/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2019 Intel Corporation */ #include "ice_rxtx_vec_common.h" #include "ice_rxtx_common_avx.h" #include #ifndef __INTEL_COMPILER #pragma GCC diagnostic ignored "-Wcast-qual" #endif static __rte_always_inline void ice_rxq_rearm(struct ice_rx_queue *rxq) { return ice_rxq_rearm_common(rxq, false); } static __rte_always_inline __m256i ice_flex_rxd_to_fdir_flags_vec_avx2(const __m256i fdir_id0_7) { #define FDID_MIS_MAGIC 0xFFFFFFFF RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2)); RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13)); const __m256i pkt_fdir_bit = _mm256_set1_epi32(RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID); /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */ const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC); __m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7, fdir_mis_mask); /* this XOR op results to bit-reverse the fdir_mask */ fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask); const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit); return fdir_flags; } static __rte_always_inline uint16_t _ice_recv_raw_pkts_vec_avx2(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts, uint8_t *split_packet, bool offload) { #define ICE_DESCS_PER_LOOP_AVX 8 const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0, rxq->mbuf_initializer); struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail; const int avx_aligned = ((rxq->rx_tail & 1) == 0); rte_prefetch0(rxdp); /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX); /* See if we need to rearm the RX queue - gives the prefetch a bit * of time to act */ if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH) ice_rxq_rearm(rxq); /* Before we start moving massive data around, check to see if * there is actually a packet available */ if (!(rxdp->wb.status_error0 & rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))) return 0; /* constants used in processing loop */ const __m256i crc_adjust = _mm256_set_epi16 (/* first descriptor */ 0, 0, 0, /* ignore non-length fields */ -rxq->crc_len, /* sub crc on data_len */ 0, /* ignore high-16bits of pkt_len */ -rxq->crc_len, /* sub crc on pkt_len */ 0, 0, /* ignore pkt_type field */ /* second descriptor */ 0, 0, 0, /* ignore non-length fields */ -rxq->crc_len, /* sub crc on data_len */ 0, /* ignore high-16bits of pkt_len */ -rxq->crc_len, /* sub crc on pkt_len */ 0, 0 /* ignore pkt_type field */ ); /* 8 packets DD mask, LSB in each 32-bit value */ const __m256i dd_check = _mm256_set1_epi32(1); /* 8 packets EOP mask, second-LSB in each 32-bit value */ const __m256i eop_check = _mm256_slli_epi32(dd_check, ICE_RX_DESC_STATUS_EOF_S); /* mask to shuffle from desc. to mbuf (2 descriptors)*/ const __m256i shuf_msk = _mm256_set_epi8 (/* first descriptor */ 0xFF, 0xFF, 0xFF, 0xFF, /* rss hash parsed separately */ 11, 10, /* octet 10~11, 16 bits vlan_macip */ 5, 4, /* octet 4~5, 16 bits data_len */ 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */ 5, 4, /* octet 4~5, 16 bits pkt_len */ 0xFF, 0xFF, /* pkt_type set as unknown */ 0xFF, 0xFF, /*pkt_type set as unknown */ /* second descriptor */ 0xFF, 0xFF, 0xFF, 0xFF, /* rss hash parsed separately */ 11, 10, /* octet 10~11, 16 bits vlan_macip */ 5, 4, /* octet 4~5, 16 bits data_len */ 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */ 5, 4, /* octet 4~5, 16 bits pkt_len */ 0xFF, 0xFF, /* pkt_type set as unknown */ 0xFF, 0xFF /*pkt_type set as unknown */ ); /** * compile-time check the above crc and shuffle layout is correct. * NOTE: the first field (lowest address) is given last in set_epi * calls above. */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); /* Status/Error flag masks */ /** * mask everything except Checksum Reports, RSS indication * and VLAN indication. * bit6:4 for IP/L4 checksum errors. * bit12 is for RSS indication. * bit13 is for VLAN indication. */ const __m256i flags_mask = _mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13)); /** * data to be shuffled by the result of the flags mask shifted by 4 * bits. This gives use the l3_l4 flags. */ const __m256i l3_l4_flags_shuf = _mm256_set_epi8((RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, /** * second 128-bits * shift right 20 bits to use the low two bits to indicate * outer checksum status * shift right 1 bit to make sure it not exceed 255 */ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1); const __m256i cksum_mask = _mm256_set1_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK | RTE_MBUF_F_RX_L4_CKSUM_MASK | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK); /** * data to be shuffled by result of flag mask, shifted down 12. * If RSS(bit12)/VLAN(bit13) are set, * shuffle moves appropriate flags in place. */ const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, RTE_MBUF_F_RX_RSS_HASH, 0, /* end up 128-bits */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, RTE_MBUF_F_RX_RSS_HASH, 0); RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */ uint16_t i, received; for (i = 0, received = 0; i < nb_pkts; i += ICE_DESCS_PER_LOOP_AVX, rxdp += ICE_DESCS_PER_LOOP_AVX) { /* step 1, copy over 8 mbuf pointers to rx_pkts array */ _mm256_storeu_si256((void *)&rx_pkts[i], _mm256_loadu_si256((void *)&sw_ring[i])); #ifdef RTE_ARCH_X86_64 _mm256_storeu_si256 ((void *)&rx_pkts[i + 4], _mm256_loadu_si256((void *)&sw_ring[i + 4])); #endif __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7; #ifdef RTE_LIBRTE_ICE_16BYTE_RX_DESC /* for AVX we need alignment otherwise loads are not atomic */ if (avx_aligned) { /* load in descriptors, 2 at a time, in reverse order */ raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6)); rte_compiler_barrier(); raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4)); rte_compiler_barrier(); raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2)); rte_compiler_barrier(); raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0)); } else #endif { const __m128i raw_desc7 = _mm_load_si128((void *)(rxdp + 7)); rte_compiler_barrier(); const __m128i raw_desc6 = _mm_load_si128((void *)(rxdp + 6)); rte_compiler_barrier(); const __m128i raw_desc5 = _mm_load_si128((void *)(rxdp + 5)); rte_compiler_barrier(); const __m128i raw_desc4 = _mm_load_si128((void *)(rxdp + 4)); rte_compiler_barrier(); const __m128i raw_desc3 = _mm_load_si128((void *)(rxdp + 3)); rte_compiler_barrier(); const __m128i raw_desc2 = _mm_load_si128((void *)(rxdp + 2)); rte_compiler_barrier(); const __m128i raw_desc1 = _mm_load_si128((void *)(rxdp + 1)); rte_compiler_barrier(); const __m128i raw_desc0 = _mm_load_si128((void *)(rxdp + 0)); raw_desc6_7 = _mm256_inserti128_si256 (_mm256_castsi128_si256(raw_desc6), raw_desc7, 1); raw_desc4_5 = _mm256_inserti128_si256 (_mm256_castsi128_si256(raw_desc4), raw_desc5, 1); raw_desc2_3 = _mm256_inserti128_si256 (_mm256_castsi128_si256(raw_desc2), raw_desc3, 1); raw_desc0_1 = _mm256_inserti128_si256 (_mm256_castsi128_si256(raw_desc0), raw_desc1, 1); } if (split_packet) { int j; for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++) rte_mbuf_prefetch_part2(rx_pkts[i + j]); } /** * convert descriptors 4-7 into mbufs, re-arrange fields. * Then write into the mbuf. */ __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk); __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk); mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust); mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust); /** * to get packet types, ptype is located in bit16-25 * of each 128bits */ const __m256i ptype_mask = _mm256_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M); const __m256i ptypes6_7 = _mm256_and_si256(raw_desc6_7, ptype_mask); const __m256i ptypes4_5 = _mm256_and_si256(raw_desc4_5, ptype_mask); const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9); const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1); const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9); const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1); mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4); mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0); mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4); mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0); /* merge the status bits into one register */ const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5); /** * convert descriptors 0-3 into mbufs, re-arrange fields. * Then write into the mbuf. */ __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk); __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk); mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust); mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust); /** * to get packet types, ptype is located in bit16-25 * of each 128bits */ const __m256i ptypes2_3 = _mm256_and_si256(raw_desc2_3, ptype_mask); const __m256i ptypes0_1 = _mm256_and_si256(raw_desc0_1, ptype_mask); const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9); const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1); const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9); const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1); mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4); mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0); mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4); mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0); /* merge the status bits into one register */ const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1); /** * take the two sets of status bits and merge to one * After merge, the packets status flags are in the * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] */ __m256i status0_7 = _mm256_unpacklo_epi64(status4_7, status0_3); __m256i mbuf_flags = _mm256_set1_epi32(0); if (offload) { /* now do flag manipulation */ /* get only flag/error bits we want */ const __m256i flag_bits = _mm256_and_si256(status0_7, flags_mask); /** * l3_l4_error flags, shuffle, then shift to correct adjustment * of flags in flags_shuf, and finally mask out extra bits */ __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, _mm256_srli_epi32(flag_bits, 4)); l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); __m256i l4_outer_mask = _mm256_set1_epi32(0x6); __m256i l4_outer_flags = _mm256_and_si256(l3_l4_flags, l4_outer_mask); l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20); __m256i l3_l4_mask = _mm256_set1_epi32(~0x6); l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask); l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags); l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); /* set rss and vlan flags */ const __m256i rss_vlan_flag_bits = _mm256_srli_epi32(flag_bits, 12); const __m256i rss_vlan_flags = _mm256_shuffle_epi8(rss_vlan_flags_shuf, rss_vlan_flag_bits); /* merge flags */ mbuf_flags = _mm256_or_si256(l3_l4_flags, rss_vlan_flags); } if (rxq->fdir_enabled) { const __m256i fdir_id4_7 = _mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5); const __m256i fdir_id0_3 = _mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1); const __m256i fdir_id0_7 = _mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3); const __m256i fdir_flags = ice_flex_rxd_to_fdir_flags_vec_avx2(fdir_id0_7); /* merge with fdir_flags */ mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags); /* write to mbuf: have to use scalar store here */ rx_pkts[i + 0]->hash.fdir.hi = _mm256_extract_epi32(fdir_id0_7, 3); rx_pkts[i + 1]->hash.fdir.hi = _mm256_extract_epi32(fdir_id0_7, 7); rx_pkts[i + 2]->hash.fdir.hi = _mm256_extract_epi32(fdir_id0_7, 2); rx_pkts[i + 3]->hash.fdir.hi = _mm256_extract_epi32(fdir_id0_7, 6); rx_pkts[i + 4]->hash.fdir.hi = _mm256_extract_epi32(fdir_id0_7, 1); rx_pkts[i + 5]->hash.fdir.hi = _mm256_extract_epi32(fdir_id0_7, 5); rx_pkts[i + 6]->hash.fdir.hi = _mm256_extract_epi32(fdir_id0_7, 0); rx_pkts[i + 7]->hash.fdir.hi = _mm256_extract_epi32(fdir_id0_7, 4); } /* if() on fdir_enabled */ if (offload) { #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC /** * needs to load 2nd 16B of each desc for RSS hash parsing, * will cause performance drop to get into this context. */ if (rxq->vsi->adapter->pf.dev_data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH) { /* load bottom half of every 32B desc */ const __m128i raw_desc_bh7 = _mm_load_si128 ((void *)(&rxdp[7].wb.status_error1)); rte_compiler_barrier(); const __m128i raw_desc_bh6 = _mm_load_si128 ((void *)(&rxdp[6].wb.status_error1)); rte_compiler_barrier(); const __m128i raw_desc_bh5 = _mm_load_si128 ((void *)(&rxdp[5].wb.status_error1)); rte_compiler_barrier(); const __m128i raw_desc_bh4 = _mm_load_si128 ((void *)(&rxdp[4].wb.status_error1)); rte_compiler_barrier(); const __m128i raw_desc_bh3 = _mm_load_si128 ((void *)(&rxdp[3].wb.status_error1)); rte_compiler_barrier(); const __m128i raw_desc_bh2 = _mm_load_si128 ((void *)(&rxdp[2].wb.status_error1)); rte_compiler_barrier(); const __m128i raw_desc_bh1 = _mm_load_si128 ((void *)(&rxdp[1].wb.status_error1)); rte_compiler_barrier(); const __m128i raw_desc_bh0 = _mm_load_si128 ((void *)(&rxdp[0].wb.status_error1)); __m256i raw_desc_bh6_7 = _mm256_inserti128_si256 (_mm256_castsi128_si256(raw_desc_bh6), raw_desc_bh7, 1); __m256i raw_desc_bh4_5 = _mm256_inserti128_si256 (_mm256_castsi128_si256(raw_desc_bh4), raw_desc_bh5, 1); __m256i raw_desc_bh2_3 = _mm256_inserti128_si256 (_mm256_castsi128_si256(raw_desc_bh2), raw_desc_bh3, 1); __m256i raw_desc_bh0_1 = _mm256_inserti128_si256 (_mm256_castsi128_si256(raw_desc_bh0), raw_desc_bh1, 1); /** * to shift the 32b RSS hash value to the * highest 32b of each 128b before mask */ __m256i rss_hash6_7 = _mm256_slli_epi64(raw_desc_bh6_7, 32); __m256i rss_hash4_5 = _mm256_slli_epi64(raw_desc_bh4_5, 32); __m256i rss_hash2_3 = _mm256_slli_epi64(raw_desc_bh2_3, 32); __m256i rss_hash0_1 = _mm256_slli_epi64(raw_desc_bh0_1, 32); __m256i rss_hash_msk = _mm256_set_epi32(0xFFFFFFFF, 0, 0, 0, 0xFFFFFFFF, 0, 0, 0); rss_hash6_7 = _mm256_and_si256 (rss_hash6_7, rss_hash_msk); rss_hash4_5 = _mm256_and_si256 (rss_hash4_5, rss_hash_msk); rss_hash2_3 = _mm256_and_si256 (rss_hash2_3, rss_hash_msk); rss_hash0_1 = _mm256_and_si256 (rss_hash0_1, rss_hash_msk); mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7); mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5); mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3); mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1); } /* if() on RSS hash parsing */ #endif } /** * At this point, we have the 8 sets of flags in the low 16-bits * of each 32-bit value in vlan0. * We want to extract these, and merge them with the mbuf init * data so we can do a single write to the mbuf to set the flags * and all the other initialization fields. Extracting the * appropriate flags means that we have to do a shift and blend * for each mbuf before we do the write. However, we can also * add in the previously computed rx_descriptor fields to * make a single 256-bit write per mbuf */ /* check the structure matches expectations */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != offsetof(struct rte_mbuf, rearm_data) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16)); /* build up data and do writes */ __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, rearm6, rearm7; rearm6 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 8), 0x04); rearm4 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 4), 0x04); rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04); rearm0 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(mbuf_flags, 4), 0x04); /* permute to add in the rx_descriptor e.g. rss fields */ rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); /* write to mbuf */ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, rearm6); _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, rearm4); _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, rearm2); _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, rearm0); /* repeat for the odd mbufs */ const __m256i odd_flags = _mm256_castsi128_si256 (_mm256_extracti128_si256(mbuf_flags, 1)); rearm7 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 8), 0x04); rearm5 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 4), 0x04); rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04); rearm1 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(odd_flags, 4), 0x04); /* since odd mbufs are already in hi 128-bits use blend */ rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); /* again write to mbufs */ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, rearm7); _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, rearm5); _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, rearm3); _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, rearm1); /* extract and record EOP bit */ if (split_packet) { const __m128i eop_mask = _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S); const __m256i eop_bits256 = _mm256_and_si256(status0_7, eop_check); /* pack status bits into a single 128-bit register */ const __m128i eop_bits = _mm_packus_epi32 (_mm256_castsi256_si128(eop_bits256), _mm256_extractf128_si256(eop_bits256, 1)); /** * flip bits, and mask out the EOP bit, which is now * a split-packet bit i.e. !EOP, rather than EOP one. */ __m128i split_bits = _mm_andnot_si128(eop_bits, eop_mask); /** * eop bits are out of order, so we need to shuffle them * back into order again. In doing so, only use low 8 * bits, which acts like another pack instruction * The original order is (hi->lo): 1,3,5,7,0,2,4,6 * [Since we use epi8, the 16-bit positions are * multiplied by 2 in the eop_shuffle value.] */ __m128i eop_shuffle = _mm_set_epi8(/* zero hi 64b */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* move values to lo 64b */ 8, 0, 10, 2, 12, 4, 14, 6); split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle); *(uint64_t *)split_packet = _mm_cvtsi128_si64(split_bits); split_packet += ICE_DESCS_PER_LOOP_AVX; } /* perform dd_check */ status0_7 = _mm256_and_si256(status0_7, dd_check); status0_7 = _mm256_packs_epi32(status0_7, _mm256_setzero_si256()); uint64_t burst = __builtin_popcountll (_mm_cvtsi128_si64 (_mm256_extracti128_si256 (status0_7, 1))); burst += __builtin_popcountll (_mm_cvtsi128_si64 (_mm256_castsi256_si128(status0_7))); received += burst; if (burst != ICE_DESCS_PER_LOOP_AVX) break; } /* update tail pointers */ rxq->rx_tail += received; rxq->rx_tail &= (rxq->nb_rx_desc - 1); if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */ rxq->rx_tail--; received--; } rxq->rxrearm_nb += received; return received; } /** * Notice: * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet */ uint16_t ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL, false); } uint16_t ice_recv_pkts_vec_avx2_offload(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL, true); } /** * vPMD receive routine that reassembles single burst of 32 scattered packets * Notice: * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet */ static __rte_always_inline uint16_t ice_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts, bool offload) { struct ice_rx_queue *rxq = rx_queue; uint8_t split_flags[ICE_VPMD_RX_BURST] = {0}; /* get some new buffers */ uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts, split_flags, offload); if (nb_bufs == 0) return 0; /* happy day case, full burst + no packets to be joined */ const uint64_t *split_fl64 = (uint64_t *)split_flags; if (!rxq->pkt_first_seg && split_fl64[0] == 0 && split_fl64[1] == 0 && split_fl64[2] == 0 && split_fl64[3] == 0) return nb_bufs; /* reassemble any packets that need reassembly*/ unsigned int i = 0; if (!rxq->pkt_first_seg) { /* find the first split flag, and only reassemble then*/ while (i < nb_bufs && !split_flags[i]) i++; if (i == nb_bufs) return nb_bufs; rxq->pkt_first_seg = rx_pkts[i]; } return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, &split_flags[i]); } /** * vPMD receive routine that reassembles scattered packets. * Main receive routine that can handle arbitrary burst sizes * Notice: * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet */ static __rte_always_inline uint16_t ice_recv_scattered_pkts_vec_avx2_common(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts, bool offload) { uint16_t retval = 0; while (nb_pkts > ICE_VPMD_RX_BURST) { uint16_t burst = ice_recv_scattered_burst_vec_avx2(rx_queue, rx_pkts + retval, ICE_VPMD_RX_BURST, offload); retval += burst; nb_pkts -= burst; if (burst < ICE_VPMD_RX_BURST) return retval; } return retval + ice_recv_scattered_burst_vec_avx2(rx_queue, rx_pkts + retval, nb_pkts, offload); } uint16_t ice_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return ice_recv_scattered_pkts_vec_avx2_common(rx_queue, rx_pkts, nb_pkts, false); } uint16_t ice_recv_scattered_pkts_vec_avx2_offload(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return ice_recv_scattered_pkts_vec_avx2_common(rx_queue, rx_pkts, nb_pkts, true); } static __rte_always_inline void ice_vtx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags, bool offload) { uint64_t high_qw = (ICE_TX_DESC_DTYPE_DATA | ((uint64_t)flags << ICE_TXD_QW1_CMD_S) | ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S)); if (offload) ice_txd_enable_offload(pkt, &high_qw); __m128i descriptor = _mm_set_epi64x(high_qw, pkt->buf_iova + pkt->data_off); _mm_store_si128((__m128i *)txdp, descriptor); } static __rte_always_inline void ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags, bool offload) { const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA | ((uint64_t)flags << ICE_TXD_QW1_CMD_S)); /* if unaligned on 32-bit boundary, do one to align */ if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) { ice_vtx1(txdp, *pkt, flags, offload); nb_pkts--, txdp++, pkt++; } /* do two at a time while possible, in bursts */ for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) { uint64_t hi_qw3 = hi_qw_tmpl | ((uint64_t)pkt[3]->data_len << ICE_TXD_QW1_TX_BUF_SZ_S); if (offload) ice_txd_enable_offload(pkt[3], &hi_qw3); uint64_t hi_qw2 = hi_qw_tmpl | ((uint64_t)pkt[2]->data_len << ICE_TXD_QW1_TX_BUF_SZ_S); if (offload) ice_txd_enable_offload(pkt[2], &hi_qw2); uint64_t hi_qw1 = hi_qw_tmpl | ((uint64_t)pkt[1]->data_len << ICE_TXD_QW1_TX_BUF_SZ_S); if (offload) ice_txd_enable_offload(pkt[1], &hi_qw1); uint64_t hi_qw0 = hi_qw_tmpl | ((uint64_t)pkt[0]->data_len << ICE_TXD_QW1_TX_BUF_SZ_S); if (offload) ice_txd_enable_offload(pkt[0], &hi_qw0); __m256i desc2_3 = _mm256_set_epi64x (hi_qw3, pkt[3]->buf_iova + pkt[3]->data_off, hi_qw2, pkt[2]->buf_iova + pkt[2]->data_off); __m256i desc0_1 = _mm256_set_epi64x (hi_qw1, pkt[1]->buf_iova + pkt[1]->data_off, hi_qw0, pkt[0]->buf_iova + pkt[0]->data_off); _mm256_store_si256((void *)(txdp + 2), desc2_3); _mm256_store_si256((void *)txdp, desc0_1); } /* do any last ones */ while (nb_pkts) { ice_vtx1(txdp, *pkt, flags, offload); txdp++, pkt++, nb_pkts--; } } static __rte_always_inline uint16_t ice_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts, bool offload) { struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue; volatile struct ice_tx_desc *txdp; struct ice_tx_entry *txep; uint16_t n, nb_commit, tx_id; uint64_t flags = ICE_TD_CMD; uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD; /* cross rx_thresh boundary is not allowed */ nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh); if (txq->nb_tx_free < txq->tx_free_thresh) ice_tx_free_bufs_vec(txq); nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts); if (unlikely(nb_pkts == 0)) return 0; tx_id = txq->tx_tail; txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts); n = (uint16_t)(txq->nb_tx_desc - tx_id); if (nb_commit >= n) { ice_tx_backlog_entry(txep, tx_pkts, n); ice_vtx(txdp, tx_pkts, n - 1, flags, offload); tx_pkts += (n - 1); txdp += (n - 1); ice_vtx1(txdp, *tx_pkts++, rs, offload); nb_commit = (uint16_t)(nb_commit - n); tx_id = 0; txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1); /* avoid reach the end of ring */ txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; } ice_tx_backlog_entry(txep, tx_pkts, nb_commit); ice_vtx(txdp, tx_pkts, nb_commit, flags, offload); tx_id = (uint16_t)(tx_id + nb_commit); if (tx_id > txq->tx_next_rs) { txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |= rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) << ICE_TXD_QW1_CMD_S); txq->tx_next_rs = (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh); } txq->tx_tail = tx_id; ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail); return nb_pkts; } static __rte_always_inline uint16_t ice_xmit_pkts_vec_avx2_common(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts, bool offload) { uint16_t nb_tx = 0; struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue; while (nb_pkts) { uint16_t ret, num; num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh); ret = ice_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx], num, offload); nb_tx += ret; nb_pkts -= ret; if (ret < num) break; } return nb_tx; } uint16_t ice_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { return ice_xmit_pkts_vec_avx2_common(tx_queue, tx_pkts, nb_pkts, false); } uint16_t ice_xmit_pkts_vec_avx2_offload(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { return ice_xmit_pkts_vec_avx2_common(tx_queue, tx_pkts, nb_pkts, true); }