/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2019 Intel Corporation */ #ifndef _ICE_RXTX_VEC_COMMON_H_ #define _ICE_RXTX_VEC_COMMON_H_ #include "ice_rxtx.h" #ifndef __INTEL_COMPILER #pragma GCC diagnostic ignored "-Wcast-qual" #endif static inline uint16_t ice_rx_reassemble_packets(struct ice_rx_queue *rxq, struct rte_mbuf **rx_bufs, uint16_t nb_bufs, uint8_t *split_flags) { struct rte_mbuf *pkts[ICE_VPMD_RX_BURST] = {0}; /*finished pkts*/ struct rte_mbuf *start = rxq->pkt_first_seg; struct rte_mbuf *end = rxq->pkt_last_seg; unsigned int pkt_idx, buf_idx; for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) { if (end) { /* processing a split packet */ end->next = rx_bufs[buf_idx]; rx_bufs[buf_idx]->data_len += rxq->crc_len; start->nb_segs++; start->pkt_len += rx_bufs[buf_idx]->data_len; end = end->next; if (!split_flags[buf_idx]) { /* it's the last packet of the set */ start->hash = end->hash; start->vlan_tci = end->vlan_tci; start->ol_flags = end->ol_flags; /* we need to strip crc for the whole packet */ start->pkt_len -= rxq->crc_len; if (end->data_len > rxq->crc_len) { end->data_len -= rxq->crc_len; } else { /* free up last mbuf */ struct rte_mbuf *secondlast = start; start->nb_segs--; while (secondlast->next != end) secondlast = secondlast->next; secondlast->data_len -= (rxq->crc_len - end->data_len); secondlast->next = NULL; rte_pktmbuf_free_seg(end); } pkts[pkt_idx++] = start; start = NULL; end = NULL; } } else { /* not processing a split packet */ if (!split_flags[buf_idx]) { /* not a split packet, save and skip */ pkts[pkt_idx++] = rx_bufs[buf_idx]; continue; } start = rx_bufs[buf_idx]; end = start; rx_bufs[buf_idx]->data_len += rxq->crc_len; rx_bufs[buf_idx]->pkt_len += rxq->crc_len; } } /* save the partial packet for next time */ rxq->pkt_first_seg = start; rxq->pkt_last_seg = end; rte_memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts))); return pkt_idx; } static __rte_always_inline int ice_tx_free_bufs_vec(struct ice_tx_queue *txq) { struct ice_tx_entry *txep; uint32_t n; uint32_t i; int nb_free = 0; struct rte_mbuf *m, *free[ICE_TX_MAX_FREE_BUF_SZ]; /* check DD bits on threshold descriptor */ if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz & rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) != rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE)) return 0; n = txq->tx_rs_thresh; /* first buffer to free from S/W ring is at index * tx_next_dd - (tx_rs_thresh-1) */ txep = &txq->sw_ring[txq->tx_next_dd - (n - 1)]; m = rte_pktmbuf_prefree_seg(txep[0].mbuf); if (likely(m)) { free[0] = m; nb_free = 1; for (i = 1; i < n; i++) { m = rte_pktmbuf_prefree_seg(txep[i].mbuf); if (likely(m)) { if (likely(m->pool == free[0]->pool)) { free[nb_free++] = m; } else { rte_mempool_put_bulk(free[0]->pool, (void *)free, nb_free); free[0] = m; nb_free = 1; } } } rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free); } else { for (i = 1; i < n; i++) { m = rte_pktmbuf_prefree_seg(txep[i].mbuf); if (m) rte_mempool_put(m->pool, m); } } /* buffers were freed, update counters */ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh); txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh); if (txq->tx_next_dd >= txq->nb_tx_desc) txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1); return txq->tx_rs_thresh; } static __rte_always_inline void ice_tx_backlog_entry(struct ice_tx_entry *txep, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { int i; for (i = 0; i < (int)nb_pkts; ++i) txep[i].mbuf = tx_pkts[i]; } static inline void _ice_rx_queue_release_mbufs_vec(struct ice_rx_queue *rxq) { const unsigned int mask = rxq->nb_rx_desc - 1; unsigned int i; if (unlikely(!rxq->sw_ring)) { PMD_DRV_LOG(DEBUG, "sw_ring is NULL"); return; } if (rxq->rxrearm_nb >= rxq->nb_rx_desc) return; /* free all mbufs that are valid in the ring */ if (rxq->rxrearm_nb == 0) { for (i = 0; i < rxq->nb_rx_desc; i++) { if (rxq->sw_ring[i].mbuf) rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); } } else { for (i = rxq->rx_tail; i != rxq->rxrearm_start; i = (i + 1) & mask) { if (rxq->sw_ring[i].mbuf) rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); } } rxq->rxrearm_nb = rxq->nb_rx_desc; /* set all entries to NULL */ memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_rx_desc); } static inline void _ice_tx_queue_release_mbufs_vec(struct ice_tx_queue *txq) { uint16_t i; if (unlikely(!txq || !txq->sw_ring)) { PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL"); return; } /** * vPMD tx will not set sw_ring's mbuf to NULL after free, * so need to free remains more carefully. */ i = txq->tx_next_dd - txq->tx_rs_thresh + 1; #ifdef __AVX512VL__ struct rte_eth_dev *dev = &rte_eth_devices[txq->vsi->adapter->pf.dev_data->port_id]; if (dev->tx_pkt_burst == ice_xmit_pkts_vec_avx512 || dev->tx_pkt_burst == ice_xmit_pkts_vec_avx512_offload) { struct ice_vec_tx_entry *swr = (void *)txq->sw_ring; if (txq->tx_tail < i) { for (; i < txq->nb_tx_desc; i++) { rte_pktmbuf_free_seg(swr[i].mbuf); swr[i].mbuf = NULL; } i = 0; } for (; i < txq->tx_tail; i++) { rte_pktmbuf_free_seg(swr[i].mbuf); swr[i].mbuf = NULL; } } else #endif { if (txq->tx_tail < i) { for (; i < txq->nb_tx_desc; i++) { rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); txq->sw_ring[i].mbuf = NULL; } i = 0; } for (; i < txq->tx_tail; i++) { rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); txq->sw_ring[i].mbuf = NULL; } } } static inline int ice_rxq_vec_setup_default(struct ice_rx_queue *rxq) { uintptr_t p; struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */ mb_def.nb_segs = 1; mb_def.data_off = RTE_PKTMBUF_HEADROOM; mb_def.port = rxq->port_id; rte_mbuf_refcnt_set(&mb_def, 1); /* prevent compiler reordering: rearm_data covers previous fields */ rte_compiler_barrier(); p = (uintptr_t)&mb_def.rearm_data; rxq->mbuf_initializer = *(uint64_t *)p; return 0; } #define ICE_TX_NO_VECTOR_FLAGS ( \ RTE_ETH_TX_OFFLOAD_MULTI_SEGS | \ RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM | \ RTE_ETH_TX_OFFLOAD_TCP_TSO | \ RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) #define ICE_TX_VECTOR_OFFLOAD ( \ RTE_ETH_TX_OFFLOAD_VLAN_INSERT | \ RTE_ETH_TX_OFFLOAD_QINQ_INSERT | \ RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | \ RTE_ETH_TX_OFFLOAD_SCTP_CKSUM | \ RTE_ETH_TX_OFFLOAD_UDP_CKSUM | \ RTE_ETH_TX_OFFLOAD_TCP_CKSUM) #define ICE_RX_VECTOR_OFFLOAD ( \ RTE_ETH_RX_OFFLOAD_CHECKSUM | \ RTE_ETH_RX_OFFLOAD_SCTP_CKSUM | \ RTE_ETH_RX_OFFLOAD_VLAN | \ RTE_ETH_RX_OFFLOAD_RSS_HASH) #define ICE_VECTOR_PATH 0 #define ICE_VECTOR_OFFLOAD_PATH 1 static inline int ice_rx_vec_queue_default(struct ice_rx_queue *rxq) { if (!rxq) return -1; if (!rte_is_power_of_2(rxq->nb_rx_desc)) return -1; if (rxq->rx_free_thresh < ICE_VPMD_RX_BURST) return -1; if (rxq->nb_rx_desc % rxq->rx_free_thresh) return -1; if (rxq->proto_xtr != PROTO_XTR_NONE) return -1; if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) return -1; if (rxq->offloads & ICE_RX_VECTOR_OFFLOAD) return ICE_VECTOR_OFFLOAD_PATH; return ICE_VECTOR_PATH; } static inline int ice_tx_vec_queue_default(struct ice_tx_queue *txq) { if (!txq) return -1; if (txq->tx_rs_thresh < ICE_VPMD_TX_BURST || txq->tx_rs_thresh > ICE_TX_MAX_FREE_BUF_SZ) return -1; if (txq->offloads & ICE_TX_NO_VECTOR_FLAGS) return -1; if (txq->offloads & ICE_TX_VECTOR_OFFLOAD) return ICE_VECTOR_OFFLOAD_PATH; return ICE_VECTOR_PATH; } static inline int ice_rx_vec_dev_check_default(struct rte_eth_dev *dev) { int i; struct ice_rx_queue *rxq; int ret = 0; int result = 0; for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; ret = (ice_rx_vec_queue_default(rxq)); if (ret < 0) return -1; if (ret == ICE_VECTOR_OFFLOAD_PATH) result = ret; } return result; } static inline int ice_tx_vec_dev_check_default(struct rte_eth_dev *dev) { int i; struct ice_tx_queue *txq; int ret = 0; int result = 0; for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; ret = ice_tx_vec_queue_default(txq); if (ret < 0) return -1; if (ret == ICE_VECTOR_OFFLOAD_PATH) result = ret; } return result; } static inline void ice_txd_enable_offload(struct rte_mbuf *tx_pkt, uint64_t *txd_hi) { uint64_t ol_flags = tx_pkt->ol_flags; uint32_t td_cmd = 0; uint32_t td_offset = 0; /* Tx Checksum Offload */ /* SET MACLEN */ td_offset |= (tx_pkt->l2_len >> 1) << ICE_TX_DESC_LEN_MACLEN_S; /* Enable L3 checksum offload */ if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) { td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; td_offset |= (tx_pkt->l3_len >> 2) << ICE_TX_DESC_LEN_IPLEN_S; } else if (ol_flags & RTE_MBUF_F_TX_IPV4) { td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; td_offset |= (tx_pkt->l3_len >> 2) << ICE_TX_DESC_LEN_IPLEN_S; } else if (ol_flags & RTE_MBUF_F_TX_IPV6) { td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; td_offset |= (tx_pkt->l3_len >> 2) << ICE_TX_DESC_LEN_IPLEN_S; } /* Enable L4 checksum offloads */ switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) { case RTE_MBUF_F_TX_TCP_CKSUM: td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) << ICE_TX_DESC_LEN_L4_LEN_S; break; case RTE_MBUF_F_TX_SCTP_CKSUM: td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) << ICE_TX_DESC_LEN_L4_LEN_S; break; case RTE_MBUF_F_TX_UDP_CKSUM: td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; td_offset |= (sizeof(struct rte_udp_hdr) >> 2) << ICE_TX_DESC_LEN_L4_LEN_S; break; default: break; } *txd_hi |= ((uint64_t)td_offset) << ICE_TXD_QW1_OFFSET_S; /* Tx VLAN/QINQ insertion Offload */ if (ol_flags & (RTE_MBUF_F_TX_VLAN | RTE_MBUF_F_TX_QINQ)) { td_cmd |= ICE_TX_DESC_CMD_IL2TAG1; *txd_hi |= ((uint64_t)tx_pkt->vlan_tci << ICE_TXD_QW1_L2TAG1_S); } *txd_hi |= ((uint64_t)td_cmd) << ICE_TXD_QW1_CMD_S; } #endif