/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2001-2020 Intel Corporation */ #include "i40e_osdep.h" #include "i40e_register.h" #include "i40e_type.h" #include "i40e_hmc.h" #include "i40e_lan_hmc.h" #include "i40e_prototype.h" /* lan specific interface functions */ /** * i40e_align_l2obj_base - aligns base object pointer to 512 bytes * @offset: base address offset needing alignment * * Aligns the layer 2 function private memory so it's 512-byte aligned. **/ STATIC u64 i40e_align_l2obj_base(u64 offset) { u64 aligned_offset = offset; if ((offset % I40E_HMC_L2OBJ_BASE_ALIGNMENT) > 0) aligned_offset += (I40E_HMC_L2OBJ_BASE_ALIGNMENT - (offset % I40E_HMC_L2OBJ_BASE_ALIGNMENT)); return aligned_offset; } /** * i40e_calculate_l2fpm_size - calculates layer 2 FPM memory size * @txq_num: number of Tx queues needing backing context * @rxq_num: number of Rx queues needing backing context * @fcoe_cntx_num: amount of FCoE statefull contexts needing backing context * @fcoe_filt_num: number of FCoE filters needing backing context * * Calculates the maximum amount of memory for the function required, based * on the number of resources it must provide context for. **/ u64 i40e_calculate_l2fpm_size(u32 txq_num, u32 rxq_num, u32 fcoe_cntx_num, u32 fcoe_filt_num) { u64 fpm_size = 0; fpm_size = txq_num * I40E_HMC_OBJ_SIZE_TXQ; fpm_size = i40e_align_l2obj_base(fpm_size); fpm_size += (rxq_num * I40E_HMC_OBJ_SIZE_RXQ); fpm_size = i40e_align_l2obj_base(fpm_size); fpm_size += (fcoe_cntx_num * I40E_HMC_OBJ_SIZE_FCOE_CNTX); fpm_size = i40e_align_l2obj_base(fpm_size); fpm_size += (fcoe_filt_num * I40E_HMC_OBJ_SIZE_FCOE_FILT); fpm_size = i40e_align_l2obj_base(fpm_size); return fpm_size; } /** * i40e_init_lan_hmc - initialize i40e_hmc_info struct * @hw: pointer to the HW structure * @txq_num: number of Tx queues needing backing context * @rxq_num: number of Rx queues needing backing context * @fcoe_cntx_num: amount of FCoE statefull contexts needing backing context * @fcoe_filt_num: number of FCoE filters needing backing context * * This function will be called once per physical function initialization. * It will fill out the i40e_hmc_obj_info structure for LAN objects based on * the driver's provided input, as well as information from the HMC itself * loaded from NVRAM. * * Assumptions: * - HMC Resource Profile has been selected before calling this function. **/ enum i40e_status_code i40e_init_lan_hmc(struct i40e_hw *hw, u32 txq_num, u32 rxq_num, u32 fcoe_cntx_num, u32 fcoe_filt_num) { struct i40e_hmc_obj_info *obj, *full_obj; enum i40e_status_code ret_code = I40E_SUCCESS; u64 l2fpm_size; u32 size_exp; hw->hmc.signature = I40E_HMC_INFO_SIGNATURE; hw->hmc.hmc_fn_id = hw->pf_id; /* allocate memory for hmc_obj */ ret_code = i40e_allocate_virt_mem(hw, &hw->hmc.hmc_obj_virt_mem, sizeof(struct i40e_hmc_obj_info) * I40E_HMC_LAN_MAX); if (ret_code) goto init_lan_hmc_out; hw->hmc.hmc_obj = (struct i40e_hmc_obj_info *) hw->hmc.hmc_obj_virt_mem.va; /* The full object will be used to create the LAN HMC SD */ full_obj = &hw->hmc.hmc_obj[I40E_HMC_LAN_FULL]; full_obj->max_cnt = 0; full_obj->cnt = 0; full_obj->base = 0; full_obj->size = 0; /* Tx queue context information */ obj = &hw->hmc.hmc_obj[I40E_HMC_LAN_TX]; obj->max_cnt = rd32(hw, I40E_GLHMC_LANQMAX); obj->cnt = txq_num; obj->base = 0; size_exp = rd32(hw, I40E_GLHMC_LANTXOBJSZ); obj->size = BIT_ULL(size_exp); /* validate values requested by driver don't exceed HMC capacity */ if (txq_num > obj->max_cnt) { ret_code = I40E_ERR_INVALID_HMC_OBJ_COUNT; DEBUGOUT3("i40e_init_lan_hmc: Tx context: asks for 0x%x but max allowed is 0x%x, returns error %d\n", txq_num, obj->max_cnt, ret_code); goto free_hmc_out; } /* aggregate values into the full LAN object for later */ full_obj->max_cnt += obj->max_cnt; full_obj->cnt += obj->cnt; /* Rx queue context information */ obj = &hw->hmc.hmc_obj[I40E_HMC_LAN_RX]; obj->max_cnt = rd32(hw, I40E_GLHMC_LANQMAX); obj->cnt = rxq_num; obj->base = hw->hmc.hmc_obj[I40E_HMC_LAN_TX].base + (hw->hmc.hmc_obj[I40E_HMC_LAN_TX].cnt * hw->hmc.hmc_obj[I40E_HMC_LAN_TX].size); obj->base = i40e_align_l2obj_base(obj->base); size_exp = rd32(hw, I40E_GLHMC_LANRXOBJSZ); obj->size = BIT_ULL(size_exp); /* validate values requested by driver don't exceed HMC capacity */ if (rxq_num > obj->max_cnt) { ret_code = I40E_ERR_INVALID_HMC_OBJ_COUNT; DEBUGOUT3("i40e_init_lan_hmc: Rx context: asks for 0x%x but max allowed is 0x%x, returns error %d\n", rxq_num, obj->max_cnt, ret_code); goto free_hmc_out; } /* aggregate values into the full LAN object for later */ full_obj->max_cnt += obj->max_cnt; full_obj->cnt += obj->cnt; /* FCoE context information */ obj = &hw->hmc.hmc_obj[I40E_HMC_FCOE_CTX]; obj->max_cnt = rd32(hw, I40E_GLHMC_FCOEMAX); obj->cnt = fcoe_cntx_num; obj->base = hw->hmc.hmc_obj[I40E_HMC_LAN_RX].base + (hw->hmc.hmc_obj[I40E_HMC_LAN_RX].cnt * hw->hmc.hmc_obj[I40E_HMC_LAN_RX].size); obj->base = i40e_align_l2obj_base(obj->base); size_exp = rd32(hw, I40E_GLHMC_FCOEDDPOBJSZ); obj->size = BIT_ULL(size_exp); /* validate values requested by driver don't exceed HMC capacity */ if (fcoe_cntx_num > obj->max_cnt) { ret_code = I40E_ERR_INVALID_HMC_OBJ_COUNT; DEBUGOUT3("i40e_init_lan_hmc: FCoE context: asks for 0x%x but max allowed is 0x%x, returns error %d\n", fcoe_cntx_num, obj->max_cnt, ret_code); goto free_hmc_out; } /* aggregate values into the full LAN object for later */ full_obj->max_cnt += obj->max_cnt; full_obj->cnt += obj->cnt; /* FCoE filter information */ obj = &hw->hmc.hmc_obj[I40E_HMC_FCOE_FILT]; obj->max_cnt = rd32(hw, I40E_GLHMC_FCOEFMAX); obj->cnt = fcoe_filt_num; obj->base = hw->hmc.hmc_obj[I40E_HMC_FCOE_CTX].base + (hw->hmc.hmc_obj[I40E_HMC_FCOE_CTX].cnt * hw->hmc.hmc_obj[I40E_HMC_FCOE_CTX].size); obj->base = i40e_align_l2obj_base(obj->base); size_exp = rd32(hw, I40E_GLHMC_FCOEFOBJSZ); obj->size = BIT_ULL(size_exp); /* validate values requested by driver don't exceed HMC capacity */ if (fcoe_filt_num > obj->max_cnt) { ret_code = I40E_ERR_INVALID_HMC_OBJ_COUNT; DEBUGOUT3("i40e_init_lan_hmc: FCoE filter: asks for 0x%x but max allowed is 0x%x, returns error %d\n", fcoe_filt_num, obj->max_cnt, ret_code); goto free_hmc_out; } /* aggregate values into the full LAN object for later */ full_obj->max_cnt += obj->max_cnt; full_obj->cnt += obj->cnt; hw->hmc.first_sd_index = 0; hw->hmc.sd_table.ref_cnt = 0; l2fpm_size = i40e_calculate_l2fpm_size(txq_num, rxq_num, fcoe_cntx_num, fcoe_filt_num); if (NULL == hw->hmc.sd_table.sd_entry) { hw->hmc.sd_table.sd_cnt = (u32) (l2fpm_size + I40E_HMC_DIRECT_BP_SIZE - 1) / I40E_HMC_DIRECT_BP_SIZE; /* allocate the sd_entry members in the sd_table */ ret_code = i40e_allocate_virt_mem(hw, &hw->hmc.sd_table.addr, (sizeof(struct i40e_hmc_sd_entry) * hw->hmc.sd_table.sd_cnt)); if (ret_code) goto free_hmc_out; hw->hmc.sd_table.sd_entry = (struct i40e_hmc_sd_entry *)hw->hmc.sd_table.addr.va; } /* store in the LAN full object for later */ full_obj->size = l2fpm_size; init_lan_hmc_out: return ret_code; free_hmc_out: if (hw->hmc.hmc_obj_virt_mem.va) i40e_free_virt_mem(hw, &hw->hmc.hmc_obj_virt_mem); return ret_code; } /** * i40e_remove_pd_page - Remove a page from the page descriptor table * @hw: pointer to the HW structure * @hmc_info: pointer to the HMC configuration information structure * @idx: segment descriptor index to find the relevant page descriptor * * This function: * 1. Marks the entry in pd table (for paged address mode) invalid * 2. write to register PMPDINV to invalidate the backing page in FV cache * 3. Decrement the ref count for pd_entry * assumptions: * 1. caller can deallocate the memory used by pd after this function * returns. **/ STATIC enum i40e_status_code i40e_remove_pd_page(struct i40e_hw *hw, struct i40e_hmc_info *hmc_info, u32 idx) { enum i40e_status_code ret_code = I40E_SUCCESS; if (i40e_prep_remove_pd_page(hmc_info, idx) == I40E_SUCCESS) ret_code = i40e_remove_pd_page_new(hw, hmc_info, idx, true); return ret_code; } /** * i40e_remove_sd_bp - remove a backing page from a segment descriptor * @hw: pointer to our HW structure * @hmc_info: pointer to the HMC configuration information structure * @idx: the page index * * This function: * 1. Marks the entry in sd table (for direct address mode) invalid * 2. write to register PMSDCMD, PMSDDATALOW(PMSDDATALOW.PMSDVALID set * to 0) and PMSDDATAHIGH to invalidate the sd page * 3. Decrement the ref count for the sd_entry * assumptions: * 1. caller can deallocate the memory used by backing storage after this * function returns. **/ STATIC enum i40e_status_code i40e_remove_sd_bp(struct i40e_hw *hw, struct i40e_hmc_info *hmc_info, u32 idx) { enum i40e_status_code ret_code = I40E_SUCCESS; if (i40e_prep_remove_sd_bp(hmc_info, idx) == I40E_SUCCESS) ret_code = i40e_remove_sd_bp_new(hw, hmc_info, idx, true); return ret_code; } /** * i40e_create_lan_hmc_object - allocate backing store for hmc objects * @hw: pointer to the HW structure * @info: pointer to i40e_hmc_create_obj_info struct * * This will allocate memory for PDs and backing pages and populate * the sd and pd entries. **/ enum i40e_status_code i40e_create_lan_hmc_object(struct i40e_hw *hw, struct i40e_hmc_lan_create_obj_info *info) { enum i40e_status_code ret_code = I40E_SUCCESS; struct i40e_hmc_sd_entry *sd_entry; u32 pd_idx1 = 0, pd_lmt1 = 0; u32 pd_idx = 0, pd_lmt = 0; bool pd_error = false; u32 sd_idx, sd_lmt; u64 sd_size; u32 i, j; if (NULL == info) { ret_code = I40E_ERR_BAD_PTR; DEBUGOUT("i40e_create_lan_hmc_object: bad info ptr\n"); goto exit; } if (NULL == info->hmc_info) { ret_code = I40E_ERR_BAD_PTR; DEBUGOUT("i40e_create_lan_hmc_object: bad hmc_info ptr\n"); goto exit; } if (I40E_HMC_INFO_SIGNATURE != info->hmc_info->signature) { ret_code = I40E_ERR_BAD_PTR; DEBUGOUT("i40e_create_lan_hmc_object: bad signature\n"); goto exit; } if (info->start_idx >= info->hmc_info->hmc_obj[info->rsrc_type].cnt) { ret_code = I40E_ERR_INVALID_HMC_OBJ_INDEX; DEBUGOUT1("i40e_create_lan_hmc_object: returns error %d\n", ret_code); goto exit; } if ((info->start_idx + info->count) > info->hmc_info->hmc_obj[info->rsrc_type].cnt) { ret_code = I40E_ERR_INVALID_HMC_OBJ_COUNT; DEBUGOUT1("i40e_create_lan_hmc_object: returns error %d\n", ret_code); goto exit; } /* find sd index and limit */ I40E_FIND_SD_INDEX_LIMIT(info->hmc_info, info->rsrc_type, info->start_idx, info->count, &sd_idx, &sd_lmt); if (sd_idx >= info->hmc_info->sd_table.sd_cnt || sd_lmt > info->hmc_info->sd_table.sd_cnt) { ret_code = I40E_ERR_INVALID_SD_INDEX; goto exit; } /* find pd index */ I40E_FIND_PD_INDEX_LIMIT(info->hmc_info, info->rsrc_type, info->start_idx, info->count, &pd_idx, &pd_lmt); /* This is to cover for cases where you may not want to have an SD with * the full 2M memory but something smaller. By not filling out any * size, the function will default the SD size to be 2M. */ if (info->direct_mode_sz == 0) sd_size = I40E_HMC_DIRECT_BP_SIZE; else sd_size = info->direct_mode_sz; /* check if all the sds are valid. If not, allocate a page and * initialize it. */ for (j = sd_idx; j < sd_lmt; j++) { /* update the sd table entry */ ret_code = i40e_add_sd_table_entry(hw, info->hmc_info, j, info->entry_type, sd_size); if (I40E_SUCCESS != ret_code) goto exit_sd_error; sd_entry = &info->hmc_info->sd_table.sd_entry[j]; if (I40E_SD_TYPE_PAGED == sd_entry->entry_type) { /* check if all the pds in this sd are valid. If not, * allocate a page and initialize it. */ /* find pd_idx and pd_lmt in this sd */ pd_idx1 = max(pd_idx, (j * I40E_HMC_MAX_BP_COUNT)); pd_lmt1 = min(pd_lmt, ((j + 1) * I40E_HMC_MAX_BP_COUNT)); for (i = pd_idx1; i < pd_lmt1; i++) { /* update the pd table entry */ ret_code = i40e_add_pd_table_entry(hw, info->hmc_info, i, NULL); if (I40E_SUCCESS != ret_code) { pd_error = true; break; } } if (pd_error) { /* remove the backing pages from pd_idx1 to i */ while (i && (i > pd_idx1)) { i40e_remove_pd_bp(hw, info->hmc_info, (i - 1)); i--; } } } if (!sd_entry->valid) { sd_entry->valid = true; switch (sd_entry->entry_type) { case I40E_SD_TYPE_PAGED: I40E_SET_PF_SD_ENTRY(hw, sd_entry->u.pd_table.pd_page_addr.pa, j, sd_entry->entry_type); break; case I40E_SD_TYPE_DIRECT: I40E_SET_PF_SD_ENTRY(hw, sd_entry->u.bp.addr.pa, j, sd_entry->entry_type); break; default: ret_code = I40E_ERR_INVALID_SD_TYPE; goto exit; } } } goto exit; exit_sd_error: /* cleanup for sd entries from j to sd_idx */ while (j && (j > sd_idx)) { sd_entry = &info->hmc_info->sd_table.sd_entry[j - 1]; switch (sd_entry->entry_type) { case I40E_SD_TYPE_PAGED: pd_idx1 = max(pd_idx, ((j - 1) * I40E_HMC_MAX_BP_COUNT)); pd_lmt1 = min(pd_lmt, (j * I40E_HMC_MAX_BP_COUNT)); for (i = pd_idx1; i < pd_lmt1; i++) i40e_remove_pd_bp(hw, info->hmc_info, i); i40e_remove_pd_page(hw, info->hmc_info, (j - 1)); break; case I40E_SD_TYPE_DIRECT: i40e_remove_sd_bp(hw, info->hmc_info, (j - 1)); break; default: ret_code = I40E_ERR_INVALID_SD_TYPE; break; } j--; } exit: return ret_code; } /** * i40e_configure_lan_hmc - prepare the HMC backing store * @hw: pointer to the hw structure * @model: the model for the layout of the SD/PD tables * * - This function will be called once per physical function initialization. * - This function will be called after i40e_init_lan_hmc() and before * any LAN/FCoE HMC objects can be created. **/ enum i40e_status_code i40e_configure_lan_hmc(struct i40e_hw *hw, enum i40e_hmc_model model) { struct i40e_hmc_lan_create_obj_info info; u8 hmc_fn_id = hw->hmc.hmc_fn_id; struct i40e_hmc_obj_info *obj; enum i40e_status_code ret_code = I40E_SUCCESS; /* Initialize part of the create object info struct */ info.hmc_info = &hw->hmc; info.rsrc_type = I40E_HMC_LAN_FULL; info.start_idx = 0; info.direct_mode_sz = hw->hmc.hmc_obj[I40E_HMC_LAN_FULL].size; /* Build the SD entry for the LAN objects */ switch (model) { case I40E_HMC_MODEL_DIRECT_PREFERRED: case I40E_HMC_MODEL_DIRECT_ONLY: info.entry_type = I40E_SD_TYPE_DIRECT; /* Make one big object, a single SD */ info.count = 1; ret_code = i40e_create_lan_hmc_object(hw, &info); if ((ret_code != I40E_SUCCESS) && (model == I40E_HMC_MODEL_DIRECT_PREFERRED)) goto try_type_paged; else if (ret_code != I40E_SUCCESS) goto configure_lan_hmc_out; /* else clause falls through the break */ break; case I40E_HMC_MODEL_PAGED_ONLY: try_type_paged: info.entry_type = I40E_SD_TYPE_PAGED; /* Make one big object in the PD table */ info.count = 1; ret_code = i40e_create_lan_hmc_object(hw, &info); if (ret_code != I40E_SUCCESS) goto configure_lan_hmc_out; break; default: /* unsupported type */ ret_code = I40E_ERR_INVALID_SD_TYPE; DEBUGOUT1("i40e_configure_lan_hmc: Unknown SD type: %d\n", ret_code); goto configure_lan_hmc_out; } /* Configure and program the FPM registers so objects can be created */ /* Tx contexts */ obj = &hw->hmc.hmc_obj[I40E_HMC_LAN_TX]; wr32(hw, I40E_GLHMC_LANTXBASE(hmc_fn_id), (u32)((obj->base & I40E_GLHMC_LANTXBASE_FPMLANTXBASE_MASK) / 512)); wr32(hw, I40E_GLHMC_LANTXCNT(hmc_fn_id), obj->cnt); /* Rx contexts */ obj = &hw->hmc.hmc_obj[I40E_HMC_LAN_RX]; wr32(hw, I40E_GLHMC_LANRXBASE(hmc_fn_id), (u32)((obj->base & I40E_GLHMC_LANRXBASE_FPMLANRXBASE_MASK) / 512)); wr32(hw, I40E_GLHMC_LANRXCNT(hmc_fn_id), obj->cnt); /* FCoE contexts */ obj = &hw->hmc.hmc_obj[I40E_HMC_FCOE_CTX]; wr32(hw, I40E_GLHMC_FCOEDDPBASE(hmc_fn_id), (u32)((obj->base & I40E_GLHMC_FCOEDDPBASE_FPMFCOEDDPBASE_MASK) / 512)); wr32(hw, I40E_GLHMC_FCOEDDPCNT(hmc_fn_id), obj->cnt); /* FCoE filters */ obj = &hw->hmc.hmc_obj[I40E_HMC_FCOE_FILT]; wr32(hw, I40E_GLHMC_FCOEFBASE(hmc_fn_id), (u32)((obj->base & I40E_GLHMC_FCOEFBASE_FPMFCOEFBASE_MASK) / 512)); wr32(hw, I40E_GLHMC_FCOEFCNT(hmc_fn_id), obj->cnt); configure_lan_hmc_out: return ret_code; } /** * i40e_delete_lan_hmc_object - remove hmc objects * @hw: pointer to the HW structure * @info: pointer to i40e_hmc_delete_obj_info struct * * This will de-populate the SDs and PDs. It frees * the memory for PDS and backing storage. After this function is returned, * caller should deallocate memory allocated previously for * book-keeping information about PDs and backing storage. **/ enum i40e_status_code i40e_delete_lan_hmc_object(struct i40e_hw *hw, struct i40e_hmc_lan_delete_obj_info *info) { enum i40e_status_code ret_code = I40E_SUCCESS; struct i40e_hmc_pd_table *pd_table; u32 pd_idx, pd_lmt, rel_pd_idx; u32 sd_idx, sd_lmt; u32 i, j; if (NULL == info) { ret_code = I40E_ERR_BAD_PTR; DEBUGOUT("i40e_delete_hmc_object: bad info ptr\n"); goto exit; } if (NULL == info->hmc_info) { ret_code = I40E_ERR_BAD_PTR; DEBUGOUT("i40e_delete_hmc_object: bad info->hmc_info ptr\n"); goto exit; } if (I40E_HMC_INFO_SIGNATURE != info->hmc_info->signature) { ret_code = I40E_ERR_BAD_PTR; DEBUGOUT("i40e_delete_hmc_object: bad hmc_info->signature\n"); goto exit; } if (NULL == info->hmc_info->sd_table.sd_entry) { ret_code = I40E_ERR_BAD_PTR; DEBUGOUT("i40e_delete_hmc_object: bad sd_entry\n"); goto exit; } if (NULL == info->hmc_info->hmc_obj) { ret_code = I40E_ERR_BAD_PTR; DEBUGOUT("i40e_delete_hmc_object: bad hmc_info->hmc_obj\n"); goto exit; } if (info->start_idx >= info->hmc_info->hmc_obj[info->rsrc_type].cnt) { ret_code = I40E_ERR_INVALID_HMC_OBJ_INDEX; DEBUGOUT1("i40e_delete_hmc_object: returns error %d\n", ret_code); goto exit; } if ((info->start_idx + info->count) > info->hmc_info->hmc_obj[info->rsrc_type].cnt) { ret_code = I40E_ERR_INVALID_HMC_OBJ_COUNT; DEBUGOUT1("i40e_delete_hmc_object: returns error %d\n", ret_code); goto exit; } I40E_FIND_PD_INDEX_LIMIT(info->hmc_info, info->rsrc_type, info->start_idx, info->count, &pd_idx, &pd_lmt); for (j = pd_idx; j < pd_lmt; j++) { sd_idx = j / I40E_HMC_PD_CNT_IN_SD; if (I40E_SD_TYPE_PAGED != info->hmc_info->sd_table.sd_entry[sd_idx].entry_type) continue; rel_pd_idx = j % I40E_HMC_PD_CNT_IN_SD; pd_table = &info->hmc_info->sd_table.sd_entry[sd_idx].u.pd_table; if (pd_table->pd_entry[rel_pd_idx].valid) { ret_code = i40e_remove_pd_bp(hw, info->hmc_info, j); if (I40E_SUCCESS != ret_code) goto exit; } } /* find sd index and limit */ I40E_FIND_SD_INDEX_LIMIT(info->hmc_info, info->rsrc_type, info->start_idx, info->count, &sd_idx, &sd_lmt); if (sd_idx >= info->hmc_info->sd_table.sd_cnt || sd_lmt > info->hmc_info->sd_table.sd_cnt) { ret_code = I40E_ERR_INVALID_SD_INDEX; goto exit; } for (i = sd_idx; i < sd_lmt; i++) { if (!info->hmc_info->sd_table.sd_entry[i].valid) continue; switch (info->hmc_info->sd_table.sd_entry[i].entry_type) { case I40E_SD_TYPE_DIRECT: ret_code = i40e_remove_sd_bp(hw, info->hmc_info, i); if (I40E_SUCCESS != ret_code) goto exit; break; case I40E_SD_TYPE_PAGED: ret_code = i40e_remove_pd_page(hw, info->hmc_info, i); if (I40E_SUCCESS != ret_code) goto exit; break; default: break; } } exit: return ret_code; } /** * i40e_shutdown_lan_hmc - Remove HMC backing store, free allocated memory * @hw: pointer to the hw structure * * This must be called by drivers as they are shutting down and being * removed from the OS. **/ enum i40e_status_code i40e_shutdown_lan_hmc(struct i40e_hw *hw) { struct i40e_hmc_lan_delete_obj_info info; enum i40e_status_code ret_code; info.hmc_info = &hw->hmc; info.rsrc_type = I40E_HMC_LAN_FULL; info.start_idx = 0; info.count = 1; /* delete the object */ ret_code = i40e_delete_lan_hmc_object(hw, &info); /* free the SD table entry for LAN */ i40e_free_virt_mem(hw, &hw->hmc.sd_table.addr); hw->hmc.sd_table.sd_cnt = 0; hw->hmc.sd_table.sd_entry = NULL; /* free memory used for hmc_obj */ i40e_free_virt_mem(hw, &hw->hmc.hmc_obj_virt_mem); hw->hmc.hmc_obj = NULL; return ret_code; } #define I40E_HMC_STORE(_struct, _ele) \ offsetof(struct _struct, _ele), \ FIELD_SIZEOF(struct _struct, _ele) struct i40e_context_ele { u16 offset; u16 size_of; u16 width; u16 lsb; }; /* LAN Tx Queue Context */ static struct i40e_context_ele i40e_hmc_txq_ce_info[] = { /* Field Width LSB */ {I40E_HMC_STORE(i40e_hmc_obj_txq, head), 13, 0 }, {I40E_HMC_STORE(i40e_hmc_obj_txq, new_context), 1, 30 }, {I40E_HMC_STORE(i40e_hmc_obj_txq, base), 57, 32 }, {I40E_HMC_STORE(i40e_hmc_obj_txq, fc_ena), 1, 89 }, {I40E_HMC_STORE(i40e_hmc_obj_txq, timesync_ena), 1, 90 }, {I40E_HMC_STORE(i40e_hmc_obj_txq, fd_ena), 1, 91 }, {I40E_HMC_STORE(i40e_hmc_obj_txq, alt_vlan_ena), 1, 92 }, {I40E_HMC_STORE(i40e_hmc_obj_txq, cpuid), 8, 96 }, /* line 1 */ {I40E_HMC_STORE(i40e_hmc_obj_txq, thead_wb), 13, 0 + 128 }, {I40E_HMC_STORE(i40e_hmc_obj_txq, head_wb_ena), 1, 32 + 128 }, {I40E_HMC_STORE(i40e_hmc_obj_txq, qlen), 13, 33 + 128 }, {I40E_HMC_STORE(i40e_hmc_obj_txq, tphrdesc_ena), 1, 46 + 128 }, {I40E_HMC_STORE(i40e_hmc_obj_txq, tphrpacket_ena), 1, 47 + 128 }, {I40E_HMC_STORE(i40e_hmc_obj_txq, tphwdesc_ena), 1, 48 + 128 }, {I40E_HMC_STORE(i40e_hmc_obj_txq, head_wb_addr), 64, 64 + 128 }, /* line 7 */ {I40E_HMC_STORE(i40e_hmc_obj_txq, crc), 32, 0 + (7 * 128) }, {I40E_HMC_STORE(i40e_hmc_obj_txq, rdylist), 10, 84 + (7 * 128) }, {I40E_HMC_STORE(i40e_hmc_obj_txq, rdylist_act), 1, 94 + (7 * 128) }, { 0 } }; /* LAN Rx Queue Context */ static struct i40e_context_ele i40e_hmc_rxq_ce_info[] = { /* Field Width LSB */ { I40E_HMC_STORE(i40e_hmc_obj_rxq, head), 13, 0 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, cpuid), 8, 13 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, base), 57, 32 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, qlen), 13, 89 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, dbuff), 7, 102 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, hbuff), 5, 109 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, dtype), 2, 114 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, dsize), 1, 116 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, crcstrip), 1, 117 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, fc_ena), 1, 118 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, l2tsel), 1, 119 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, hsplit_0), 4, 120 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, hsplit_1), 2, 124 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, showiv), 1, 127 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, rxmax), 14, 174 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, tphrdesc_ena), 1, 193 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, tphwdesc_ena), 1, 194 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, tphdata_ena), 1, 195 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, tphhead_ena), 1, 196 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, lrxqthresh), 3, 198 }, { I40E_HMC_STORE(i40e_hmc_obj_rxq, prefena), 1, 201 }, { 0 } }; /** * i40e_write_byte - replace HMC context byte * @hmc_bits: pointer to the HMC memory * @ce_info: a description of the struct to be read from * @src: the struct to be read from **/ static void i40e_write_byte(u8 *hmc_bits, struct i40e_context_ele *ce_info, u8 *src) { u8 src_byte, dest_byte, mask; u8 *from, *dest; u16 shift_width; /* copy from the next struct field */ from = src + ce_info->offset; /* prepare the bits and mask */ shift_width = ce_info->lsb % 8; mask = (u8)(BIT(ce_info->width) - 1); src_byte = *from; src_byte &= mask; /* shift to correct alignment */ mask <<= shift_width; src_byte <<= shift_width; /* get the current bits from the target bit string */ dest = hmc_bits + (ce_info->lsb / 8); i40e_memcpy(&dest_byte, dest, sizeof(dest_byte), I40E_DMA_TO_NONDMA); dest_byte &= ~mask; /* get the bits not changing */ dest_byte |= src_byte; /* add in the new bits */ /* put it all back */ i40e_memcpy(dest, &dest_byte, sizeof(dest_byte), I40E_NONDMA_TO_DMA); } /** * i40e_write_word - replace HMC context word * @hmc_bits: pointer to the HMC memory * @ce_info: a description of the struct to be read from * @src: the struct to be read from **/ static void i40e_write_word(u8 *hmc_bits, struct i40e_context_ele *ce_info, u8 *src) { u16 src_word, mask; u8 *from, *dest; u16 shift_width; __le16 dest_word; /* copy from the next struct field */ from = src + ce_info->offset; /* prepare the bits and mask */ shift_width = ce_info->lsb % 8; mask = BIT(ce_info->width) - 1; /* don't swizzle the bits until after the mask because the mask bits * will be in a different bit position on big endian machines */ src_word = *(u16 *)from; src_word &= mask; /* shift to correct alignment */ mask <<= shift_width; src_word <<= shift_width; /* get the current bits from the target bit string */ dest = hmc_bits + (ce_info->lsb / 8); i40e_memcpy(&dest_word, dest, sizeof(dest_word), I40E_DMA_TO_NONDMA); dest_word &= ~(CPU_TO_LE16(mask)); /* get the bits not changing */ dest_word |= CPU_TO_LE16(src_word); /* add in the new bits */ /* put it all back */ i40e_memcpy(dest, &dest_word, sizeof(dest_word), I40E_NONDMA_TO_DMA); } /** * i40e_write_dword - replace HMC context dword * @hmc_bits: pointer to the HMC memory * @ce_info: a description of the struct to be read from * @src: the struct to be read from **/ static void i40e_write_dword(u8 *hmc_bits, struct i40e_context_ele *ce_info, u8 *src) { u32 src_dword, mask; u8 *from, *dest; u16 shift_width; __le32 dest_dword; /* copy from the next struct field */ from = src + ce_info->offset; /* prepare the bits and mask */ shift_width = ce_info->lsb % 8; /* if the field width is exactly 32 on an x86 machine, then the shift * operation will not work because the SHL instructions count is masked * to 5 bits so the shift will do nothing */ if (ce_info->width < 32) mask = BIT(ce_info->width) - 1; else mask = ~(u32)0; /* don't swizzle the bits until after the mask because the mask bits * will be in a different bit position on big endian machines */ src_dword = *(u32 *)from; src_dword &= mask; /* shift to correct alignment */ mask <<= shift_width; src_dword <<= shift_width; /* get the current bits from the target bit string */ dest = hmc_bits + (ce_info->lsb / 8); i40e_memcpy(&dest_dword, dest, sizeof(dest_dword), I40E_DMA_TO_NONDMA); dest_dword &= ~(CPU_TO_LE32(mask)); /* get the bits not changing */ dest_dword |= CPU_TO_LE32(src_dword); /* add in the new bits */ /* put it all back */ i40e_memcpy(dest, &dest_dword, sizeof(dest_dword), I40E_NONDMA_TO_DMA); } /** * i40e_write_qword - replace HMC context qword * @hmc_bits: pointer to the HMC memory * @ce_info: a description of the struct to be read from * @src: the struct to be read from **/ static void i40e_write_qword(u8 *hmc_bits, struct i40e_context_ele *ce_info, u8 *src) { u64 src_qword, mask; u8 *from, *dest; u16 shift_width; __le64 dest_qword; /* copy from the next struct field */ from = src + ce_info->offset; /* prepare the bits and mask */ shift_width = ce_info->lsb % 8; /* if the field width is exactly 64 on an x86 machine, then the shift * operation will not work because the SHL instructions count is masked * to 6 bits so the shift will do nothing */ if (ce_info->width < 64) mask = BIT_ULL(ce_info->width) - 1; else mask = ~(u64)0; /* don't swizzle the bits until after the mask because the mask bits * will be in a different bit position on big endian machines */ src_qword = *(u64 *)from; src_qword &= mask; /* shift to correct alignment */ mask <<= shift_width; src_qword <<= shift_width; /* get the current bits from the target bit string */ dest = hmc_bits + (ce_info->lsb / 8); i40e_memcpy(&dest_qword, dest, sizeof(dest_qword), I40E_DMA_TO_NONDMA); dest_qword &= ~(CPU_TO_LE64(mask)); /* get the bits not changing */ dest_qword |= CPU_TO_LE64(src_qword); /* add in the new bits */ /* put it all back */ i40e_memcpy(dest, &dest_qword, sizeof(dest_qword), I40E_NONDMA_TO_DMA); } /** * i40e_read_byte - read HMC context byte into struct * @hmc_bits: pointer to the HMC memory * @ce_info: a description of the struct to be filled * @dest: the struct to be filled **/ static void i40e_read_byte(u8 *hmc_bits, struct i40e_context_ele *ce_info, u8 *dest) { u8 dest_byte, mask; u8 *src, *target; u16 shift_width; /* prepare the bits and mask */ shift_width = ce_info->lsb % 8; mask = (u8)(BIT(ce_info->width) - 1); /* shift to correct alignment */ mask <<= shift_width; /* get the current bits from the src bit string */ src = hmc_bits + (ce_info->lsb / 8); i40e_memcpy(&dest_byte, src, sizeof(dest_byte), I40E_DMA_TO_NONDMA); dest_byte &= ~(mask); dest_byte >>= shift_width; /* get the address from the struct field */ target = dest + ce_info->offset; /* put it back in the struct */ i40e_memcpy(target, &dest_byte, sizeof(dest_byte), I40E_NONDMA_TO_DMA); } /** * i40e_read_word - read HMC context word into struct * @hmc_bits: pointer to the HMC memory * @ce_info: a description of the struct to be filled * @dest: the struct to be filled **/ static void i40e_read_word(u8 *hmc_bits, struct i40e_context_ele *ce_info, u8 *dest) { u16 dest_word, mask; u8 *src, *target; u16 shift_width; __le16 src_word; /* prepare the bits and mask */ shift_width = ce_info->lsb % 8; mask = BIT(ce_info->width) - 1; /* shift to correct alignment */ mask <<= shift_width; /* get the current bits from the src bit string */ src = hmc_bits + (ce_info->lsb / 8); i40e_memcpy(&src_word, src, sizeof(src_word), I40E_DMA_TO_NONDMA); /* the data in the memory is stored as little endian so mask it * correctly */ src_word &= ~(CPU_TO_LE16(mask)); /* get the data back into host order before shifting */ dest_word = LE16_TO_CPU(src_word); dest_word >>= shift_width; /* get the address from the struct field */ target = dest + ce_info->offset; /* put it back in the struct */ i40e_memcpy(target, &dest_word, sizeof(dest_word), I40E_NONDMA_TO_DMA); } /** * i40e_read_dword - read HMC context dword into struct * @hmc_bits: pointer to the HMC memory * @ce_info: a description of the struct to be filled * @dest: the struct to be filled **/ static void i40e_read_dword(u8 *hmc_bits, struct i40e_context_ele *ce_info, u8 *dest) { u32 dest_dword, mask; u8 *src, *target; u16 shift_width; __le32 src_dword; /* prepare the bits and mask */ shift_width = ce_info->lsb % 8; /* if the field width is exactly 32 on an x86 machine, then the shift * operation will not work because the SHL instructions count is masked * to 5 bits so the shift will do nothing */ if (ce_info->width < 32) mask = BIT(ce_info->width) - 1; else mask = ~(u32)0; /* shift to correct alignment */ mask <<= shift_width; /* get the current bits from the src bit string */ src = hmc_bits + (ce_info->lsb / 8); i40e_memcpy(&src_dword, src, sizeof(src_dword), I40E_DMA_TO_NONDMA); /* the data in the memory is stored as little endian so mask it * correctly */ src_dword &= ~(CPU_TO_LE32(mask)); /* get the data back into host order before shifting */ dest_dword = LE32_TO_CPU(src_dword); dest_dword >>= shift_width; /* get the address from the struct field */ target = dest + ce_info->offset; /* put it back in the struct */ i40e_memcpy(target, &dest_dword, sizeof(dest_dword), I40E_NONDMA_TO_DMA); } /** * i40e_read_qword - read HMC context qword into struct * @hmc_bits: pointer to the HMC memory * @ce_info: a description of the struct to be filled * @dest: the struct to be filled **/ static void i40e_read_qword(u8 *hmc_bits, struct i40e_context_ele *ce_info, u8 *dest) { u64 dest_qword, mask; u8 *src, *target; u16 shift_width; __le64 src_qword; /* prepare the bits and mask */ shift_width = ce_info->lsb % 8; /* if the field width is exactly 64 on an x86 machine, then the shift * operation will not work because the SHL instructions count is masked * to 6 bits so the shift will do nothing */ if (ce_info->width < 64) mask = BIT_ULL(ce_info->width) - 1; else mask = ~(u64)0; /* shift to correct alignment */ mask <<= shift_width; /* get the current bits from the src bit string */ src = hmc_bits + (ce_info->lsb / 8); i40e_memcpy(&src_qword, src, sizeof(src_qword), I40E_DMA_TO_NONDMA); /* the data in the memory is stored as little endian so mask it * correctly */ src_qword &= ~(CPU_TO_LE64(mask)); /* get the data back into host order before shifting */ dest_qword = LE64_TO_CPU(src_qword); dest_qword >>= shift_width; /* get the address from the struct field */ target = dest + ce_info->offset; /* put it back in the struct */ i40e_memcpy(target, &dest_qword, sizeof(dest_qword), I40E_NONDMA_TO_DMA); } /** * i40e_get_hmc_context - extract HMC context bits * @context_bytes: pointer to the context bit array * @ce_info: a description of the struct to be filled * @dest: the struct to be filled **/ static enum i40e_status_code i40e_get_hmc_context(u8 *context_bytes, struct i40e_context_ele *ce_info, u8 *dest) { int f; for (f = 0; ce_info[f].width != 0; f++) { switch (ce_info[f].size_of) { case 1: i40e_read_byte(context_bytes, &ce_info[f], dest); break; case 2: i40e_read_word(context_bytes, &ce_info[f], dest); break; case 4: i40e_read_dword(context_bytes, &ce_info[f], dest); break; case 8: i40e_read_qword(context_bytes, &ce_info[f], dest); break; default: /* nothing to do, just keep going */ break; } } return I40E_SUCCESS; } /** * i40e_clear_hmc_context - zero out the HMC context bits * @hw: the hardware struct * @context_bytes: pointer to the context bit array (DMA memory) * @hmc_type: the type of HMC resource **/ static enum i40e_status_code i40e_clear_hmc_context(struct i40e_hw *hw, u8 *context_bytes, enum i40e_hmc_lan_rsrc_type hmc_type) { /* clean the bit array */ i40e_memset(context_bytes, 0, (u32)hw->hmc.hmc_obj[hmc_type].size, I40E_DMA_MEM); return I40E_SUCCESS; } /** * i40e_set_hmc_context - replace HMC context bits * @context_bytes: pointer to the context bit array * @ce_info: a description of the struct to be filled * @dest: the struct to be filled **/ static enum i40e_status_code i40e_set_hmc_context(u8 *context_bytes, struct i40e_context_ele *ce_info, u8 *dest) { int f; for (f = 0; ce_info[f].width != 0; f++) { /* we have to deal with each element of the HMC using the * correct size so that we are correct regardless of the * endianness of the machine */ switch (ce_info[f].size_of) { case 1: i40e_write_byte(context_bytes, &ce_info[f], dest); break; case 2: i40e_write_word(context_bytes, &ce_info[f], dest); break; case 4: i40e_write_dword(context_bytes, &ce_info[f], dest); break; case 8: i40e_write_qword(context_bytes, &ce_info[f], dest); break; } } return I40E_SUCCESS; } /** * i40e_hmc_get_object_va - retrieves an object's virtual address * @hw: pointer to the hw structure * @object_base: pointer to u64 to get the va * @rsrc_type: the hmc resource type * @obj_idx: hmc object index * * This function retrieves the object's virtual address from the object * base pointer. This function is used for LAN Queue contexts. **/ STATIC enum i40e_status_code i40e_hmc_get_object_va(struct i40e_hw *hw, u8 **object_base, enum i40e_hmc_lan_rsrc_type rsrc_type, u32 obj_idx) { u32 obj_offset_in_sd, obj_offset_in_pd; struct i40e_hmc_info *hmc_info = &hw->hmc; struct i40e_hmc_sd_entry *sd_entry; struct i40e_hmc_pd_entry *pd_entry; u32 pd_idx, pd_lmt, rel_pd_idx; enum i40e_status_code ret_code = I40E_SUCCESS; u64 obj_offset_in_fpm; u32 sd_idx, sd_lmt; if (NULL == hmc_info->hmc_obj) { ret_code = I40E_ERR_BAD_PTR; DEBUGOUT("i40e_hmc_get_object_va: bad hmc_info->hmc_obj ptr\n"); goto exit; } if (NULL == object_base) { ret_code = I40E_ERR_BAD_PTR; DEBUGOUT("i40e_hmc_get_object_va: bad object_base ptr\n"); goto exit; } if (I40E_HMC_INFO_SIGNATURE != hmc_info->signature) { ret_code = I40E_ERR_BAD_PTR; DEBUGOUT("i40e_hmc_get_object_va: bad hmc_info->signature\n"); goto exit; } if (obj_idx >= hmc_info->hmc_obj[rsrc_type].cnt) { DEBUGOUT1("i40e_hmc_get_object_va: returns error %d\n", ret_code); ret_code = I40E_ERR_INVALID_HMC_OBJ_INDEX; goto exit; } /* find sd index and limit */ I40E_FIND_SD_INDEX_LIMIT(hmc_info, rsrc_type, obj_idx, 1, &sd_idx, &sd_lmt); sd_entry = &hmc_info->sd_table.sd_entry[sd_idx]; obj_offset_in_fpm = hmc_info->hmc_obj[rsrc_type].base + hmc_info->hmc_obj[rsrc_type].size * obj_idx; if (I40E_SD_TYPE_PAGED == sd_entry->entry_type) { I40E_FIND_PD_INDEX_LIMIT(hmc_info, rsrc_type, obj_idx, 1, &pd_idx, &pd_lmt); rel_pd_idx = pd_idx % I40E_HMC_PD_CNT_IN_SD; pd_entry = &sd_entry->u.pd_table.pd_entry[rel_pd_idx]; obj_offset_in_pd = (u32)(obj_offset_in_fpm % I40E_HMC_PAGED_BP_SIZE); *object_base = (u8 *)pd_entry->bp.addr.va + obj_offset_in_pd; } else { obj_offset_in_sd = (u32)(obj_offset_in_fpm % I40E_HMC_DIRECT_BP_SIZE); *object_base = (u8 *)sd_entry->u.bp.addr.va + obj_offset_in_sd; } exit: return ret_code; } /** * i40e_get_lan_tx_queue_context - return the HMC context for the queue * @hw: the hardware struct * @queue: the queue we care about * @s: the struct to be filled **/ enum i40e_status_code i40e_get_lan_tx_queue_context(struct i40e_hw *hw, u16 queue, struct i40e_hmc_obj_txq *s) { enum i40e_status_code err; u8 *context_bytes; err = i40e_hmc_get_object_va(hw, &context_bytes, I40E_HMC_LAN_TX, queue); if (err < 0) return err; return i40e_get_hmc_context(context_bytes, i40e_hmc_txq_ce_info, (u8 *)s); } /** * i40e_clear_lan_tx_queue_context - clear the HMC context for the queue * @hw: the hardware struct * @queue: the queue we care about **/ enum i40e_status_code i40e_clear_lan_tx_queue_context(struct i40e_hw *hw, u16 queue) { enum i40e_status_code err; u8 *context_bytes; err = i40e_hmc_get_object_va(hw, &context_bytes, I40E_HMC_LAN_TX, queue); if (err < 0) return err; return i40e_clear_hmc_context(hw, context_bytes, I40E_HMC_LAN_TX); } /** * i40e_set_lan_tx_queue_context - set the HMC context for the queue * @hw: the hardware struct * @queue: the queue we care about * @s: the struct to be filled **/ enum i40e_status_code i40e_set_lan_tx_queue_context(struct i40e_hw *hw, u16 queue, struct i40e_hmc_obj_txq *s) { enum i40e_status_code err; u8 *context_bytes; err = i40e_hmc_get_object_va(hw, &context_bytes, I40E_HMC_LAN_TX, queue); if (err < 0) return err; return i40e_set_hmc_context(context_bytes, i40e_hmc_txq_ce_info, (u8 *)s); } /** * i40e_get_lan_rx_queue_context - return the HMC context for the queue * @hw: the hardware struct * @queue: the queue we care about * @s: the struct to be filled **/ enum i40e_status_code i40e_get_lan_rx_queue_context(struct i40e_hw *hw, u16 queue, struct i40e_hmc_obj_rxq *s) { enum i40e_status_code err; u8 *context_bytes; err = i40e_hmc_get_object_va(hw, &context_bytes, I40E_HMC_LAN_RX, queue); if (err < 0) return err; return i40e_get_hmc_context(context_bytes, i40e_hmc_rxq_ce_info, (u8 *)s); } /** * i40e_clear_lan_rx_queue_context - clear the HMC context for the queue * @hw: the hardware struct * @queue: the queue we care about **/ enum i40e_status_code i40e_clear_lan_rx_queue_context(struct i40e_hw *hw, u16 queue) { enum i40e_status_code err; u8 *context_bytes; err = i40e_hmc_get_object_va(hw, &context_bytes, I40E_HMC_LAN_RX, queue); if (err < 0) return err; return i40e_clear_hmc_context(hw, context_bytes, I40E_HMC_LAN_RX); } /** * i40e_set_lan_rx_queue_context - set the HMC context for the queue * @hw: the hardware struct * @queue: the queue we care about * @s: the struct to be filled **/ enum i40e_status_code i40e_set_lan_rx_queue_context(struct i40e_hw *hw, u16 queue, struct i40e_hmc_obj_rxq *s) { enum i40e_status_code err; u8 *context_bytes; err = i40e_hmc_get_object_va(hw, &context_bytes, I40E_HMC_LAN_RX, queue); if (err < 0) return err; return i40e_set_hmc_context(context_bytes, i40e_hmc_rxq_ce_info, (u8 *)s); }