/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #include #include #include #include "iavf.h" #include "iavf_rxtx.h" #include "iavf_rxtx_vec_common.h" #include #ifndef __INTEL_COMPILER #pragma GCC diagnostic ignored "-Wcast-qual" #endif static inline void iavf_rxq_rearm(struct iavf_rx_queue *rxq) { int i; uint16_t rx_id; volatile union iavf_rx_desc *rxdp; struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start]; struct rte_mbuf *mb0, *mb1; __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, RTE_PKTMBUF_HEADROOM); __m128i dma_addr0, dma_addr1; rxdp = rxq->rx_ring + rxq->rxrearm_start; /* Pull 'n' more MBUFs into the software ring */ if (rte_mempool_get_bulk(rxq->mp, (void *)rxp, rxq->rx_free_thresh) < 0) { if (rxq->rxrearm_nb + rxq->rx_free_thresh >= rxq->nb_rx_desc) { dma_addr0 = _mm_setzero_si128(); for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) { rxp[i] = &rxq->fake_mbuf; _mm_store_si128((__m128i *)&rxdp[i].read, dma_addr0); } } rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += rxq->rx_free_thresh; return; } /* Initialize the mbufs in vector, process 2 mbufs in one loop */ for (i = 0; i < rxq->rx_free_thresh; i += 2, rxp += 2) { __m128i vaddr0, vaddr1; mb0 = rxp[0]; mb1 = rxp[1]; /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != offsetof(struct rte_mbuf, buf_addr) + 8); vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); /* convert pa to dma_addr hdr/data */ dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0); dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1); /* add headroom to pa values */ dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room); dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room); /* flush desc with pa dma_addr */ _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0); _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1); } rxq->rxrearm_start += rxq->rx_free_thresh; if (rxq->rxrearm_start >= rxq->nb_rx_desc) rxq->rxrearm_start = 0; rxq->rxrearm_nb -= rxq->rx_free_thresh; rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " "rearm_start=%u rearm_nb=%u", rxq->port_id, rxq->queue_id, rx_id, rxq->rxrearm_start, rxq->rxrearm_nb); /* Update the tail pointer on the NIC */ IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id); } static inline void desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4], struct rte_mbuf **rx_pkts) { const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer); __m128i rearm0, rearm1, rearm2, rearm3; __m128i vlan0, vlan1, rss, l3_l4e; /* mask everything except RSS, flow director and VLAN flags * bit2 is for VLAN tag, bit11 for flow director indication * bit13:12 for RSS indication. */ const __m128i rss_vlan_msk = _mm_set_epi32( 0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804); const __m128i cksum_mask = _mm_set_epi32( RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD, RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD, RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD, RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD); /* map rss and vlan type to rss hash and vlan flag */ const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0, 0, 0, 0); const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_RSS_HASH, 0, 0, 0, 0, RTE_MBUF_F_RX_FDIR, 0); const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, /* shift right 1 bit to make sure it not exceed 255 */ (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1, RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1, (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1); vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]); vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]); vlan0 = _mm_unpacklo_epi64(vlan0, vlan1); vlan1 = _mm_and_si128(vlan0, rss_vlan_msk); vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1); rss = _mm_srli_epi32(vlan1, 11); rss = _mm_shuffle_epi8(rss_flags, rss); l3_l4e = _mm_srli_epi32(vlan1, 22); l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e); /* then we shift left 1 bit */ l3_l4e = _mm_slli_epi32(l3_l4e, 1); /* we need to mask out the redundant bits */ l3_l4e = _mm_and_si128(l3_l4e, cksum_mask); vlan0 = _mm_or_si128(vlan0, rss); vlan0 = _mm_or_si128(vlan0, l3_l4e); /* At this point, we have the 4 sets of flags in the low 16-bits * of each 32-bit value in vlan0. * We want to extract these, and merge them with the mbuf init data * so we can do a single 16-byte write to the mbuf to set the flags * and all the other initialization fields. Extracting the * appropriate flags means that we have to do a shift and blend for * each mbuf before we do the write. */ rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10); rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10); rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10); rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10); /* write the rearm data and the olflags in one write */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != offsetof(struct rte_mbuf, rearm_data) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16)); _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0); _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1); _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2); _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3); } static inline __m128i flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3) { #define FDID_MIS_MAGIC 0xFFFFFFFF RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2)); RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13)); const __m128i pkt_fdir_bit = _mm_set1_epi32(RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID); /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */ const __m128i fdir_mis_mask = _mm_set1_epi32(FDID_MIS_MAGIC); __m128i fdir_mask = _mm_cmpeq_epi32(fdir_id0_3, fdir_mis_mask); /* this XOR op results to bit-reverse the fdir_mask */ fdir_mask = _mm_xor_si128(fdir_mask, fdir_mis_mask); const __m128i fdir_flags = _mm_and_si128(fdir_mask, pkt_fdir_bit); return fdir_flags; } static inline void flex_desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4], struct rte_mbuf **rx_pkts) { const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer); __m128i rearm0, rearm1, rearm2, rearm3; __m128i tmp_desc, flags, rss_vlan; /* mask everything except checksum, RSS and VLAN flags. * bit6:4 for checksum. * bit12 for RSS indication. * bit13 for VLAN indication. */ const __m128i desc_mask = _mm_set_epi32(0x3070, 0x3070, 0x3070, 0x3070); const __m128i cksum_mask = _mm_set_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK | RTE_MBUF_F_RX_L4_CKSUM_MASK | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD, RTE_MBUF_F_RX_IP_CKSUM_MASK | RTE_MBUF_F_RX_L4_CKSUM_MASK | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD, RTE_MBUF_F_RX_IP_CKSUM_MASK | RTE_MBUF_F_RX_L4_CKSUM_MASK | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD, RTE_MBUF_F_RX_IP_CKSUM_MASK | RTE_MBUF_F_RX_L4_CKSUM_MASK | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD); /* map the checksum, rss and vlan fields to the checksum, rss * and vlan flag */ const __m128i cksum_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, /* shift right 1 bit to make sure it not exceed 255 */ (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, (RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, (RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1); const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, RTE_MBUF_F_RX_RSS_HASH, 0); /* merge 4 descriptors */ flags = _mm_unpackhi_epi32(descs[0], descs[1]); tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]); tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc); tmp_desc = _mm_and_si128(tmp_desc, desc_mask); /* checksum flags */ tmp_desc = _mm_srli_epi32(tmp_desc, 4); flags = _mm_shuffle_epi8(cksum_flags, tmp_desc); /* then we shift left 1 bit */ flags = _mm_slli_epi32(flags, 1); /* we need to mask out the redundant bits introduced by RSS or * VLAN fields. */ flags = _mm_and_si128(flags, cksum_mask); /* RSS, VLAN flag */ tmp_desc = _mm_srli_epi32(tmp_desc, 8); rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc); /* merge the flags */ flags = _mm_or_si128(flags, rss_vlan); if (rxq->fdir_enabled) { const __m128i fdir_id0_1 = _mm_unpackhi_epi32(descs[0], descs[1]); const __m128i fdir_id2_3 = _mm_unpackhi_epi32(descs[2], descs[3]); const __m128i fdir_id0_3 = _mm_unpackhi_epi64(fdir_id0_1, fdir_id2_3); const __m128i fdir_flags = flex_rxd_to_fdir_flags_vec(fdir_id0_3); /* merge with fdir_flags */ flags = _mm_or_si128(flags, fdir_flags); /* write fdir_id to mbuf */ rx_pkts[0]->hash.fdir.hi = _mm_extract_epi32(fdir_id0_3, 0); rx_pkts[1]->hash.fdir.hi = _mm_extract_epi32(fdir_id0_3, 1); rx_pkts[2]->hash.fdir.hi = _mm_extract_epi32(fdir_id0_3, 2); rx_pkts[3]->hash.fdir.hi = _mm_extract_epi32(fdir_id0_3, 3); } /* if() on fdir_enabled */ /** * At this point, we have the 4 sets of flags in the low 16-bits * of each 32-bit value in flags. * We want to extract these, and merge them with the mbuf init data * so we can do a single 16-byte write to the mbuf to set the flags * and all the other initialization fields. Extracting the * appropriate flags means that we have to do a shift and blend for * each mbuf before we do the write. */ rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x10); rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x10); rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x10); rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x10); /* write the rearm data and the olflags in one write */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != offsetof(struct rte_mbuf, rearm_data) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16)); _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0); _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1); _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2); _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3); } #define PKTLEN_SHIFT 10 static inline void desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts, const uint32_t *type_table) { __m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]); __m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]); ptype0 = _mm_srli_epi64(ptype0, 30); ptype1 = _mm_srli_epi64(ptype1, 30); rx_pkts[0]->packet_type = type_table[_mm_extract_epi8(ptype0, 0)]; rx_pkts[1]->packet_type = type_table[_mm_extract_epi8(ptype0, 8)]; rx_pkts[2]->packet_type = type_table[_mm_extract_epi8(ptype1, 0)]; rx_pkts[3]->packet_type = type_table[_mm_extract_epi8(ptype1, 8)]; } static inline void flex_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts, const uint32_t *type_table) { const __m128i ptype_mask = _mm_set_epi16(IAVF_RX_FLEX_DESC_PTYPE_M, 0x0, IAVF_RX_FLEX_DESC_PTYPE_M, 0x0, IAVF_RX_FLEX_DESC_PTYPE_M, 0x0, IAVF_RX_FLEX_DESC_PTYPE_M, 0x0); __m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]); __m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]); __m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23); ptype_all = _mm_and_si128(ptype_all, ptype_mask); rx_pkts[0]->packet_type = type_table[_mm_extract_epi16(ptype_all, 1)]; rx_pkts[1]->packet_type = type_table[_mm_extract_epi16(ptype_all, 3)]; rx_pkts[2]->packet_type = type_table[_mm_extract_epi16(ptype_all, 5)]; rx_pkts[3]->packet_type = type_table[_mm_extract_epi16(ptype_all, 7)]; } /** * vPMD raw receive routine, only accept(nb_pkts >= IAVF_VPMD_DESCS_PER_LOOP) * * Notice: * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet * - floor align nb_pkts to a IAVF_VPMD_DESCS_PER_LOOP power-of-two */ static inline uint16_t _recv_raw_pkts_vec(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts, uint8_t *split_packet) { volatile union iavf_rx_desc *rxdp; struct rte_mbuf **sw_ring; uint16_t nb_pkts_recd; int pos; uint64_t var; __m128i shuf_msk; const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; __m128i crc_adjust = _mm_set_epi16( 0, 0, 0, /* ignore non-length fields */ -rxq->crc_len, /* sub crc on data_len */ 0, /* ignore high-16bits of pkt_len */ -rxq->crc_len, /* sub crc on pkt_len */ 0, 0 /* ignore pkt_type field */ ); /* compile-time check the above crc_adjust layout is correct. * NOTE: the first field (lowest address) is given last in set_epi16 * call above. */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); __m128i dd_check, eop_check; /* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP); /* Just the act of getting into the function from the application is * going to cost about 7 cycles */ rxdp = rxq->rx_ring + rxq->rx_tail; rte_prefetch0(rxdp); /* See if we need to rearm the RX queue - gives the prefetch a bit * of time to act */ if (rxq->rxrearm_nb > rxq->rx_free_thresh) iavf_rxq_rearm(rxq); /* Before we start moving massive data around, check to see if * there is actually a packet available */ if (!(rxdp->wb.qword1.status_error_len & rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT))) return 0; /* 4 packets DD mask */ dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL); /* 4 packets EOP mask */ eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL); /* mask to shuffle from desc. to mbuf */ shuf_msk = _mm_set_epi8( 7, 6, 5, 4, /* octet 4~7, 32bits rss */ 3, 2, /* octet 2~3, low 16 bits vlan_macip */ 15, 14, /* octet 15~14, 16 bits data_len */ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ 15, 14, /* octet 15~14, low 16 bits pkt_len */ 0xFF, 0xFF, 0xFF, 0xFF /* pkt_type set as unknown */ ); /* Compile-time verify the shuffle mask * NOTE: some field positions already verified above, but duplicated * here for completeness in case of future modifications. */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); /* Cache is empty -> need to scan the buffer rings, but first move * the next 'n' mbufs into the cache */ sw_ring = &rxq->sw_ring[rxq->rx_tail]; /* A. load 4 packet in one loop * [A*. mask out 4 unused dirty field in desc] * B. copy 4 mbuf point from swring to rx_pkts * C. calc the number of DD bits among the 4 packets * [C*. extract the end-of-packet bit, if requested] * D. fill info. from desc to mbuf */ for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts; pos += IAVF_VPMD_DESCS_PER_LOOP, rxdp += IAVF_VPMD_DESCS_PER_LOOP) { __m128i descs[IAVF_VPMD_DESCS_PER_LOOP]; __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4; __m128i zero, staterr, sterr_tmp1, sterr_tmp2; /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */ __m128i mbp1; #if defined(RTE_ARCH_X86_64) __m128i mbp2; #endif /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */ mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]); /* Read desc statuses backwards to avoid race condition */ /* A.1 load desc[3] */ descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3)); rte_compiler_barrier(); /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */ _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1); #if defined(RTE_ARCH_X86_64) /* B.1 load 2 64 bit mbuf points */ mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]); #endif /* A.1 load desc[2-0] */ descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2)); rte_compiler_barrier(); descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1)); rte_compiler_barrier(); descs[0] = _mm_loadu_si128((__m128i *)(rxdp)); #if defined(RTE_ARCH_X86_64) /* B.2 copy 2 mbuf point into rx_pkts */ _mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2); #endif if (split_packet) { rte_mbuf_prefetch_part2(rx_pkts[pos]); rte_mbuf_prefetch_part2(rx_pkts[pos + 1]); rte_mbuf_prefetch_part2(rx_pkts[pos + 2]); rte_mbuf_prefetch_part2(rx_pkts[pos + 3]); } /* avoid compiler reorder optimization */ rte_compiler_barrier(); /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/ const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT); const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT); /* merge the now-aligned packet length fields back in */ descs[3] = _mm_blend_epi16(descs[3], len3, 0x80); descs[2] = _mm_blend_epi16(descs[2], len2, 0x80); /* D.1 pkt 3,4 convert format from desc to pktmbuf */ pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk); pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk); /* C.1 4=>2 status err info only */ sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]); sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]); desc_to_olflags_v(rxq, descs, &rx_pkts[pos]); /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */ pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust); pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust); /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/ const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT); const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT); /* merge the now-aligned packet length fields back in */ descs[1] = _mm_blend_epi16(descs[1], len1, 0x80); descs[0] = _mm_blend_epi16(descs[0], len0, 0x80); /* D.1 pkt 1,2 convert format from desc to pktmbuf */ pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk); pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk); /* C.2 get 4 pkts status err value */ zero = _mm_xor_si128(dd_check, dd_check); staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2); /* D.3 copy final 3,4 data to rx_pkts */ _mm_storeu_si128( (void *)&rx_pkts[pos + 3]->rx_descriptor_fields1, pkt_mb4); _mm_storeu_si128( (void *)&rx_pkts[pos + 2]->rx_descriptor_fields1, pkt_mb3); /* D.2 pkt 1,2 remove crc */ pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust); pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust); /* C* extract and record EOP bit */ if (split_packet) { __m128i eop_shuf_mask = _mm_set_epi8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x04, 0x0C, 0x00, 0x08 ); /* and with mask to extract bits, flipping 1-0 */ __m128i eop_bits = _mm_andnot_si128(staterr, eop_check); /* the staterr values are not in order, as the count * of dd bits doesn't care. However, for end of * packet tracking, we do care, so shuffle. This also * compresses the 32-bit values to 8-bit */ eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask); /* store the resulting 32-bit value */ *(int *)split_packet = _mm_cvtsi128_si32(eop_bits); split_packet += IAVF_VPMD_DESCS_PER_LOOP; } /* C.3 calc available number of desc */ staterr = _mm_and_si128(staterr, dd_check); staterr = _mm_packs_epi32(staterr, zero); /* D.3 copy final 1,2 data to rx_pkts */ _mm_storeu_si128( (void *)&rx_pkts[pos + 1]->rx_descriptor_fields1, pkt_mb2); _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1, pkt_mb1); desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl); /* C.4 calc available number of desc */ var = __builtin_popcountll(_mm_cvtsi128_si64(staterr)); nb_pkts_recd += var; if (likely(var != IAVF_VPMD_DESCS_PER_LOOP)) break; } /* Update our internal tail pointer */ rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd); rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1)); rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd); return nb_pkts_recd; } /** * vPMD raw receive routine for flex RxD, * only accept(nb_pkts >= IAVF_VPMD_DESCS_PER_LOOP) * * Notice: * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet * - floor align nb_pkts to a IAVF_VPMD_DESCS_PER_LOOP power-of-two */ static inline uint16_t _recv_raw_pkts_vec_flex_rxd(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts, uint8_t *split_packet) { volatile union iavf_rx_flex_desc *rxdp; struct rte_mbuf **sw_ring; uint16_t nb_pkts_recd; int pos; uint64_t var; struct iavf_adapter *adapter = rxq->vsi->adapter; uint64_t offloads = adapter->dev_data->dev_conf.rxmode.offloads; const uint32_t *ptype_tbl = adapter->ptype_tbl; __m128i crc_adjust = _mm_set_epi16 (0, 0, 0, /* ignore non-length fields */ -rxq->crc_len, /* sub crc on data_len */ 0, /* ignore high-16bits of pkt_len */ -rxq->crc_len, /* sub crc on pkt_len */ 0, 0 /* ignore pkt_type field */ ); const __m128i zero = _mm_setzero_si128(); /* mask to shuffle from desc. to mbuf */ const __m128i shuf_msk = _mm_set_epi8 (0xFF, 0xFF, 0xFF, 0xFF, /* rss hash parsed separately */ 11, 10, /* octet 10~11, 16 bits vlan_macip */ 5, 4, /* octet 4~5, 16 bits data_len */ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ 5, 4, /* octet 4~5, low 16 bits pkt_len */ 0xFF, 0xFF, /* pkt_type set as unknown */ 0xFF, 0xFF /* pkt_type set as unknown */ ); const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x04, 0x0C, 0x00, 0x08); /** * compile-time check the above crc_adjust layout is correct. * NOTE: the first field (lowest address) is given last in set_epi16 * call above. */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); /* 4 packets DD mask */ const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL); /* 4 packets EOP mask */ const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL); /* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP); /* Just the act of getting into the function from the application is * going to cost about 7 cycles */ rxdp = (union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail; rte_prefetch0(rxdp); /* See if we need to rearm the RX queue - gives the prefetch a bit * of time to act */ if (rxq->rxrearm_nb > rxq->rx_free_thresh) iavf_rxq_rearm(rxq); /* Before we start moving massive data around, check to see if * there is actually a packet available */ if (!(rxdp->wb.status_error0 & rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S))) return 0; /** * Compile-time verify the shuffle mask * NOTE: some field positions already verified above, but duplicated * here for completeness in case of future modifications. */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); /* Cache is empty -> need to scan the buffer rings, but first move * the next 'n' mbufs into the cache */ sw_ring = &rxq->sw_ring[rxq->rx_tail]; /* A. load 4 packet in one loop * [A*. mask out 4 unused dirty field in desc] * B. copy 4 mbuf point from swring to rx_pkts * C. calc the number of DD bits among the 4 packets * [C*. extract the end-of-packet bit, if requested] * D. fill info. from desc to mbuf */ for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts; pos += IAVF_VPMD_DESCS_PER_LOOP, rxdp += IAVF_VPMD_DESCS_PER_LOOP) { __m128i descs[IAVF_VPMD_DESCS_PER_LOOP]; __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3; __m128i staterr, sterr_tmp1, sterr_tmp2; /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */ __m128i mbp1; #if defined(RTE_ARCH_X86_64) __m128i mbp2; #endif /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */ mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]); /* Read desc statuses backwards to avoid race condition */ /* A.1 load desc[3] */ descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3)); rte_compiler_barrier(); /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */ _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1); #if defined(RTE_ARCH_X86_64) /* B.1 load 2 64 bit mbuf points */ mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]); #endif /* A.1 load desc[2-0] */ descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2)); rte_compiler_barrier(); descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1)); rte_compiler_barrier(); descs[0] = _mm_loadu_si128((__m128i *)(rxdp)); #if defined(RTE_ARCH_X86_64) /* B.2 copy 2 mbuf point into rx_pkts */ _mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2); #endif if (split_packet) { rte_mbuf_prefetch_part2(rx_pkts[pos]); rte_mbuf_prefetch_part2(rx_pkts[pos + 1]); rte_mbuf_prefetch_part2(rx_pkts[pos + 2]); rte_mbuf_prefetch_part2(rx_pkts[pos + 3]); } /* avoid compiler reorder optimization */ rte_compiler_barrier(); /* D.1 pkt 3,4 convert format from desc to pktmbuf */ pkt_mb3 = _mm_shuffle_epi8(descs[3], shuf_msk); pkt_mb2 = _mm_shuffle_epi8(descs[2], shuf_msk); /* D.1 pkt 1,2 convert format from desc to pktmbuf */ pkt_mb1 = _mm_shuffle_epi8(descs[1], shuf_msk); pkt_mb0 = _mm_shuffle_epi8(descs[0], shuf_msk); /* C.1 4=>2 filter staterr info only */ sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]); /* C.1 4=>2 filter staterr info only */ sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]); flex_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]); /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */ pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust); pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust); /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */ pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust); pkt_mb0 = _mm_add_epi16(pkt_mb0, crc_adjust); #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC /** * needs to load 2nd 16B of each desc for RSS hash parsing, * will cause performance drop to get into this context. */ if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH) { /* load bottom half of every 32B desc */ const __m128i raw_desc_bh3 = _mm_load_si128 ((void *)(&rxdp[3].wb.status_error1)); rte_compiler_barrier(); const __m128i raw_desc_bh2 = _mm_load_si128 ((void *)(&rxdp[2].wb.status_error1)); rte_compiler_barrier(); const __m128i raw_desc_bh1 = _mm_load_si128 ((void *)(&rxdp[1].wb.status_error1)); rte_compiler_barrier(); const __m128i raw_desc_bh0 = _mm_load_si128 ((void *)(&rxdp[0].wb.status_error1)); /** * to shift the 32b RSS hash value to the * highest 32b of each 128b before mask */ __m128i rss_hash3 = _mm_slli_epi64(raw_desc_bh3, 32); __m128i rss_hash2 = _mm_slli_epi64(raw_desc_bh2, 32); __m128i rss_hash1 = _mm_slli_epi64(raw_desc_bh1, 32); __m128i rss_hash0 = _mm_slli_epi64(raw_desc_bh0, 32); __m128i rss_hash_msk = _mm_set_epi32(0xFFFFFFFF, 0, 0, 0); rss_hash3 = _mm_and_si128 (rss_hash3, rss_hash_msk); rss_hash2 = _mm_and_si128 (rss_hash2, rss_hash_msk); rss_hash1 = _mm_and_si128 (rss_hash1, rss_hash_msk); rss_hash0 = _mm_and_si128 (rss_hash0, rss_hash_msk); pkt_mb3 = _mm_or_si128(pkt_mb3, rss_hash3); pkt_mb2 = _mm_or_si128(pkt_mb2, rss_hash2); pkt_mb1 = _mm_or_si128(pkt_mb1, rss_hash1); pkt_mb0 = _mm_or_si128(pkt_mb0, rss_hash0); } /* if() on RSS hash parsing */ #endif /* C.2 get 4 pkts staterr value */ staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2); /* D.3 copy final 3,4 data to rx_pkts */ _mm_storeu_si128 ((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1, pkt_mb3); _mm_storeu_si128 ((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1, pkt_mb2); /* C* extract and record EOP bit */ if (split_packet) { /* and with mask to extract bits, flipping 1-0 */ __m128i eop_bits = _mm_andnot_si128(staterr, eop_check); /* the staterr values are not in order, as the count * of dd bits doesn't care. However, for end of * packet tracking, we do care, so shuffle. This also * compresses the 32-bit values to 8-bit */ eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask); /* store the resulting 32-bit value */ *(int *)split_packet = _mm_cvtsi128_si32(eop_bits); split_packet += IAVF_VPMD_DESCS_PER_LOOP; } /* C.3 calc available number of desc */ staterr = _mm_and_si128(staterr, dd_check); staterr = _mm_packs_epi32(staterr, zero); /* D.3 copy final 1,2 data to rx_pkts */ _mm_storeu_si128 ((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1, pkt_mb1); _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1, pkt_mb0); flex_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl); /* C.4 calc available number of desc */ var = __builtin_popcountll(_mm_cvtsi128_si64(staterr)); nb_pkts_recd += var; if (likely(var != IAVF_VPMD_DESCS_PER_LOOP)) break; } /* Update our internal tail pointer */ rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd); rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1)); rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd); return nb_pkts_recd; } /* Notice: * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST * numbers of DD bits */ uint16_t iavf_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL); } /* Notice: * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST * numbers of DD bits */ uint16_t iavf_recv_pkts_vec_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return _recv_raw_pkts_vec_flex_rxd(rx_queue, rx_pkts, nb_pkts, NULL); } /** * vPMD receive routine that reassembles single burst of 32 scattered packets * * Notice: * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet */ static uint16_t iavf_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct iavf_rx_queue *rxq = rx_queue; uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0}; unsigned int i = 0; /* get some new buffers */ uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts, split_flags); if (nb_bufs == 0) return 0; /* happy day case, full burst + no packets to be joined */ const uint64_t *split_fl64 = (uint64_t *)split_flags; if (!rxq->pkt_first_seg && split_fl64[0] == 0 && split_fl64[1] == 0 && split_fl64[2] == 0 && split_fl64[3] == 0) return nb_bufs; /* reassemble any packets that need reassembly*/ if (!rxq->pkt_first_seg) { /* find the first split flag, and only reassemble then*/ while (i < nb_bufs && !split_flags[i]) i++; if (i == nb_bufs) return nb_bufs; rxq->pkt_first_seg = rx_pkts[i]; } return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, &split_flags[i]); } /** * vPMD receive routine that reassembles scattered packets. */ uint16_t iavf_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { uint16_t retval = 0; while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) { uint16_t burst; burst = iavf_recv_scattered_burst_vec(rx_queue, rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST); retval += burst; nb_pkts -= burst; if (burst < IAVF_VPMD_RX_MAX_BURST) return retval; } return retval + iavf_recv_scattered_burst_vec(rx_queue, rx_pkts + retval, nb_pkts); } /** * vPMD receive routine that reassembles single burst of 32 scattered packets * for flex RxD * * Notice: * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet */ static uint16_t iavf_recv_scattered_burst_vec_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct iavf_rx_queue *rxq = rx_queue; uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0}; unsigned int i = 0; /* get some new buffers */ uint16_t nb_bufs = _recv_raw_pkts_vec_flex_rxd(rxq, rx_pkts, nb_pkts, split_flags); if (nb_bufs == 0) return 0; /* happy day case, full burst + no packets to be joined */ const uint64_t *split_fl64 = (uint64_t *)split_flags; if (!rxq->pkt_first_seg && split_fl64[0] == 0 && split_fl64[1] == 0 && split_fl64[2] == 0 && split_fl64[3] == 0) return nb_bufs; /* reassemble any packets that need reassembly*/ if (!rxq->pkt_first_seg) { /* find the first split flag, and only reassemble then*/ while (i < nb_bufs && !split_flags[i]) i++; if (i == nb_bufs) return nb_bufs; rxq->pkt_first_seg = rx_pkts[i]; } return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, &split_flags[i]); } /** * vPMD receive routine that reassembles scattered packets for flex RxD */ uint16_t iavf_recv_scattered_pkts_vec_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { uint16_t retval = 0; while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) { uint16_t burst; burst = iavf_recv_scattered_burst_vec_flex_rxd(rx_queue, rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST); retval += burst; nb_pkts -= burst; if (burst < IAVF_VPMD_RX_MAX_BURST) return retval; } return retval + iavf_recv_scattered_burst_vec_flex_rxd(rx_queue, rx_pkts + retval, nb_pkts); } static inline void vtx1(volatile struct iavf_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags) { uint64_t high_qw = (IAVF_TX_DESC_DTYPE_DATA | ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT) | ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT)); __m128i descriptor = _mm_set_epi64x(high_qw, pkt->buf_iova + pkt->data_off); _mm_store_si128((__m128i *)txdp, descriptor); } static inline void iavf_vtx(volatile struct iavf_tx_desc *txdp, struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags) { int i; for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt) vtx1(txdp, *pkt, flags); } uint16_t iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue; volatile struct iavf_tx_desc *txdp; struct iavf_tx_entry *txep; uint16_t n, nb_commit, tx_id; uint64_t flags = IAVF_TX_DESC_CMD_EOP | 0x04; /* bit 2 must be set */ uint64_t rs = IAVF_TX_DESC_CMD_RS | flags; int i; /* cross rx_thresh boundary is not allowed */ nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh); if (txq->nb_free < txq->free_thresh) iavf_tx_free_bufs(txq); nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts); if (unlikely(nb_pkts == 0)) return 0; nb_commit = nb_pkts; tx_id = txq->tx_tail; txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts); n = (uint16_t)(txq->nb_tx_desc - tx_id); if (nb_commit >= n) { tx_backlog_entry(txep, tx_pkts, n); for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp) vtx1(txdp, *tx_pkts, flags); vtx1(txdp, *tx_pkts++, rs); nb_commit = (uint16_t)(nb_commit - n); tx_id = 0; txq->next_rs = (uint16_t)(txq->rs_thresh - 1); /* avoid reach the end of ring */ txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; } tx_backlog_entry(txep, tx_pkts, nb_commit); iavf_vtx(txdp, tx_pkts, nb_commit, flags); tx_id = (uint16_t)(tx_id + nb_commit); if (tx_id > txq->next_rs) { txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |= rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) << IAVF_TXD_QW1_CMD_SHIFT); txq->next_rs = (uint16_t)(txq->next_rs + txq->rs_thresh); } txq->tx_tail = tx_id; PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_pkts=%u", txq->port_id, txq->queue_id, tx_id, nb_pkts); IAVF_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail); return nb_pkts; } uint16_t iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { uint16_t nb_tx = 0; struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue; while (nb_pkts) { uint16_t ret, num; num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh); ret = iavf_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num); nb_tx += ret; nb_pkts -= ret; if (ret < num) break; } return nb_tx; } void __rte_cold iavf_rx_queue_release_mbufs_sse(struct iavf_rx_queue *rxq) { _iavf_rx_queue_release_mbufs_vec(rxq); } void __rte_cold iavf_tx_queue_release_mbufs_sse(struct iavf_tx_queue *txq) { _iavf_tx_queue_release_mbufs_vec(txq); } int __rte_cold iavf_txq_vec_setup(struct iavf_tx_queue *txq) { txq->rel_mbufs_type = IAVF_REL_MBUFS_SSE_VEC; return 0; } int __rte_cold iavf_rxq_vec_setup(struct iavf_rx_queue *rxq) { rxq->rel_mbufs_type = IAVF_REL_MBUFS_SSE_VEC; return iavf_rxq_vec_setup_default(rxq); } int __rte_cold iavf_rx_vec_dev_check(struct rte_eth_dev *dev) { return iavf_rx_vec_dev_check_default(dev); } int __rte_cold iavf_tx_vec_dev_check(struct rte_eth_dev *dev) { return iavf_tx_vec_dev_check_default(dev); }