100FFFE, 0x00FFFEFD, 0x00FFFEFD); const __m512i rewind_idx = _mm512_set_epi32(0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000003B, 0x0000003B, 0x00003B3A, 0x00003B3A, 0x003B3A39, 0x003B3A39); const __mmask64 rewind_mask = RTE_THASH_REWIND_MSK; const __m512i shift_8 = _mm512_set1_epi8(8); __m512i xor_acc = _mm512_setzero_si512(); __m512i perm_bytes = _mm512_setzero_si512(); __m512i vals, matrixes, tuple_bytes, tuple_bytes_2; __mmask64 load_mask, permute_mask, permute_mask_2; int chunk_len = 0, i = 0; uint8_t mtrx_msk; const int prepend = 3; for (; len > 0; len -= 64, tuple += 64) { if (i == 8) perm_bytes = _mm512_maskz_permutexvar_epi8(rewind_mask, rewind_idx, perm_bytes); permute_mask = RTE_THASH_FIRST_ITER_MSK; load_mask = (len >= 64) ? UINT64_MAX : ((1ULL << len) - 1); tuple_bytes = _mm512_maskz_loadu_epi8(load_mask, tuple); if (secondary_tuple) { permute_mask_2 = RTE_THASH_FIRST_ITER_MSK_2; tuple_bytes_2 = _mm512_maskz_loadu_epi8(load_mask, secondary_tuple); } chunk_len = __builtin_popcountll(load_mask); for (i = 0; i < ((chunk_len + prepend) / 8); i++, mtrx += 8) { perm_bytes = _mm512_mask_permutexvar_epi8(perm_bytes, permute_mask, permute_idx, tuple_bytes); if (secondary_tuple) perm_bytes = _mm512_mask_permutexvar_epi8(perm_bytes, permute_mask_2, permute_idx, tuple_bytes_2); matrixes = _mm512_maskz_loadu_epi64(UINT8_MAX, mtrx); vals = _mm512_gf2p8affine_epi64_epi8(perm_bytes, matrixes, 0); xor_acc = _mm512_xor_si512(xor_acc, vals); permute_idx = _mm512_add_epi8(permute_idx, shift_8); permute_mask = RTE_THASH_PERM_MSK; if (secondary_tuple) permute_mask_2 = RTE_THASH_PERM_MSK_2; } } int rest_len = (chunk_len + prepend) % 8; if (rest_len != 0) { mtrx_msk = (1 << (rest_len % 8)) - 1; matrixes = _mm512_maskz_loadu_epi64(mtrx_msk, mtrx); if (i == 8) { perm_bytes = _mm512_maskz_permutexvar_epi8(rewind_mask, rewind_idx, perm_bytes); } else { perm_bytes = _mm512_mask_permutexvar_epi8(perm_bytes, permute_mask, permute_idx, tuple_bytes); if (secondary_tuple) perm_bytes = _mm512_mask_permutexvar_epi8( perm_bytes, permute_mask_2, permute_idx, tuple_bytes_2); } vals = _mm512_gf2p8affine_epi64_epi8(perm_bytes, matrixes, 0); xor_acc = _mm512_xor_si512(xor_acc, vals); } return xor_acc; } /** * Calculate Toeplitz hash. * * @warning * @b EXPERIMENTAL: this API may change without prior notice. * * @param m * Pointer to the matrices generated from the corresponding * RSS hash key using rte_thash_complete_matrix(). * Note that @p len should not exceed the length of the rss_key minus 4. * @param tuple * Pointer to the data to be hashed. Data must be in network byte order. * @param len * Length of the data to be hashed. * @return * Calculated Toeplitz hash value. */ __rte_experimental static inline uint32_t rte_thash_gfni(const uint64_t *m, const uint8_t *tuple, int len) { uint32_t val, val_zero; __m512i xor_acc = __rte_thash_gfni(m, tuple, NULL, len); __rte_thash_xor_reduce(xor_acc, &val, &val_zero); return val; } /** * Bulk implementation for Toeplitz hash. * * @warning * @b EXPERIMENTAL: this API may change without prior notice. * * @param m * Pointer to the matrices generated from the corresponding * RSS hash key using rte_thash_complete_matrix(). * Note that @p len should not exceed the length of the rss_key minus 4. * @param len * Length of the largest data buffer to be hashed. * @param tuple * Array of the pointers on data to be hashed. * Data must be in network byte order. * @param val * Array of uint32_t where to put calculated Toeplitz hash values * @param num * Number of tuples to hash. */ __rte_experimental static inline void rte_thash_gfni_bulk(const uint64_t *mtrx, int len, uint8_t *tuple[], uint32_t val[], uint32_t num) { uint32_t i; uint32_t val_zero; __m512i xor_acc; for (i = 0; i != (num & ~1); i += 2) { xor_acc = __rte_thash_gfni(mtrx, tuple[i], tuple[i + 1], len); __rte_thash_xor_reduce(xor_acc, val + i, val + i + 1); } if (num & 1) { xor_acc = __rte_thash_gfni(mtrx, tuple[i], NULL, len); __rte_thash_xor_reduce(xor_acc, val + i, &val_zero); } } #endif /* __GFNI__ && __AVX512F__ */ #ifdef __cplusplus } #endif #endif /* _RTE_THASH_X86_GFNI_H_ */