/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2015 6WIND S.A. * Copyright 2015 Mellanox Technologies, Ltd */ #ifndef RTE_PMD_MLX5_UTILS_H_ #define RTE_PMD_MLX5_UTILS_H_ #include #include #include #include #include #include #include #include #include #include #include #include "mlx5_defs.h" /* Convert a bit number to the corresponding 64-bit mask */ #define MLX5_BITSHIFT(v) (UINT64_C(1) << (v)) /* Save and restore errno around argument evaluation. */ #define ERRNO_SAFE(x) ((errno = (int []){ errno, ((x), 0) }[0])) extern int mlx5_logtype; #define MLX5_NET_LOG_PREFIX "mlx5_net" /* Generic printf()-like logging macro with automatic line feed. */ #define DRV_LOG(level, ...) \ PMD_DRV_LOG_(level, mlx5_logtype, MLX5_NET_LOG_PREFIX, \ __VA_ARGS__ PMD_DRV_LOG_STRIP PMD_DRV_LOG_OPAREN, \ PMD_DRV_LOG_CPAREN) /* Convenience macros for accessing mbuf fields. */ #define NEXT(m) ((m)->next) #define DATA_LEN(m) ((m)->data_len) #define PKT_LEN(m) ((m)->pkt_len) #define DATA_OFF(m) ((m)->data_off) #define SET_DATA_OFF(m, o) ((m)->data_off = (o)) #define NB_SEGS(m) ((m)->nb_segs) #define PORT(m) ((m)->port) /* Transpose flags. Useful to convert IBV to DPDK flags. */ #define TRANSPOSE(val, from, to) \ (((from) >= (to)) ? \ (((val) & (from)) / ((from) / (to))) : \ (((val) & (from)) * ((to) / (from)))) /* * For the case which data is linked with sequence increased index, the * array table will be more efficient than hash table once need to search * one data entry in large numbers of entries. Since the traditional hash * tables has fixed table size, when huge numbers of data saved to the hash * table, it also comes lots of hash conflict. * * But simple array table also has fixed size, allocates all the needed * memory at once will waste lots of memory. For the case don't know the * exactly number of entries will be impossible to allocate the array. * * Then the multiple level table helps to balance the two disadvantages. * Allocate a global high level table with sub table entries at first, * the global table contains the sub table entries, and the sub table will * be allocated only once the corresponding index entry need to be saved. * e.g. for up to 32-bits index, three level table with 10-10-12 splitting, * with sequence increased index, the memory grows with every 4K entries. * * The currently implementation introduces 10-10-12 32-bits splitting * Three-Level table to help the cases which have millions of enties to * save. The index entries can be addressed directly by the index, no * search will be needed.q */ /* L3 table global table define. */ #define MLX5_L3T_GT_OFFSET 22 #define MLX5_L3T_GT_SIZE (1 << 10) #define MLX5_L3T_GT_MASK (MLX5_L3T_GT_SIZE - 1) /* L3 table middle table define. */ #define MLX5_L3T_MT_OFFSET 12 #define MLX5_L3T_MT_SIZE (1 << 10) #define MLX5_L3T_MT_MASK (MLX5_L3T_MT_SIZE - 1) /* L3 table entry table define. */ #define MLX5_L3T_ET_OFFSET 0 #define MLX5_L3T_ET_SIZE (1 << 12) #define MLX5_L3T_ET_MASK (MLX5_L3T_ET_SIZE - 1) /* L3 table type. */ enum mlx5_l3t_type { MLX5_L3T_TYPE_WORD = 0, MLX5_L3T_TYPE_DWORD, MLX5_L3T_TYPE_QWORD, MLX5_L3T_TYPE_PTR, MLX5_L3T_TYPE_MAX, }; struct mlx5_indexed_pool; /* Generic data struct. */ union mlx5_l3t_data { uint16_t word; uint32_t dword; uint64_t qword; void *ptr; }; /* L3 level table data structure. */ struct mlx5_l3t_level_tbl { uint64_t ref_cnt; /* Table ref_cnt. */ void *tbl[]; /* Table array. */ }; /* L3 word entry table data structure. */ struct mlx5_l3t_entry_word { uint32_t idx; /* Table index. */ uint64_t ref_cnt; /* Table ref_cnt. */ struct { uint16_t data; uint32_t ref_cnt; } entry[MLX5_L3T_ET_SIZE]; /* Entry array */ } __rte_packed; /* L3 double word entry table data structure. */ struct mlx5_l3t_entry_dword { uint32_t idx; /* Table index. */ uint64_t ref_cnt; /* Table ref_cnt. */ struct { uint32_t data; int32_t ref_cnt; } entry[MLX5_L3T_ET_SIZE]; /* Entry array */ } __rte_packed; /* L3 quad word entry table data structure. */ struct mlx5_l3t_entry_qword { uint32_t idx; /* Table index. */ uint64_t ref_cnt; /* Table ref_cnt. */ struct { uint64_t data; uint32_t ref_cnt; } entry[MLX5_L3T_ET_SIZE]; /* Entry array */ } __rte_packed; /* L3 pointer entry table data structure. */ struct mlx5_l3t_entry_ptr { uint32_t idx; /* Table index. */ uint64_t ref_cnt; /* Table ref_cnt. */ struct { void *data; uint32_t ref_cnt; } entry[MLX5_L3T_ET_SIZE]; /* Entry array */ } __rte_packed; /* L3 table data structure. */ struct mlx5_l3t_tbl { enum mlx5_l3t_type type; /* Table type. */ struct mlx5_indexed_pool *eip; /* Table index pool handles. */ struct mlx5_l3t_level_tbl *tbl; /* Global table index. */ rte_spinlock_t sl; /* The table lock. */ }; /** Type of function that is used to handle the data before freeing. */ typedef int32_t (*mlx5_l3t_alloc_callback_fn)(void *ctx, union mlx5_l3t_data *data); /* * The indexed memory entry index is made up of trunk index and offset of * the entry in the trunk. Since the entry index is 32 bits, in case user * prefers to have small trunks, user can change the macro below to a big * number which helps the pool contains more trunks with lots of entries * allocated. */ #define TRUNK_IDX_BITS 16 #define TRUNK_MAX_IDX ((1 << TRUNK_IDX_BITS) - 1) #define TRUNK_INVALID TRUNK_MAX_IDX #define MLX5_IPOOL_DEFAULT_TRUNK_SIZE (1 << (28 - TRUNK_IDX_BITS)) #ifdef RTE_LIBRTE_MLX5_DEBUG #define POOL_DEBUG 1 #endif struct mlx5_indexed_pool_config { uint32_t size; /* Pool entry size. */ uint32_t trunk_size:22; /* * Trunk entry number. Must be power of 2. It can be increased * if trunk_grow enable. The trunk entry number increases with * left shift grow_shift. Trunks with index are after grow_trunk * will keep the entry number same with the last grow trunk. */ uint32_t grow_trunk:4; /* * Trunks with entry number increase in the pool. Set it to 0 * to make the pool works as trunk entry fixed pool. It works * only if grow_shift is not 0. */ uint32_t grow_shift:4; /* * Trunk entry number increase shift value, stop after grow_trunk. * It works only if grow_trunk is not 0. */ uint32_t need_lock:1; /* Lock is needed for multiple thread usage. */ uint32_t release_mem_en:1; /* Rlease trunk when it is free. */ uint32_t max_idx; /* The maximum index can be allocated. */ uint32_t per_core_cache; /* * Cache entry number per core for performance. Should not be * set with release_mem_en. */ const char *type; /* Memory allocate type name. */ void *(*malloc)(uint32_t flags, size_t size, unsigned int align, int socket); /* User defined memory allocator. */ void (*free)(void *addr); /* User defined memory release. */ }; struct mlx5_indexed_trunk { uint32_t idx; /* Trunk id. */ uint32_t prev; /* Previous free trunk in free list. */ uint32_t next; /* Next free trunk in free list. */ uint32_t free; /* Free entries available */ struct rte_bitmap *bmp; uint8_t data[] __rte_cache_aligned; /* Entry data start. */ }; struct mlx5_indexed_cache { struct mlx5_indexed_trunk **trunks; volatile uint32_t n_trunk_valid; /* Trunks allocated. */ uint32_t n_trunk; /* Trunk pointer array size. */ uint32_t ref_cnt; uint32_t len; uint32_t idx[]; }; struct mlx5_ipool_per_lcore { struct mlx5_indexed_cache *lc; uint32_t len; /**< Current cache count. */ uint32_t idx[]; /**< Cache objects. */ }; struct mlx5_indexed_pool { struct mlx5_indexed_pool_config cfg; /* Indexed pool configuration. */ rte_spinlock_t rsz_lock; /* Pool lock for multiple thread usage. */ rte_spinlock_t lcore_lock; /* Dim of trunk pointer array. */ union { struct { uint32_t n_trunk_valid; /* Trunks allocated. */ uint32_t n_trunk; /* Trunk pointer array size. */ struct mlx5_indexed_trunk **trunks; uint32_t free_list; /* Index to first free trunk. */ }; struct { struct mlx5_indexed_cache *gc; /* Global cache. */ struct mlx5_ipool_per_lcore *cache[RTE_MAX_LCORE + 1]; /* Local cache. */ struct rte_bitmap *ibmp; void *bmp_mem; /* Allocate objects bitmap. Use during flush. */ }; }; #ifdef POOL_DEBUG uint32_t n_entry; uint32_t trunk_new; uint32_t trunk_avail; uint32_t trunk_empty; uint32_t trunk_free; #endif uint32_t grow_tbl[]; /* Save the index offset for the grow trunks. */ }; /** * Return logarithm of the nearest power of two above input value. * * @param v * Input value. * * @return * Logarithm of the nearest power of two above input value. */ static inline unsigned int log2above(unsigned int v) { unsigned int l; unsigned int r; for (l = 0, r = 0; (v >> 1); ++l, v >>= 1) r |= (v & 1); return l + r; } /********************************* indexed pool *************************/ /** * This function allocates non-initialized memory entry from pool. * In NUMA systems, the memory entry allocated resides on the same * NUMA socket as the core that calls this function. * * Memory entry is allocated from memory trunk, no alignment. * * @param pool * Pointer to indexed memory entry pool. * No initialization required. * @param[out] idx * Pointer to memory to save allocated index. * Memory index always positive value. * @return * - Pointer to the allocated memory entry. * - NULL on error. Not enough memory, or invalid arguments. */ void *mlx5_ipool_malloc(struct mlx5_indexed_pool *pool, uint32_t *idx); /** * This function allocates zero initialized memory entry from pool. * In NUMA systems, the memory entry allocated resides on the same * NUMA socket as the core that calls this function. * * Memory entry is allocated from memory trunk, no alignment. * * @param pool * Pointer to indexed memory pool. * No initialization required. * @param[out] idx * Pointer to memory to save allocated index. * Memory index always positive value. * @return * - Pointer to the allocated memory entry . * - NULL on error. Not enough memory, or invalid arguments. */ void *mlx5_ipool_zmalloc(struct mlx5_indexed_pool *pool, uint32_t *idx); /** * This function frees indexed memory entry to pool. * Caller has to make sure that the index is allocated from same pool. * * @param pool * Pointer to indexed memory pool. * @param idx * Allocated memory entry index. */ void mlx5_ipool_free(struct mlx5_indexed_pool *pool, uint32_t idx); /** * This function returns pointer of indexed memory entry from index. * Caller has to make sure that the index is valid, and allocated * from same pool. * * @param pool * Pointer to indexed memory pool. * @param idx * Allocated memory index. * @return * - Pointer to indexed memory entry. */ void *mlx5_ipool_get(struct mlx5_indexed_pool *pool, uint32_t idx); /** * This function creates indexed memory pool. * Caller has to configure the configuration accordingly. * * @param pool * Pointer to indexed memory pool. * @param cfg * Allocated memory index. */ struct mlx5_indexed_pool * mlx5_ipool_create(struct mlx5_indexed_pool_config *cfg); /** * This function releases all resources of pool. * Caller has to make sure that all indexes and memories allocated * from this pool not referenced anymore. * * @param pool * Pointer to indexed memory pool. * @return * - non-zero value on error. * - 0 on success. */ int mlx5_ipool_destroy(struct mlx5_indexed_pool *pool); /** * This function dumps debug info of pool. * * @param pool * Pointer to indexed memory pool. */ void mlx5_ipool_dump(struct mlx5_indexed_pool *pool); /** * This function flushes all the cache index back to pool trunk. * * @param pool * Pointer to the index memory pool handler. * */ void mlx5_ipool_flush_cache(struct mlx5_indexed_pool *pool); /** * This function gets the available entry from pos. * * @param pool * Pointer to the index memory pool handler. * @param pos * Pointer to the index position start from. * * @return * - Pointer to the next available entry. * */ void *mlx5_ipool_get_next(struct mlx5_indexed_pool *pool, uint32_t *pos); /** * This function allocates new empty Three-level table. * * @param type * The l3t can set as word, double word, quad word or pointer with index. * * @return * - Pointer to the allocated l3t. * - NULL on error. Not enough memory, or invalid arguments. */ struct mlx5_l3t_tbl *mlx5_l3t_create(enum mlx5_l3t_type type); /** * This function destroys Three-level table. * * @param tbl * Pointer to the l3t. */ void mlx5_l3t_destroy(struct mlx5_l3t_tbl *tbl); /** * This function gets the index entry from Three-level table. * * @param tbl * Pointer to the l3t. * @param idx * Index to the entry. * @param data * Pointer to the memory which saves the entry data. * When function call returns 0, data contains the entry data get from * l3t. * When function call returns -1, data is not modified. * * @return * 0 if success, -1 on error. */ int32_t mlx5_l3t_get_entry(struct mlx5_l3t_tbl *tbl, uint32_t idx, union mlx5_l3t_data *data); /** * This function decreases and clear index entry if reference * counter is 0 from Three-level table. * * @param tbl * Pointer to the l3t. * @param idx * Index to the entry. * * @return * The remaining reference count, 0 means entry be cleared, -1 on error. */ int32_t mlx5_l3t_clear_entry(struct mlx5_l3t_tbl *tbl, uint32_t idx); /** * This function sets the index entry to Three-level table. * If the entry is already set, the EEXIST errno will be given, and * the set data will be filled to the data. * * @param tbl[in] * Pointer to the l3t. * @param idx[in] * Index to the entry. * @param data[in/out] * Pointer to the memory which contains the entry data save to l3t. * If the entry is already set, the set data will be filled. * * @return * 0 if success, -1 on error. */ int32_t mlx5_l3t_set_entry(struct mlx5_l3t_tbl *tbl, uint32_t idx, union mlx5_l3t_data *data); static inline void * mlx5_l3t_get_next(struct mlx5_l3t_tbl *tbl, uint32_t *pos) { struct mlx5_l3t_level_tbl *g_tbl, *m_tbl; uint32_t i, j, k, g_start, m_start, e_start; uint32_t idx = *pos; void *e_tbl; struct mlx5_l3t_entry_word *w_e_tbl; struct mlx5_l3t_entry_dword *dw_e_tbl; struct mlx5_l3t_entry_qword *qw_e_tbl; struct mlx5_l3t_entry_ptr *ptr_e_tbl; if (!tbl) return NULL; g_tbl = tbl->tbl; if (!g_tbl) return NULL; g_start = (idx >> MLX5_L3T_GT_OFFSET) & MLX5_L3T_GT_MASK; m_start = (idx >> MLX5_L3T_MT_OFFSET) & MLX5_L3T_MT_MASK; e_start = idx & MLX5_L3T_ET_MASK; for (i = g_start; i < MLX5_L3T_GT_SIZE; i++) { m_tbl = g_tbl->tbl[i]; if (!m_tbl) { /* Jump to new table, reset the sub table start. */ m_start = 0; e_start = 0; continue; } for (j = m_start; j < MLX5_L3T_MT_SIZE; j++) { if (!m_tbl->tbl[j]) { /* * Jump to new table, reset the sub table * start. */ e_start = 0; continue; } e_tbl = m_tbl->tbl[j]; switch (tbl->type) { case MLX5_L3T_TYPE_WORD: w_e_tbl = (struct mlx5_l3t_entry_word *)e_tbl; for (k = e_start; k < MLX5_L3T_ET_SIZE; k++) { if (!w_e_tbl->entry[k].data) continue; *pos = (i << MLX5_L3T_GT_OFFSET) | (j << MLX5_L3T_MT_OFFSET) | k; return (void *)&w_e_tbl->entry[k].data; } break; case MLX5_L3T_TYPE_DWORD: dw_e_tbl = (struct mlx5_l3t_entry_dword *)e_tbl; for (k = e_start; k < MLX5_L3T_ET_SIZE; k++) { if (!dw_e_tbl->entry[k].data) continue; *pos = (i << MLX5_L3T_GT_OFFSET) | (j << MLX5_L3T_MT_OFFSET) | k; return (void *)&dw_e_tbl->entry[k].data; } break; case MLX5_L3T_TYPE_QWORD: qw_e_tbl = (struct mlx5_l3t_entry_qword *)e_tbl; for (k = e_start; k < MLX5_L3T_ET_SIZE; k++) { if (!qw_e_tbl->entry[k].data) continue; *pos = (i << MLX5_L3T_GT_OFFSET) | (j << MLX5_L3T_MT_OFFSET) | k; return (void *)&qw_e_tbl->entry[k].data; } break; default: ptr_e_tbl = (struct mlx5_l3t_entry_ptr *)e_tbl; for (k = e_start; k < MLX5_L3T_ET_SIZE; k++) { if (!ptr_e_tbl->entry[k].data) continue; *pos = (i << MLX5_L3T_GT_OFFSET) | (j << MLX5_L3T_MT_OFFSET) | k; return ptr_e_tbl->entry[k].data; } break; } } } return NULL; } /* * Macros for linked list based on indexed memory. * Example data structure: * struct Foo { * ILIST_ENTRY(uint16_t) next; * ... * } * */ #define ILIST_ENTRY(type) \ struct { \ type prev; /* Index of previous element. */ \ type next; /* Index of next element. */ \ } #define ILIST_INSERT(pool, head, idx, elem, field) \ do { \ typeof(elem) peer; \ MLX5_ASSERT((elem) && (idx)); \ (elem)->field.next = *(head); \ (elem)->field.prev = 0; \ if (*(head)) { \ (peer) = mlx5_ipool_get(pool, *(head)); \ if (peer) \ (peer)->field.prev = (idx); \ } \ *(head) = (idx); \ } while (0) #define ILIST_REMOVE(pool, head, idx, elem, field) \ do { \ typeof(elem) peer; \ MLX5_ASSERT(elem); \ MLX5_ASSERT(head); \ if ((elem)->field.prev) { \ (peer) = mlx5_ipool_get \ (pool, (elem)->field.prev); \ if (peer) \ (peer)->field.next = (elem)->field.next;\ } \ if ((elem)->field.next) { \ (peer) = mlx5_ipool_get \ (pool, (elem)->field.next); \ if (peer) \ (peer)->field.prev = (elem)->field.prev;\ } \ if (*(head) == (idx)) \ *(head) = (elem)->field.next; \ } while (0) #define ILIST_FOREACH(pool, head, idx, elem, field) \ for ((idx) = (head), (elem) = \ (idx) ? mlx5_ipool_get(pool, (idx)) : NULL; (elem); \ idx = (elem)->field.next, (elem) = \ (idx) ? mlx5_ipool_get(pool, idx) : NULL) /* Single index list. */ #define SILIST_ENTRY(type) \ struct { \ type next; /* Index of next element. */ \ } #define SILIST_INSERT(head, idx, elem, field) \ do { \ MLX5_ASSERT((elem) && (idx)); \ (elem)->field.next = *(head); \ *(head) = (idx); \ } while (0) #define SILIST_FOREACH(pool, head, idx, elem, field) \ for ((idx) = (head), (elem) = \ (idx) ? mlx5_ipool_get(pool, (idx)) : NULL; (elem); \ idx = (elem)->field.next, (elem) = \ (idx) ? mlx5_ipool_get(pool, idx) : NULL) #define MLX5_L3T_FOREACH(tbl, idx, entry) \ for (idx = 0, (entry) = mlx5_l3t_get_next((tbl), &idx); \ (entry); \ idx++, (entry) = mlx5_l3t_get_next((tbl), &idx)) #define MLX5_IPOOL_FOREACH(ipool, idx, entry) \ for ((idx) = 0, mlx5_ipool_flush_cache((ipool)), \ (entry) = mlx5_ipool_get_next((ipool), &idx); \ (entry); idx++, (entry) = mlx5_ipool_get_next((ipool), &idx)) #endif /* RTE_PMD_MLX5_UTILS_H_ */