/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018-2021 HiSilicon Limited. */ #include #include #include #include #include "hns3_ethdev.h" #include "hns3_common.h" #include "hns3_logs.h" #include "hns3_rxtx.h" #include "hns3_intr.h" #include "hns3_regs.h" #include "hns3_dcb.h" #include "hns3_mp.h" #include "hns3_flow.h" #define HNS3_SERVICE_INTERVAL 1000000 /* us */ #define HNS3_SERVICE_QUICK_INTERVAL 10 #define HNS3_INVALID_PVID 0xFFFF #define HNS3_FILTER_TYPE_VF 0 #define HNS3_FILTER_TYPE_PORT 1 #define HNS3_FILTER_FE_EGRESS_V1_B BIT(0) #define HNS3_FILTER_FE_NIC_INGRESS_B BIT(0) #define HNS3_FILTER_FE_NIC_EGRESS_B BIT(1) #define HNS3_FILTER_FE_ROCE_INGRESS_B BIT(2) #define HNS3_FILTER_FE_ROCE_EGRESS_B BIT(3) #define HNS3_FILTER_FE_EGRESS (HNS3_FILTER_FE_NIC_EGRESS_B \ | HNS3_FILTER_FE_ROCE_EGRESS_B) #define HNS3_FILTER_FE_INGRESS (HNS3_FILTER_FE_NIC_INGRESS_B \ | HNS3_FILTER_FE_ROCE_INGRESS_B) /* Reset related Registers */ #define HNS3_GLOBAL_RESET_BIT 0 #define HNS3_CORE_RESET_BIT 1 #define HNS3_IMP_RESET_BIT 2 #define HNS3_FUN_RST_ING_B 0 #define HNS3_VECTOR0_IMP_RESET_INT_B 1 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B 4U #define HNS3_VECTOR0_IMP_RD_POISON_B 5U #define HNS3_VECTOR0_ALL_MSIX_ERR_B 6U #define HNS3_RESET_WAIT_MS 100 #define HNS3_RESET_WAIT_CNT 200 /* FEC mode order defined in HNS3 hardware */ #define HNS3_HW_FEC_MODE_NOFEC 0 #define HNS3_HW_FEC_MODE_BASER 1 #define HNS3_HW_FEC_MODE_RS 2 enum hns3_evt_cause { HNS3_VECTOR0_EVENT_RST, HNS3_VECTOR0_EVENT_MBX, HNS3_VECTOR0_EVENT_ERR, HNS3_VECTOR0_EVENT_PTP, HNS3_VECTOR0_EVENT_OTHER, }; static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = { { RTE_ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) | RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) | RTE_ETH_FEC_MODE_CAPA_MASK(BASER) }, { RTE_ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) | RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) | RTE_ETH_FEC_MODE_CAPA_MASK(BASER) | RTE_ETH_FEC_MODE_CAPA_MASK(RS) }, { RTE_ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) | RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) | RTE_ETH_FEC_MODE_CAPA_MASK(BASER) }, { RTE_ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) | RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) | RTE_ETH_FEC_MODE_CAPA_MASK(BASER) | RTE_ETH_FEC_MODE_CAPA_MASK(RS) }, { RTE_ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) | RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) | RTE_ETH_FEC_MODE_CAPA_MASK(RS) }, { RTE_ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) | RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) | RTE_ETH_FEC_MODE_CAPA_MASK(RS) } }; static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels); static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on); static int hns3_update_link_info(struct rte_eth_dev *eth_dev); static bool hns3_update_link_status(struct hns3_hw *hw); static int hns3_add_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr); static int hns3_remove_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr); static int hns3_restore_fec(struct hns3_hw *hw); static int hns3_query_dev_fec_info(struct hns3_hw *hw); static int hns3_do_stop(struct hns3_adapter *hns); static int hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds); static int hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable); static void hns3_pf_disable_irq0(struct hns3_hw *hw) { hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0); } static void hns3_pf_enable_irq0(struct hns3_hw *hw) { hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1); } static enum hns3_evt_cause hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay, uint32_t *vec_val) { struct hns3_hw *hw = &hns->hw; __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED); hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending); *vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B); if (!is_delay) { hw->reset.stats.imp_cnt++; hns3_warn(hw, "IMP reset detected, clear reset status"); } else { hns3_schedule_delayed_reset(hns); hns3_warn(hw, "IMP reset detected, don't clear reset status"); } return HNS3_VECTOR0_EVENT_RST; } static enum hns3_evt_cause hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay, uint32_t *vec_val) { struct hns3_hw *hw = &hns->hw; __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED); hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending); *vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B); if (!is_delay) { hw->reset.stats.global_cnt++; hns3_warn(hw, "Global reset detected, clear reset status"); } else { hns3_schedule_delayed_reset(hns); hns3_warn(hw, "Global reset detected, don't clear reset status"); } return HNS3_VECTOR0_EVENT_RST; } static enum hns3_evt_cause hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval) { struct hns3_hw *hw = &hns->hw; uint32_t vector0_int_stats; uint32_t cmdq_src_val; uint32_t hw_err_src_reg; uint32_t val; enum hns3_evt_cause ret; bool is_delay; /* fetch the events from their corresponding regs */ vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG); cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG); hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG); is_delay = clearval == NULL ? true : false; /* * Assumption: If by any chance reset and mailbox events are reported * together then we will only process reset event and defer the * processing of the mailbox events. Since, we would have not cleared * RX CMDQ event this time we would receive again another interrupt * from H/W just for the mailbox. */ if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */ ret = hns3_proc_imp_reset_event(hns, is_delay, &val); goto out; } /* Global reset */ if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) { ret = hns3_proc_global_reset_event(hns, is_delay, &val); goto out; } /* Check for vector0 1588 event source */ if (BIT(HNS3_VECTOR0_1588_INT_B) & vector0_int_stats) { val = BIT(HNS3_VECTOR0_1588_INT_B); ret = HNS3_VECTOR0_EVENT_PTP; goto out; } /* check for vector0 msix event source */ if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK || hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) { val = vector0_int_stats | hw_err_src_reg; ret = HNS3_VECTOR0_EVENT_ERR; goto out; } /* check for vector0 mailbox(=CMDQ RX) event source */ if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) { cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B); val = cmdq_src_val; ret = HNS3_VECTOR0_EVENT_MBX; goto out; } val = vector0_int_stats; ret = HNS3_VECTOR0_EVENT_OTHER; out: if (clearval) *clearval = val; return ret; } static void hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr) { if (event_type == HNS3_VECTOR0_EVENT_RST || event_type == HNS3_VECTOR0_EVENT_PTP) hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr); else if (event_type == HNS3_VECTOR0_EVENT_MBX) hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr); } static void hns3_clear_all_event_cause(struct hns3_hw *hw) { uint32_t vector0_int_stats; vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG); if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) hns3_warn(hw, "Probe during IMP reset interrupt"); if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) hns3_warn(hw, "Probe during Global reset interrupt"); hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST, BIT(HNS3_VECTOR0_IMPRESET_INT_B) | BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | BIT(HNS3_VECTOR0_CORERESET_INT_B)); hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0); hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP, BIT(HNS3_VECTOR0_1588_INT_B)); } static void hns3_handle_mac_tnl(struct hns3_hw *hw) { struct hns3_cmd_desc desc; uint32_t status; int ret; /* query and clear mac tnl interrupt */ hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true); ret = hns3_cmd_send(hw, &desc, 1); if (ret) { hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret); return; } status = rte_le_to_cpu_32(desc.data[0]); if (status) { hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status); hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT, false); desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR); ret = hns3_cmd_send(hw, &desc, 1); if (ret) hns3_err(hw, "failed to clear mac tnl int, ret = %d.", ret); } } static void hns3_interrupt_handler(void *param) { struct rte_eth_dev *dev = (struct rte_eth_dev *)param; struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; enum hns3_evt_cause event_cause; uint32_t clearval = 0; uint32_t vector0_int; uint32_t ras_int; uint32_t cmdq_int; /* Disable interrupt */ hns3_pf_disable_irq0(hw); event_cause = hns3_check_event_cause(hns, &clearval); vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG); ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG); cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG); hns3_clear_event_cause(hw, event_cause, clearval); /* vector 0 interrupt is shared with reset and mailbox source events. */ if (event_cause == HNS3_VECTOR0_EVENT_ERR) { hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x " "ras_int_stat:0x%x cmdq_int_stat:0x%x", vector0_int, ras_int, cmdq_int); hns3_handle_mac_tnl(hw); hns3_handle_error(hns); } else if (event_cause == HNS3_VECTOR0_EVENT_RST) { hns3_warn(hw, "received reset interrupt"); hns3_schedule_reset(hns); } else if (event_cause == HNS3_VECTOR0_EVENT_MBX) { hns3_dev_handle_mbx_msg(hw); } else if (event_cause != HNS3_VECTOR0_EVENT_PTP) { hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x " "ras_int_stat:0x%x cmdq_int_stat:0x%x", vector0_int, ras_int, cmdq_int); } /* Enable interrupt if it is not cause by reset */ hns3_pf_enable_irq0(hw); } static int hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on) { #define HNS3_VLAN_ID_OFFSET_STEP 160 #define HNS3_VLAN_BYTE_SIZE 8 struct hns3_vlan_filter_pf_cfg_cmd *req; struct hns3_hw *hw = &hns->hw; uint8_t vlan_offset_byte_val; struct hns3_cmd_desc desc; uint8_t vlan_offset_byte; uint8_t vlan_offset_base; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false); vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP; vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) / HNS3_VLAN_BYTE_SIZE; vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE); req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data; req->vlan_offset = vlan_offset_base; req->vlan_cfg = on ? 0 : 1; req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val; ret = hns3_cmd_send(hw, &desc, 1); if (ret) hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d", vlan_id, ret); return ret; } static void hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id) { struct hns3_user_vlan_table *vlan_entry; struct hns3_pf *pf = &hns->pf; LIST_FOREACH(vlan_entry, &pf->vlan_list, next) { if (vlan_entry->vlan_id == vlan_id) { if (vlan_entry->hd_tbl_status) hns3_set_port_vlan_filter(hns, vlan_id, 0); LIST_REMOVE(vlan_entry, next); rte_free(vlan_entry); break; } } } static void hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id, bool writen_to_tbl) { struct hns3_user_vlan_table *vlan_entry; struct hns3_hw *hw = &hns->hw; struct hns3_pf *pf = &hns->pf; LIST_FOREACH(vlan_entry, &pf->vlan_list, next) { if (vlan_entry->vlan_id == vlan_id) return; } vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0); if (vlan_entry == NULL) { hns3_err(hw, "Failed to malloc hns3 vlan table"); return; } vlan_entry->hd_tbl_status = writen_to_tbl; vlan_entry->vlan_id = vlan_id; LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next); } static int hns3_restore_vlan_table(struct hns3_adapter *hns) { struct hns3_user_vlan_table *vlan_entry; struct hns3_hw *hw = &hns->hw; struct hns3_pf *pf = &hns->pf; uint16_t vlan_id; int ret = 0; if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE) return hns3_vlan_pvid_configure(hns, hw->port_base_vlan_cfg.pvid, 1); LIST_FOREACH(vlan_entry, &pf->vlan_list, next) { if (vlan_entry->hd_tbl_status) { vlan_id = vlan_entry->vlan_id; ret = hns3_set_port_vlan_filter(hns, vlan_id, 1); if (ret) break; } } return ret; } static int hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on) { struct hns3_hw *hw = &hns->hw; bool writen_to_tbl = false; int ret = 0; /* * When vlan filter is enabled, hardware regards packets without vlan * as packets with vlan 0. So, to receive packets without vlan, vlan id * 0 is not allowed to be removed by rte_eth_dev_vlan_filter. */ if (on == 0 && vlan_id == 0) return 0; /* * When port base vlan enabled, we use port base vlan as the vlan * filter condition. In this case, we don't update vlan filter table * when user add new vlan or remove exist vlan, just update the * vlan list. The vlan id in vlan list will be written in vlan filter * table until port base vlan disabled */ if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) { ret = hns3_set_port_vlan_filter(hns, vlan_id, on); writen_to_tbl = true; } if (ret == 0) { if (on) hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl); else hns3_rm_dev_vlan_table(hns, vlan_id); } return ret; } static int hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; int ret; rte_spinlock_lock(&hw->lock); ret = hns3_vlan_filter_configure(hns, vlan_id, on); rte_spinlock_unlock(&hw->lock); return ret; } static int hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type, uint16_t tpid) { struct hns3_rx_vlan_type_cfg_cmd *rx_req; struct hns3_tx_vlan_type_cfg_cmd *tx_req; struct hns3_hw *hw = &hns->hw; struct hns3_cmd_desc desc; int ret; if ((vlan_type != RTE_ETH_VLAN_TYPE_INNER && vlan_type != RTE_ETH_VLAN_TYPE_OUTER)) { hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type); return -EINVAL; } if (tpid != RTE_ETHER_TYPE_VLAN) { hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type); return -EINVAL; } hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false); rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data; if (vlan_type == RTE_ETH_VLAN_TYPE_OUTER) { rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid); rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid); } else if (vlan_type == RTE_ETH_VLAN_TYPE_INNER) { rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid); rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid); rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid); rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid); } ret = hns3_cmd_send(hw, &desc, 1); if (ret) { hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d", ret); return ret; } hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false); tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data; tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid); tx_req->in_vlan_type = rte_cpu_to_le_16(tpid); ret = hns3_cmd_send(hw, &desc, 1); if (ret) hns3_err(hw, "Send txvlan protocol type command fail, ret =%d", ret); return ret; } static int hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type, uint16_t tpid) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; int ret; rte_spinlock_lock(&hw->lock); ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid); rte_spinlock_unlock(&hw->lock); return ret; } static int hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns, struct hns3_rx_vtag_cfg *vcfg) { struct hns3_vport_vtag_rx_cfg_cmd *req; struct hns3_hw *hw = &hns->hw; struct hns3_cmd_desc desc; uint16_t vport_id; uint8_t bitmap; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false); req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data; hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B, vcfg->strip_tag1_en ? 1 : 0); hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B, vcfg->strip_tag2_en ? 1 : 0); hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B, vcfg->vlan1_vlan_prionly ? 1 : 0); hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B, vcfg->vlan2_vlan_prionly ? 1 : 0); /* firmware will ignore this configuration for PCI_REVISION_ID_HIP08 */ hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B, vcfg->strip_tag1_discard_en ? 1 : 0); hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B, vcfg->strip_tag2_discard_en ? 1 : 0); /* * In current version VF is not supported when PF is driven by DPDK * driver, just need to configure parameters for PF vport. */ vport_id = HNS3_PF_FUNC_ID; req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD; bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE); req->vf_bitmap[req->vf_offset] = bitmap; ret = hns3_cmd_send(hw, &desc, 1); if (ret) hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret); return ret; } static void hns3_update_rx_offload_cfg(struct hns3_adapter *hns, struct hns3_rx_vtag_cfg *vcfg) { struct hns3_pf *pf = &hns->pf; memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg)); } static void hns3_update_tx_offload_cfg(struct hns3_adapter *hns, struct hns3_tx_vtag_cfg *vcfg) { struct hns3_pf *pf = &hns->pf; memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg)); } static int hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable) { struct hns3_rx_vtag_cfg rxvlan_cfg; struct hns3_hw *hw = &hns->hw; int ret; if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) { rxvlan_cfg.strip_tag1_en = false; rxvlan_cfg.strip_tag2_en = enable; rxvlan_cfg.strip_tag2_discard_en = false; } else { rxvlan_cfg.strip_tag1_en = enable; rxvlan_cfg.strip_tag2_en = true; rxvlan_cfg.strip_tag2_discard_en = true; } rxvlan_cfg.strip_tag1_discard_en = false; rxvlan_cfg.vlan1_vlan_prionly = false; rxvlan_cfg.vlan2_vlan_prionly = false; rxvlan_cfg.rx_vlan_offload_en = enable; ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg); if (ret) { hns3_err(hw, "%s strip rx vtag failed, ret = %d.", enable ? "enable" : "disable", ret); return ret; } hns3_update_rx_offload_cfg(hns, &rxvlan_cfg); return ret; } static int hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type, uint8_t fe_type, bool filter_en, uint8_t vf_id) { struct hns3_vlan_filter_ctrl_cmd *req; struct hns3_cmd_desc desc; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false); req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data; req->vlan_type = vlan_type; req->vlan_fe = filter_en ? fe_type : 0; req->vf_id = vf_id; ret = hns3_cmd_send(hw, &desc, 1); if (ret) hns3_err(hw, "set vlan filter fail, ret =%d", ret); return ret; } static int hns3_vlan_filter_init(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; int ret; ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF, HNS3_FILTER_FE_EGRESS, false, HNS3_PF_FUNC_ID); if (ret) { hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret); return ret; } ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT, HNS3_FILTER_FE_INGRESS, false, HNS3_PF_FUNC_ID); if (ret) hns3_err(hw, "failed to init port vlan filter, ret = %d", ret); return ret; } static int hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable) { struct hns3_hw *hw = &hns->hw; int ret; ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT, HNS3_FILTER_FE_INGRESS, enable, HNS3_PF_FUNC_ID); if (ret) hns3_err(hw, "failed to %s port vlan filter, ret = %d", enable ? "enable" : "disable", ret); return ret; } static int hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; struct rte_eth_rxmode *rxmode; unsigned int tmp_mask; bool enable; int ret = 0; rte_spinlock_lock(&hw->lock); rxmode = &dev->data->dev_conf.rxmode; tmp_mask = (unsigned int)mask; if (tmp_mask & RTE_ETH_VLAN_FILTER_MASK) { /* ignore vlan filter configuration during promiscuous mode */ if (!dev->data->promiscuous) { /* Enable or disable VLAN filter */ enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ? true : false; ret = hns3_enable_vlan_filter(hns, enable); if (ret) { rte_spinlock_unlock(&hw->lock); hns3_err(hw, "failed to %s rx filter, ret = %d", enable ? "enable" : "disable", ret); return ret; } } } if (tmp_mask & RTE_ETH_VLAN_STRIP_MASK) { /* Enable or disable VLAN stripping */ enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP ? true : false; ret = hns3_en_hw_strip_rxvtag(hns, enable); if (ret) { rte_spinlock_unlock(&hw->lock); hns3_err(hw, "failed to %s rx strip, ret = %d", enable ? "enable" : "disable", ret); return ret; } } rte_spinlock_unlock(&hw->lock); return ret; } static int hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns, struct hns3_tx_vtag_cfg *vcfg) { struct hns3_vport_vtag_tx_cfg_cmd *req; struct hns3_cmd_desc desc; struct hns3_hw *hw = &hns->hw; uint16_t vport_id; uint8_t bitmap; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false); req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data; req->def_vlan_tag1 = vcfg->default_tag1; req->def_vlan_tag2 = vcfg->default_tag2; hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B, vcfg->accept_tag1 ? 1 : 0); hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B, vcfg->accept_untag1 ? 1 : 0); hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B, vcfg->accept_tag2 ? 1 : 0); hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B, vcfg->accept_untag2 ? 1 : 0); hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B, vcfg->insert_tag1_en ? 1 : 0); hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B, vcfg->insert_tag2_en ? 1 : 0); hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0); /* firmware will ignore this configuration for PCI_REVISION_ID_HIP08 */ hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B, vcfg->tag_shift_mode_en ? 1 : 0); /* * In current version VF is not supported when PF is driven by DPDK * driver, just need to configure parameters for PF vport. */ vport_id = HNS3_PF_FUNC_ID; req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD; bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE); req->vf_bitmap[req->vf_offset] = bitmap; ret = hns3_cmd_send(hw, &desc, 1); if (ret) hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret); return ret; } static int hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state, uint16_t pvid) { struct hns3_hw *hw = &hns->hw; struct hns3_tx_vtag_cfg txvlan_cfg; int ret; if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) { txvlan_cfg.accept_tag1 = true; txvlan_cfg.insert_tag1_en = false; txvlan_cfg.default_tag1 = 0; } else { txvlan_cfg.accept_tag1 = hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE; txvlan_cfg.insert_tag1_en = true; txvlan_cfg.default_tag1 = pvid; } txvlan_cfg.accept_untag1 = true; txvlan_cfg.accept_tag2 = true; txvlan_cfg.accept_untag2 = true; txvlan_cfg.insert_tag2_en = false; txvlan_cfg.default_tag2 = 0; txvlan_cfg.tag_shift_mode_en = true; ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg); if (ret) { hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid, ret); return ret; } hns3_update_tx_offload_cfg(hns, &txvlan_cfg); return ret; } static void hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list) { struct hns3_user_vlan_table *vlan_entry; struct hns3_pf *pf = &hns->pf; LIST_FOREACH(vlan_entry, &pf->vlan_list, next) { if (vlan_entry->hd_tbl_status) { hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0); vlan_entry->hd_tbl_status = false; } } if (is_del_list) { vlan_entry = LIST_FIRST(&pf->vlan_list); while (vlan_entry) { LIST_REMOVE(vlan_entry, next); rte_free(vlan_entry); vlan_entry = LIST_FIRST(&pf->vlan_list); } } } static void hns3_add_all_vlan_table(struct hns3_adapter *hns) { struct hns3_user_vlan_table *vlan_entry; struct hns3_pf *pf = &hns->pf; LIST_FOREACH(vlan_entry, &pf->vlan_list, next) { if (!vlan_entry->hd_tbl_status) { hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1); vlan_entry->hd_tbl_status = true; } } } static void hns3_remove_all_vlan_table(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; int ret; hns3_rm_all_vlan_table(hns, true); if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) { ret = hns3_set_port_vlan_filter(hns, hw->port_base_vlan_cfg.pvid, 0); if (ret) { hns3_err(hw, "Failed to remove all vlan table, ret =%d", ret); return; } } } static int hns3_update_vlan_filter_entries(struct hns3_adapter *hns, uint16_t port_base_vlan_state, uint16_t new_pvid) { struct hns3_hw *hw = &hns->hw; uint16_t old_pvid; int ret; if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) { old_pvid = hw->port_base_vlan_cfg.pvid; if (old_pvid != HNS3_INVALID_PVID) { ret = hns3_set_port_vlan_filter(hns, old_pvid, 0); if (ret) { hns3_err(hw, "failed to remove old pvid %u, " "ret = %d", old_pvid, ret); return ret; } } hns3_rm_all_vlan_table(hns, false); ret = hns3_set_port_vlan_filter(hns, new_pvid, 1); if (ret) { hns3_err(hw, "failed to add new pvid %u, ret = %d", new_pvid, ret); return ret; } } else { ret = hns3_set_port_vlan_filter(hns, new_pvid, 0); if (ret) { hns3_err(hw, "failed to remove pvid %u, ret = %d", new_pvid, ret); return ret; } hns3_add_all_vlan_table(hns); } return 0; } static int hns3_en_pvid_strip(struct hns3_adapter *hns, int on) { struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg; struct hns3_rx_vtag_cfg rx_vlan_cfg; bool rx_strip_en; int ret; rx_strip_en = old_cfg->rx_vlan_offload_en; if (on) { rx_vlan_cfg.strip_tag1_en = rx_strip_en; rx_vlan_cfg.strip_tag2_en = true; rx_vlan_cfg.strip_tag2_discard_en = true; } else { rx_vlan_cfg.strip_tag1_en = false; rx_vlan_cfg.strip_tag2_en = rx_strip_en; rx_vlan_cfg.strip_tag2_discard_en = false; } rx_vlan_cfg.strip_tag1_discard_en = false; rx_vlan_cfg.vlan1_vlan_prionly = false; rx_vlan_cfg.vlan2_vlan_prionly = false; rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en; ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg); if (ret) return ret; hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg); return ret; } static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on) { struct hns3_hw *hw = &hns->hw; uint16_t port_base_vlan_state; int ret, err; if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) { if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) hns3_warn(hw, "Invalid operation! As current pvid set " "is %u, disable pvid %u is invalid", hw->port_base_vlan_cfg.pvid, pvid); return 0; } port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE; ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid); if (ret) { hns3_err(hw, "failed to config tx vlan for pvid, ret = %d", ret); return ret; } ret = hns3_en_pvid_strip(hns, on); if (ret) { hns3_err(hw, "failed to config rx vlan strip for pvid, " "ret = %d", ret); goto pvid_vlan_strip_fail; } if (pvid == HNS3_INVALID_PVID) goto out; ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid); if (ret) { hns3_err(hw, "failed to update vlan filter entries, ret = %d", ret); goto vlan_filter_set_fail; } out: hw->port_base_vlan_cfg.state = port_base_vlan_state; hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID; return ret; vlan_filter_set_fail: err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE); if (err) hns3_err(hw, "fail to rollback pvid strip, ret = %d", err); pvid_vlan_strip_fail: err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state, hw->port_base_vlan_cfg.pvid); if (err) hns3_err(hw, "fail to rollback txvlan status, ret = %d", err); return ret; } static int hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; bool pvid_en_state_change; uint16_t pvid_state; int ret; if (pvid > RTE_ETHER_MAX_VLAN_ID) { hns3_err(hw, "Invalid vlan_id = %u > %d", pvid, RTE_ETHER_MAX_VLAN_ID); return -EINVAL; } /* * If PVID configuration state change, should refresh the PVID * configuration state in struct hns3_tx_queue/hns3_rx_queue. */ pvid_state = hw->port_base_vlan_cfg.state; if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) || (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE)) pvid_en_state_change = false; else pvid_en_state_change = true; rte_spinlock_lock(&hw->lock); ret = hns3_vlan_pvid_configure(hns, pvid, on); rte_spinlock_unlock(&hw->lock); if (ret) return ret; /* * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx * need be processed by PMD. */ if (pvid_en_state_change && hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE) hns3_update_all_queues_pvid_proc_en(hw); return 0; } static int hns3_default_vlan_config(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; int ret; /* * When vlan filter is enabled, hardware regards packets without vlan * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan * table, packets without vlan won't be received. So, add vlan 0 as * the default vlan. */ ret = hns3_vlan_filter_configure(hns, 0, 1); if (ret) hns3_err(hw, "default vlan 0 config failed, ret =%d", ret); return ret; } static int hns3_init_vlan_config(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; int ret; /* * This function can be called in the initialization and reset process, * when in reset process, it means that hardware had been reseted * successfully and we need to restore the hardware configuration to * ensure that the hardware configuration remains unchanged before and * after reset. */ if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) { hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE; hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID; } ret = hns3_vlan_filter_init(hns); if (ret) { hns3_err(hw, "vlan init fail in pf, ret =%d", ret); return ret; } ret = hns3_vlan_tpid_configure(hns, RTE_ETH_VLAN_TYPE_INNER, RTE_ETHER_TYPE_VLAN); if (ret) { hns3_err(hw, "tpid set fail in pf, ret =%d", ret); return ret; } /* * When in the reinit dev stage of the reset process, the following * vlan-related configurations may differ from those at initialization, * we will restore configurations to hardware in hns3_restore_vlan_table * and hns3_restore_vlan_conf later. */ if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) { ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0); if (ret) { hns3_err(hw, "pvid set fail in pf, ret =%d", ret); return ret; } ret = hns3_en_hw_strip_rxvtag(hns, false); if (ret) { hns3_err(hw, "rx strip configure fail in pf, ret =%d", ret); return ret; } } return hns3_default_vlan_config(hns); } static int hns3_restore_vlan_conf(struct hns3_adapter *hns) { struct hns3_pf *pf = &hns->pf; struct hns3_hw *hw = &hns->hw; uint64_t offloads; bool enable; int ret; if (!hw->data->promiscuous) { /* restore vlan filter states */ offloads = hw->data->dev_conf.rxmode.offloads; enable = offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ? true : false; ret = hns3_enable_vlan_filter(hns, enable); if (ret) { hns3_err(hw, "failed to restore vlan rx filter conf, " "ret = %d", ret); return ret; } } ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg); if (ret) { hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret); return ret; } ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg); if (ret) hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret); return ret; } static int hns3_dev_configure_vlan(struct rte_eth_dev *dev) { struct hns3_adapter *hns = dev->data->dev_private; struct rte_eth_dev_data *data = dev->data; struct rte_eth_txmode *txmode; struct hns3_hw *hw = &hns->hw; int mask; int ret; txmode = &data->dev_conf.txmode; if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged) hns3_warn(hw, "hw_vlan_reject_tagged or hw_vlan_reject_untagged " "configuration is not supported! Ignore these two " "parameters: hw_vlan_reject_tagged(%u), " "hw_vlan_reject_untagged(%u)", txmode->hw_vlan_reject_tagged, txmode->hw_vlan_reject_untagged); /* Apply vlan offload setting */ mask = RTE_ETH_VLAN_STRIP_MASK | RTE_ETH_VLAN_FILTER_MASK; ret = hns3_vlan_offload_set(dev, mask); if (ret) { hns3_err(hw, "dev config rx vlan offload failed, ret = %d", ret); return ret; } /* * If pvid config is not set in rte_eth_conf, driver needn't to set * VLAN pvid related configuration to hardware. */ if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0) return 0; /* Apply pvid setting */ ret = hns3_vlan_pvid_set(dev, txmode->pvid, txmode->hw_vlan_insert_pvid); if (ret) hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d", txmode->pvid, ret); return ret; } static int hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min, unsigned int tso_mss_max) { struct hns3_cfg_tso_status_cmd *req; struct hns3_cmd_desc desc; uint16_t tso_mss; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false); req = (struct hns3_cfg_tso_status_cmd *)desc.data; tso_mss = 0; hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S, tso_mss_min); req->tso_mss_min = rte_cpu_to_le_16(tso_mss); tso_mss = 0; hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S, tso_mss_max); req->tso_mss_max = rte_cpu_to_le_16(tso_mss); return hns3_cmd_send(hw, &desc, 1); } static int hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size, uint16_t *allocated_size, bool is_alloc) { struct hns3_umv_spc_alc_cmd *req; struct hns3_cmd_desc desc; int ret; req = (struct hns3_umv_spc_alc_cmd *)desc.data; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false); hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1); req->space_size = rte_cpu_to_le_32(space_size); ret = hns3_cmd_send(hw, &desc, 1); if (ret) { PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d", is_alloc ? "allocate" : "free", ret); return ret; } if (is_alloc && allocated_size) *allocated_size = rte_le_to_cpu_32(desc.data[1]); return 0; } static int hns3_init_umv_space(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; uint16_t allocated_size = 0; int ret; ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size, true); if (ret) return ret; if (allocated_size < pf->wanted_umv_size) PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u", pf->wanted_umv_size, allocated_size); pf->max_umv_size = (!!allocated_size) ? allocated_size : pf->wanted_umv_size; pf->used_umv_size = 0; return 0; } static int hns3_uninit_umv_space(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; int ret; if (pf->max_umv_size == 0) return 0; ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false); if (ret) return ret; pf->max_umv_size = 0; return 0; } static bool hns3_is_umv_space_full(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; bool is_full; is_full = (pf->used_umv_size >= pf->max_umv_size); return is_full; } static void hns3_update_umv_space(struct hns3_hw *hw, bool is_free) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; if (is_free) { if (pf->used_umv_size > 0) pf->used_umv_size--; } else pf->used_umv_size++; } static void hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req, const uint8_t *addr, bool is_mc) { const unsigned char *mac_addr = addr; uint32_t high_val = ((uint32_t)mac_addr[3] << 24) | ((uint32_t)mac_addr[2] << 16) | ((uint32_t)mac_addr[1] << 8) | (uint32_t)mac_addr[0]; uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4]; hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1); if (is_mc) { hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0); hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1); hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1); } new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val); new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff); } static int hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp, uint8_t resp_code, enum hns3_mac_vlan_tbl_opcode op) { if (cmdq_resp) { hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u", cmdq_resp); return -EIO; } if (op == HNS3_MAC_VLAN_ADD) { if (resp_code == 0 || resp_code == 1) { return 0; } else if (resp_code == HNS3_ADD_UC_OVERFLOW) { hns3_err(hw, "add mac addr failed for uc_overflow"); return -ENOSPC; } else if (resp_code == HNS3_ADD_MC_OVERFLOW) { hns3_err(hw, "add mac addr failed for mc_overflow"); return -ENOSPC; } hns3_err(hw, "add mac addr failed for undefined, code=%u", resp_code); return -EIO; } else if (op == HNS3_MAC_VLAN_REMOVE) { if (resp_code == 0) { return 0; } else if (resp_code == 1) { hns3_dbg(hw, "remove mac addr failed for miss"); return -ENOENT; } hns3_err(hw, "remove mac addr failed for undefined, code=%u", resp_code); return -EIO; } else if (op == HNS3_MAC_VLAN_LKUP) { if (resp_code == 0) { return 0; } else if (resp_code == 1) { hns3_dbg(hw, "lookup mac addr failed for miss"); return -ENOENT; } hns3_err(hw, "lookup mac addr failed for undefined, code=%u", resp_code); return -EIO; } hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u", op); return -EINVAL; } static int hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw, struct hns3_mac_vlan_tbl_entry_cmd *req, struct hns3_cmd_desc *desc, uint8_t desc_num) { uint8_t resp_code; uint16_t retval; int ret; int i; if (desc_num == HNS3_MC_MAC_VLAN_OPS_DESC_NUM) { for (i = 0; i < desc_num - 1; i++) { hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_MAC_VLAN_ADD, true); desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT); if (i == 0) memcpy(desc[i].data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd)); } hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_MAC_VLAN_ADD, true); } else { hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true); memcpy(desc[0].data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd)); } ret = hns3_cmd_send(hw, desc, desc_num); if (ret) { hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.", ret); return ret; } resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff; retval = rte_le_to_cpu_16(desc[0].retval); return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code, HNS3_MAC_VLAN_LKUP); } static int hns3_add_mac_vlan_tbl(struct hns3_hw *hw, struct hns3_mac_vlan_tbl_entry_cmd *req, struct hns3_cmd_desc *desc, uint8_t desc_num) { uint8_t resp_code; uint16_t retval; int cfg_status; int ret; int i; if (desc_num == HNS3_UC_MAC_VLAN_OPS_DESC_NUM) { hns3_cmd_setup_basic_desc(desc, HNS3_OPC_MAC_VLAN_ADD, false); memcpy(desc->data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd)); ret = hns3_cmd_send(hw, desc, desc_num); resp_code = (rte_le_to_cpu_32(desc->data[0]) >> 8) & 0xff; retval = rte_le_to_cpu_16(desc->retval); cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code, HNS3_MAC_VLAN_ADD); } else { for (i = 0; i < desc_num; i++) { hns3_cmd_reuse_desc(&desc[i], false); if (i == desc_num - 1) desc[i].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT); else desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT); } memcpy(desc[0].data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd)); desc[0].retval = 0; ret = hns3_cmd_send(hw, desc, desc_num); resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff; retval = rte_le_to_cpu_16(desc[0].retval); cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code, HNS3_MAC_VLAN_ADD); } if (ret) { hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret); return ret; } return cfg_status; } static int hns3_remove_mac_vlan_tbl(struct hns3_hw *hw, struct hns3_mac_vlan_tbl_entry_cmd *req) { struct hns3_cmd_desc desc; uint8_t resp_code; uint16_t retval; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false); memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd)); ret = hns3_cmd_send(hw, &desc, 1); if (ret) { hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret); return ret; } resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff; retval = rte_le_to_cpu_16(desc.retval); return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code, HNS3_MAC_VLAN_REMOVE); } static int hns3_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_mac_vlan_tbl_entry_cmd req; struct hns3_pf *pf = &hns->pf; struct hns3_cmd_desc desc; char mac_str[RTE_ETHER_ADDR_FMT_SIZE]; uint16_t egress_port = 0; uint8_t vf_id; int ret; /* check if mac addr is valid */ if (!rte_is_valid_assigned_ether_addr(mac_addr)) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr); hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid", mac_str); return -EINVAL; } memset(&req, 0, sizeof(req)); /* * In current version VF is not supported when PF is driven by DPDK * driver, just need to configure parameters for PF vport. */ vf_id = HNS3_PF_FUNC_ID; hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M, HNS3_MAC_EPORT_VFID_S, vf_id); req.egress_port = rte_cpu_to_le_16(egress_port); hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false); /* * Lookup the mac address in the mac_vlan table, and add * it if the entry is inexistent. Repeated unicast entry * is not allowed in the mac vlan table. */ ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc, HNS3_UC_MAC_VLAN_OPS_DESC_NUM); if (ret == -ENOENT) { if (!hns3_is_umv_space_full(hw)) { ret = hns3_add_mac_vlan_tbl(hw, &req, &desc, HNS3_UC_MAC_VLAN_OPS_DESC_NUM); if (!ret) hns3_update_umv_space(hw, false); return ret; } hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size); return -ENOSPC; } hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr); /* check if we just hit the duplicate */ if (ret == 0) { hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str); return 0; } hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table", mac_str); return ret; } static int hns3_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr) { struct hns3_mac_vlan_tbl_entry_cmd req; char mac_str[RTE_ETHER_ADDR_FMT_SIZE]; int ret; /* check if mac addr is valid */ if (!rte_is_valid_assigned_ether_addr(mac_addr)) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr); hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid", mac_str); return -EINVAL; } memset(&req, 0, sizeof(req)); hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0); hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false); ret = hns3_remove_mac_vlan_tbl(hw, &req); if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */ return 0; else if (ret == 0) hns3_update_umv_space(hw, true); return ret; } static int hns3_set_default_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_ether_addr *oaddr; char mac_str[RTE_ETHER_ADDR_FMT_SIZE]; int ret, ret_val; rte_spinlock_lock(&hw->lock); oaddr = (struct rte_ether_addr *)hw->mac.mac_addr; ret = hw->ops.del_uc_mac_addr(hw, oaddr); if (ret) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, oaddr); hns3_warn(hw, "Remove old uc mac address(%s) fail: %d", mac_str, ret); rte_spinlock_unlock(&hw->lock); return ret; } ret = hw->ops.add_uc_mac_addr(hw, mac_addr); if (ret) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr); hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret); goto err_add_uc_addr; } ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes); if (ret) { hns3_err(hw, "Failed to configure mac pause address: %d", ret); goto err_pause_addr_cfg; } rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.mac_addr); rte_spinlock_unlock(&hw->lock); return 0; err_pause_addr_cfg: ret_val = hw->ops.del_uc_mac_addr(hw, mac_addr); if (ret_val) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr); hns3_warn(hw, "Failed to roll back to del setted mac addr(%s): %d", mac_str, ret_val); } err_add_uc_addr: ret_val = hw->ops.add_uc_mac_addr(hw, oaddr); if (ret_val) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, oaddr); hns3_warn(hw, "Failed to restore old uc mac addr(%s): %d", mac_str, ret_val); } rte_spinlock_unlock(&hw->lock); return ret; } static void hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr) { #define HNS3_VF_NUM_IN_FIRST_DESC 192 uint8_t word_num; uint8_t bit_num; if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) { word_num = vfid / 32; bit_num = vfid % 32; if (clr) desc[1].data[word_num] &= rte_cpu_to_le_32(~(1UL << bit_num)); else desc[1].data[word_num] |= rte_cpu_to_le_32(1UL << bit_num); } else { word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32; bit_num = vfid % 32; if (clr) desc[2].data[word_num] &= rte_cpu_to_le_32(~(1UL << bit_num)); else desc[2].data[word_num] |= rte_cpu_to_le_32(1UL << bit_num); } } static int hns3_add_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr) { struct hns3_cmd_desc desc[HNS3_MC_MAC_VLAN_OPS_DESC_NUM]; struct hns3_mac_vlan_tbl_entry_cmd req; char mac_str[RTE_ETHER_ADDR_FMT_SIZE]; uint8_t vf_id; int ret; /* Check if mac addr is valid */ if (!rte_is_multicast_ether_addr(mac_addr)) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr); hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid", mac_str); return -EINVAL; } memset(&req, 0, sizeof(req)); hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0); hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true); ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, HNS3_MC_MAC_VLAN_OPS_DESC_NUM); if (ret) { /* This mac addr do not exist, add new entry for it */ memset(desc[0].data, 0, sizeof(desc[0].data)); memset(desc[1].data, 0, sizeof(desc[0].data)); memset(desc[2].data, 0, sizeof(desc[0].data)); } /* * In current version VF is not supported when PF is driven by DPDK * driver, just need to configure parameters for PF vport. */ vf_id = HNS3_PF_FUNC_ID; hns3_update_desc_vfid(desc, vf_id, false); ret = hns3_add_mac_vlan_tbl(hw, &req, desc, HNS3_MC_MAC_VLAN_OPS_DESC_NUM); if (ret) { if (ret == -ENOSPC) hns3_err(hw, "mc mac vlan table is full"); hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr); hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret); } return ret; } static int hns3_remove_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr) { struct hns3_mac_vlan_tbl_entry_cmd req; struct hns3_cmd_desc desc[3]; char mac_str[RTE_ETHER_ADDR_FMT_SIZE]; uint8_t vf_id; int ret; /* Check if mac addr is valid */ if (!rte_is_multicast_ether_addr(mac_addr)) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr); hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid", mac_str); return -EINVAL; } memset(&req, 0, sizeof(req)); hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0); hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true); ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, HNS3_MC_MAC_VLAN_OPS_DESC_NUM); if (ret == 0) { /* * This mac addr exist, remove this handle's VFID for it. * In current version VF is not supported when PF is driven by * DPDK driver, just need to configure parameters for PF vport. */ vf_id = HNS3_PF_FUNC_ID; hns3_update_desc_vfid(desc, vf_id, true); /* All the vfid is zero, so need to delete this entry */ ret = hns3_remove_mac_vlan_tbl(hw, &req); } else if (ret == -ENOENT) { /* This mac addr doesn't exist. */ return 0; } if (ret) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr); hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret); } return ret; } static int hns3_check_mq_mode(struct rte_eth_dev *dev) { enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode; enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode; struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct rte_eth_dcb_rx_conf *dcb_rx_conf; struct rte_eth_dcb_tx_conf *dcb_tx_conf; uint8_t num_tc; int max_tc = 0; int i; if (((uint32_t)rx_mq_mode & RTE_ETH_MQ_RX_VMDQ_FLAG) || (tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_DCB || tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_ONLY)) { hns3_err(hw, "VMDQ is not supported, rx_mq_mode = %d, tx_mq_mode = %d.", rx_mq_mode, tx_mq_mode); return -EOPNOTSUPP; } dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf; dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf; if ((uint32_t)rx_mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) { if (dcb_rx_conf->nb_tcs > pf->tc_max) { hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.", dcb_rx_conf->nb_tcs, pf->tc_max); return -EINVAL; } if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS || dcb_rx_conf->nb_tcs == HNS3_8_TCS)) { hns3_err(hw, "on RTE_ETH_MQ_RX_DCB_RSS mode, " "nb_tcs(%d) != %d or %d in rx direction.", dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS); return -EINVAL; } if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) { hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)", dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs); return -EINVAL; } for (i = 0; i < HNS3_MAX_USER_PRIO; i++) { if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) { hns3_err(hw, "dcb_tc[%d] = %u in rx direction, " "is not equal to one in tx direction.", i, dcb_rx_conf->dcb_tc[i]); return -EINVAL; } if (dcb_rx_conf->dcb_tc[i] > max_tc) max_tc = dcb_rx_conf->dcb_tc[i]; } num_tc = max_tc + 1; if (num_tc > dcb_rx_conf->nb_tcs) { hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)", num_tc, dcb_rx_conf->nb_tcs); return -EINVAL; } } return 0; } static int hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en, enum hns3_ring_type queue_type, uint16_t queue_id) { struct hns3_cmd_desc desc; struct hns3_ctrl_vector_chain_cmd *req = (struct hns3_ctrl_vector_chain_cmd *)desc.data; enum hns3_opcode_type op; uint16_t tqp_type_and_id = 0; uint16_t type; uint16_t gl; int ret; op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR; hns3_cmd_setup_basic_desc(&desc, op, false); req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M, HNS3_TQP_INT_ID_L_S); req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M, HNS3_TQP_INT_ID_H_S); if (queue_type == HNS3_RING_TYPE_RX) gl = HNS3_RING_GL_RX; else gl = HNS3_RING_GL_TX; type = queue_type; hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S, type); hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id); hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S, gl); req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id); req->int_cause_num = 1; ret = hns3_cmd_send(hw, &desc, 1); if (ret) { hns3_err(hw, "%s TQP %u fail, vector_id = %u, ret = %d.", en ? "Map" : "Unmap", queue_id, vector_id, ret); return ret; } return 0; } static int hns3_setup_dcb(struct rte_eth_dev *dev) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; int ret; if (!hns3_dev_get_support(hw, DCB)) { hns3_err(hw, "this port does not support dcb configurations."); return -EOPNOTSUPP; } if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) { hns3_err(hw, "MAC pause enabled, cannot config dcb info."); return -EOPNOTSUPP; } ret = hns3_dcb_configure(hns); if (ret) hns3_err(hw, "failed to config dcb: %d", ret); return ret; } static int hns3_check_link_speed(struct hns3_hw *hw, uint32_t link_speeds) { int ret; /* * Some hardware doesn't support auto-negotiation, but users may not * configure link_speeds (default 0), which means auto-negotiation. * In this case, it should return success. */ if (link_speeds == RTE_ETH_LINK_SPEED_AUTONEG && hw->mac.support_autoneg == 0) return 0; if (link_speeds != RTE_ETH_LINK_SPEED_AUTONEG) { ret = hns3_check_port_speed(hw, link_speeds); if (ret) return ret; } return 0; } static int hns3_check_dev_conf(struct rte_eth_dev *dev) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_eth_conf *conf = &dev->data->dev_conf; int ret; ret = hns3_check_mq_mode(dev); if (ret) return ret; return hns3_check_link_speed(hw, conf->link_speeds); } static int hns3_dev_configure(struct rte_eth_dev *dev) { struct hns3_adapter *hns = dev->data->dev_private; struct rte_eth_conf *conf = &dev->data->dev_conf; enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode; struct hns3_hw *hw = &hns->hw; uint16_t nb_rx_q = dev->data->nb_rx_queues; uint16_t nb_tx_q = dev->data->nb_tx_queues; struct rte_eth_rss_conf rss_conf; bool gro_en; int ret; hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q); /* * Some versions of hardware network engine does not support * individually enable/disable/reset the Tx or Rx queue. These devices * must enable/disable/reset Tx and Rx queues at the same time. When the * numbers of Tx queues allocated by upper applications are not equal to * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues * to adjust numbers of Tx/Rx queues. otherwise, network engine can not * work as usual. But these fake queues are imperceptible, and can not * be used by upper applications. */ ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q); if (ret) { hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret); hw->cfg_max_queues = 0; return ret; } hw->adapter_state = HNS3_NIC_CONFIGURING; ret = hns3_check_dev_conf(dev); if (ret) goto cfg_err; if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) { ret = hns3_setup_dcb(dev); if (ret) goto cfg_err; } if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) { conf->rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH; rss_conf = conf->rx_adv_conf.rss_conf; ret = hns3_dev_rss_hash_update(dev, &rss_conf); if (ret) goto cfg_err; } ret = hns3_dev_mtu_set(dev, conf->rxmode.mtu); if (ret != 0) goto cfg_err; ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf); if (ret) goto cfg_err; ret = hns3_dev_configure_vlan(dev); if (ret) goto cfg_err; /* config hardware GRO */ gro_en = conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO ? true : false; ret = hns3_config_gro(hw, gro_en); if (ret) goto cfg_err; hns3_init_rx_ptype_tble(dev); hw->adapter_state = HNS3_NIC_CONFIGURED; return 0; cfg_err: hw->cfg_max_queues = 0; (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0); hw->adapter_state = HNS3_NIC_INITIALIZED; return ret; } static int hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps) { struct hns3_config_max_frm_size_cmd *req; struct hns3_cmd_desc desc; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false); req = (struct hns3_config_max_frm_size_cmd *)desc.data; req->max_frm_size = rte_cpu_to_le_16(new_mps); req->min_frm_size = RTE_ETHER_MIN_LEN; return hns3_cmd_send(hw, &desc, 1); } static int hns3_config_mtu(struct hns3_hw *hw, uint16_t mps) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); int err; int ret; ret = hns3_set_mac_mtu(hw, mps); if (ret) { hns3_err(hw, "failed to set mtu, ret = %d", ret); return ret; } ret = hns3_buffer_alloc(hw); if (ret) { hns3_err(hw, "failed to allocate buffer, ret = %d", ret); goto rollback; } hns->pf.mps = mps; return 0; rollback: err = hns3_set_mac_mtu(hw, hns->pf.mps); if (err) hns3_err(hw, "fail to rollback MTU, err = %d", err); return ret; } static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { struct hns3_adapter *hns = dev->data->dev_private; uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD; struct hns3_hw *hw = &hns->hw; int ret; if (dev->data->dev_started) { hns3_err(hw, "Failed to set mtu, port %u must be stopped " "before configuration", dev->data->port_id); return -EBUSY; } rte_spinlock_lock(&hw->lock); frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN); /* * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely * assign to "uint16_t" type variable. */ ret = hns3_config_mtu(hw, (uint16_t)frame_size); if (ret) { rte_spinlock_unlock(&hw->lock); hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d", dev->data->port_id, mtu, ret); return ret; } rte_spinlock_unlock(&hw->lock); return 0; } static uint32_t hns3_get_copper_port_speed_capa(uint32_t supported_speed) { uint32_t speed_capa = 0; if (supported_speed & HNS3_PHY_LINK_SPEED_10M_HD_BIT) speed_capa |= RTE_ETH_LINK_SPEED_10M_HD; if (supported_speed & HNS3_PHY_LINK_SPEED_10M_BIT) speed_capa |= RTE_ETH_LINK_SPEED_10M; if (supported_speed & HNS3_PHY_LINK_SPEED_100M_HD_BIT) speed_capa |= RTE_ETH_LINK_SPEED_100M_HD; if (supported_speed & HNS3_PHY_LINK_SPEED_100M_BIT) speed_capa |= RTE_ETH_LINK_SPEED_100M; if (supported_speed & HNS3_PHY_LINK_SPEED_1000M_BIT) speed_capa |= RTE_ETH_LINK_SPEED_1G; return speed_capa; } static uint32_t hns3_get_firber_port_speed_capa(uint32_t supported_speed) { uint32_t speed_capa = 0; if (supported_speed & HNS3_FIBER_LINK_SPEED_1G_BIT) speed_capa |= RTE_ETH_LINK_SPEED_1G; if (supported_speed & HNS3_FIBER_LINK_SPEED_10G_BIT) speed_capa |= RTE_ETH_LINK_SPEED_10G; if (supported_speed & HNS3_FIBER_LINK_SPEED_25G_BIT) speed_capa |= RTE_ETH_LINK_SPEED_25G; if (supported_speed & HNS3_FIBER_LINK_SPEED_40G_BIT) speed_capa |= RTE_ETH_LINK_SPEED_40G; if (supported_speed & HNS3_FIBER_LINK_SPEED_50G_BIT) speed_capa |= RTE_ETH_LINK_SPEED_50G; if (supported_speed & HNS3_FIBER_LINK_SPEED_100G_BIT) speed_capa |= RTE_ETH_LINK_SPEED_100G; if (supported_speed & HNS3_FIBER_LINK_SPEED_200G_BIT) speed_capa |= RTE_ETH_LINK_SPEED_200G; return speed_capa; } uint32_t hns3_get_speed_capa(struct hns3_hw *hw) { struct hns3_mac *mac = &hw->mac; uint32_t speed_capa; if (mac->media_type == HNS3_MEDIA_TYPE_COPPER) speed_capa = hns3_get_copper_port_speed_capa(mac->supported_speed); else speed_capa = hns3_get_firber_port_speed_capa(mac->supported_speed); if (mac->support_autoneg == 0) speed_capa |= RTE_ETH_LINK_SPEED_FIXED; return speed_capa; } static int hns3_update_port_link_info(struct rte_eth_dev *eth_dev) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); int ret; (void)hns3_update_link_status(hw); ret = hns3_update_link_info(eth_dev); if (ret) hw->mac.link_status = RTE_ETH_LINK_DOWN; return ret; } static void hns3_setup_linkstatus(struct rte_eth_dev *eth_dev, struct rte_eth_link *new_link) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct hns3_mac *mac = &hw->mac; switch (mac->link_speed) { case RTE_ETH_SPEED_NUM_10M: case RTE_ETH_SPEED_NUM_100M: case RTE_ETH_SPEED_NUM_1G: case RTE_ETH_SPEED_NUM_10G: case RTE_ETH_SPEED_NUM_25G: case RTE_ETH_SPEED_NUM_40G: case RTE_ETH_SPEED_NUM_50G: case RTE_ETH_SPEED_NUM_100G: case RTE_ETH_SPEED_NUM_200G: if (mac->link_status) new_link->link_speed = mac->link_speed; break; default: if (mac->link_status) new_link->link_speed = RTE_ETH_SPEED_NUM_UNKNOWN; break; } if (!mac->link_status) new_link->link_speed = RTE_ETH_SPEED_NUM_NONE; new_link->link_duplex = mac->link_duplex; new_link->link_status = mac->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN; new_link->link_autoneg = mac->link_autoneg; } static int hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete) { #define HNS3_LINK_CHECK_INTERVAL 100 /* 100ms */ #define HNS3_MAX_LINK_CHECK_TIMES 20 /* 2s (100 * 20ms) in total */ struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES; struct hns3_mac *mac = &hw->mac; struct rte_eth_link new_link; int ret; /* When port is stopped, report link down. */ if (eth_dev->data->dev_started == 0) { new_link.link_autoneg = mac->link_autoneg; new_link.link_duplex = mac->link_duplex; new_link.link_speed = RTE_ETH_SPEED_NUM_NONE; new_link.link_status = RTE_ETH_LINK_DOWN; goto out; } do { ret = hns3_update_port_link_info(eth_dev); if (ret) { hns3_err(hw, "failed to get port link info, ret = %d.", ret); break; } if (!wait_to_complete || mac->link_status == RTE_ETH_LINK_UP) break; rte_delay_ms(HNS3_LINK_CHECK_INTERVAL); } while (retry_cnt--); memset(&new_link, 0, sizeof(new_link)); hns3_setup_linkstatus(eth_dev, &new_link); out: return rte_eth_linkstatus_set(eth_dev, &new_link); } static int hns3_dev_set_link_up(struct rte_eth_dev *dev) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); int ret; /* * The "tx_pkt_burst" will be restored. But the secondary process does * not support the mechanism for notifying the primary process. */ if (rte_eal_process_type() != RTE_PROC_PRIMARY) { hns3_err(hw, "secondary process does not support to set link up."); return -ENOTSUP; } /* * If device isn't started Rx/Tx function is still disabled, setting * link up is not allowed. But it is probably better to return success * to reduce the impact on the upper layer. */ if (hw->adapter_state != HNS3_NIC_STARTED) { hns3_info(hw, "device isn't started, can't set link up."); return 0; } if (!hw->set_link_down) return 0; rte_spinlock_lock(&hw->lock); ret = hns3_cfg_mac_mode(hw, true); if (ret) { rte_spinlock_unlock(&hw->lock); hns3_err(hw, "failed to set link up, ret = %d", ret); return ret; } hw->set_link_down = false; hns3_start_tx_datapath(dev); rte_spinlock_unlock(&hw->lock); return 0; } static int hns3_dev_set_link_down(struct rte_eth_dev *dev) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); int ret; /* * The "tx_pkt_burst" will be set to dummy function. But the secondary * process does not support the mechanism for notifying the primary * process. */ if (rte_eal_process_type() != RTE_PROC_PRIMARY) { hns3_err(hw, "secondary process does not support to set link down."); return -ENOTSUP; } /* * If device isn't started or the API has been called, link status is * down, return success. */ if (hw->adapter_state != HNS3_NIC_STARTED || hw->set_link_down) return 0; rte_spinlock_lock(&hw->lock); hns3_stop_tx_datapath(dev); ret = hns3_cfg_mac_mode(hw, false); if (ret) { hns3_start_tx_datapath(dev); rte_spinlock_unlock(&hw->lock); hns3_err(hw, "failed to set link down, ret = %d", ret); return ret; } hw->set_link_down = true; rte_spinlock_unlock(&hw->lock); return 0; } static int hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; if (!(status->pf_state & HNS3_PF_STATE_DONE)) return -EINVAL; pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false; return 0; } static int hns3_query_function_status(struct hns3_hw *hw) { #define HNS3_QUERY_MAX_CNT 10 #define HNS3_QUERY_SLEEP_MSCOEND 1 struct hns3_func_status_cmd *req; struct hns3_cmd_desc desc; int timeout = 0; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true); req = (struct hns3_func_status_cmd *)desc.data; do { ret = hns3_cmd_send(hw, &desc, 1); if (ret) { PMD_INIT_LOG(ERR, "query function status failed %d", ret); return ret; } /* Check pf reset is done */ if (req->pf_state) break; rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND); } while (timeout++ < HNS3_QUERY_MAX_CNT); return hns3_parse_func_status(hw, req); } static int hns3_get_pf_max_tqp_num(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) { /* * The total_tqps_num obtained from firmware is maximum tqp * numbers of this port, which should be used for PF and VFs. * There is no need for pf to have so many tqp numbers in * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF, * coming from config file, is assigned to maximum queue number * for the PF of this port by user. So users can modify the * maximum queue number of PF according to their own application * scenarios, which is more flexible to use. In addition, many * memories can be saved due to allocating queue statistics * room according to the actual number of queues required. The * maximum queue number of PF for network engine with * revision_id greater than 0x30 is assigned by config file. */ if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) { hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) " "must be greater than 0.", RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF); return -EINVAL; } hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF, hw->total_tqps_num); } else { /* * Due to the limitation on the number of PF interrupts * available, the maximum queue number assigned to PF on * the network engine with revision_id 0x21 is 64. */ hw->tqps_num = RTE_MIN(hw->total_tqps_num, HNS3_MAX_TQP_NUM_HIP08_PF); } return 0; } static int hns3_query_pf_resource(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; struct hns3_pf_res_cmd *req; struct hns3_cmd_desc desc; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true); ret = hns3_cmd_send(hw, &desc, 1); if (ret) { PMD_INIT_LOG(ERR, "query pf resource failed %d", ret); return ret; } req = (struct hns3_pf_res_cmd *)desc.data; hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) + rte_le_to_cpu_16(req->ext_tqp_num); ret = hns3_get_pf_max_tqp_num(hw); if (ret) return ret; pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S; pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number); if (req->tx_buf_size) pf->tx_buf_size = rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S; else pf->tx_buf_size = HNS3_DEFAULT_TX_BUF; pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT); if (req->dv_buf_size) pf->dv_buf_size = rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S; else pf->dv_buf_size = HNS3_DEFAULT_DV; pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT); hw->num_msi = hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number), HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S); return 0; } static void hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc) { struct hns3_cfg_param_cmd *req; uint64_t mac_addr_tmp_high; uint8_t ext_rss_size_max; uint64_t mac_addr_tmp; uint32_t i; req = (struct hns3_cfg_param_cmd *)desc[0].data; /* get the configuration */ cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]), HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S); cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]), HNS3_CFG_TQP_DESC_N_M, HNS3_CFG_TQP_DESC_N_S); cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]), HNS3_CFG_PHY_ADDR_M, HNS3_CFG_PHY_ADDR_S); cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]), HNS3_CFG_MEDIA_TP_M, HNS3_CFG_MEDIA_TP_S); cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]), HNS3_CFG_RX_BUF_LEN_M, HNS3_CFG_RX_BUF_LEN_S); /* get mac address */ mac_addr_tmp = rte_le_to_cpu_32(req->param[2]); mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]), HNS3_CFG_MAC_ADDR_H_M, HNS3_CFG_MAC_ADDR_H_S); mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1; cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]), HNS3_CFG_DEFAULT_SPEED_M, HNS3_CFG_DEFAULT_SPEED_S); cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]), HNS3_CFG_RSS_SIZE_M, HNS3_CFG_RSS_SIZE_S); for (i = 0; i < RTE_ETHER_ADDR_LEN; i++) cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff; req = (struct hns3_cfg_param_cmd *)desc[1].data; cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]); cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]), HNS3_CFG_SPEED_ABILITY_M, HNS3_CFG_SPEED_ABILITY_S); cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]), HNS3_CFG_UMV_TBL_SPACE_M, HNS3_CFG_UMV_TBL_SPACE_S); if (!cfg->umv_space) cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF; ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]), HNS3_CFG_EXT_RSS_SIZE_M, HNS3_CFG_EXT_RSS_SIZE_S); /* * Field ext_rss_size_max obtained from firmware will be more flexible * for future changes and expansions, which is an exponent of 2, instead * of reading out directly. If this field is not zero, hns3 PF PMD * uses it as rss_size_max under one TC. Device, whose revision * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the * maximum number of queues supported under a TC through this field. */ if (ext_rss_size_max) cfg->rss_size_max = 1U << ext_rss_size_max; } /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash * @hw: pointer to struct hns3_hw * @hcfg: the config structure to be getted */ static int hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg) { struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM]; struct hns3_cfg_param_cmd *req; uint32_t offset; uint32_t i; int ret; for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) { offset = 0; req = (struct hns3_cfg_param_cmd *)desc[i].data; hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM, true); hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S, i * HNS3_CFG_RD_LEN_BYTES); /* Len should be divided by 4 when send to hardware */ hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S, HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT); req->offset = rte_cpu_to_le_32(offset); } ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM); if (ret) { PMD_INIT_LOG(ERR, "get config failed %d.", ret); return ret; } hns3_parse_cfg(hcfg, desc); return 0; } static int hns3_parse_speed(int speed_cmd, uint32_t *speed) { switch (speed_cmd) { case HNS3_CFG_SPEED_10M: *speed = RTE_ETH_SPEED_NUM_10M; break; case HNS3_CFG_SPEED_100M: *speed = RTE_ETH_SPEED_NUM_100M; break; case HNS3_CFG_SPEED_1G: *speed = RTE_ETH_SPEED_NUM_1G; break; case HNS3_CFG_SPEED_10G: *speed = RTE_ETH_SPEED_NUM_10G; break; case HNS3_CFG_SPEED_25G: *speed = RTE_ETH_SPEED_NUM_25G; break; case HNS3_CFG_SPEED_40G: *speed = RTE_ETH_SPEED_NUM_40G; break; case HNS3_CFG_SPEED_50G: *speed = RTE_ETH_SPEED_NUM_50G; break; case HNS3_CFG_SPEED_100G: *speed = RTE_ETH_SPEED_NUM_100G; break; case HNS3_CFG_SPEED_200G: *speed = RTE_ETH_SPEED_NUM_200G; break; default: return -EINVAL; } return 0; } static void hns3_set_default_dev_specifications(struct hns3_hw *hw) { hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT; hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE; hw->rss_key_size = HNS3_RSS_KEY_SIZE; hw->max_tm_rate = HNS3_ETHER_MAX_RATE; hw->intr.int_ql_max = HNS3_INTR_QL_NONE; } static void hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc) { struct hns3_dev_specs_0_cmd *req0; req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data; hw->max_non_tso_bd_num = req0->max_non_tso_bd_num; hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size); hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size); hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate); hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max); } static int hns3_check_dev_specifications(struct hns3_hw *hw) { if (hw->rss_ind_tbl_size == 0 || hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) { hns3_err(hw, "the size of hash lookup table configured (%u)" " exceeds the maximum(%u)", hw->rss_ind_tbl_size, HNS3_RSS_IND_TBL_SIZE_MAX); return -EINVAL; } return 0; } static int hns3_query_dev_specifications(struct hns3_hw *hw) { struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM]; int ret; int i; for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) { hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true); desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT); } hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true); ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM); if (ret) return ret; hns3_parse_dev_specifications(hw, desc); return hns3_check_dev_specifications(hw); } static int hns3_get_capability(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct rte_pci_device *pci_dev; struct hns3_pf *pf = &hns->pf; struct rte_eth_dev *eth_dev; uint16_t device_id; uint8_t revision; int ret; eth_dev = &rte_eth_devices[hw->data->port_id]; pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); device_id = pci_dev->id.device_id; if (device_id == HNS3_DEV_ID_25GE_RDMA || device_id == HNS3_DEV_ID_50GE_RDMA || device_id == HNS3_DEV_ID_100G_RDMA_MACSEC || device_id == HNS3_DEV_ID_200G_RDMA) hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1); /* Get PCI revision id */ ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN, HNS3_PCI_REVISION_ID); if (ret != HNS3_PCI_REVISION_ID_LEN) { PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d", ret); return -EIO; } hw->revision = revision; ret = hns3_query_mac_stats_reg_num(hw); if (ret) return ret; if (revision < PCI_REVISION_ID_HIP09_A) { hns3_set_default_dev_specifications(hw); hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE; hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US; hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM; hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE; hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1; hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN; pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE; hw->rss_info.ipv6_sctp_offload_supported = false; hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE; pf->support_multi_tc_pause = false; return 0; } ret = hns3_query_dev_specifications(hw); if (ret) { PMD_INIT_LOG(ERR, "failed to query dev specifications, ret = %d", ret); return ret; } hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL; hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US; hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM; hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE; hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2; hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN; pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE; hw->rss_info.ipv6_sctp_offload_supported = true; hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE; pf->support_multi_tc_pause = true; return 0; } static int hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type) { int ret; switch (media_type) { case HNS3_MEDIA_TYPE_COPPER: if (!hns3_dev_get_support(hw, COPPER)) { PMD_INIT_LOG(ERR, "Media type is copper, not supported."); ret = -EOPNOTSUPP; } else { ret = 0; } break; case HNS3_MEDIA_TYPE_FIBER: case HNS3_MEDIA_TYPE_BACKPLANE: ret = 0; break; default: PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type); ret = -EINVAL; break; } return ret; } static int hns3_get_board_configuration(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; struct hns3_cfg cfg; int ret; ret = hns3_get_board_cfg(hw, &cfg); if (ret) { PMD_INIT_LOG(ERR, "get board config failed %d", ret); return ret; } ret = hns3_check_media_type(hw, cfg.media_type); if (ret) return ret; hw->mac.media_type = cfg.media_type; hw->rss_size_max = cfg.rss_size_max; memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN); hw->mac.phy_addr = cfg.phy_addr; hw->num_tx_desc = cfg.tqp_desc_num; hw->num_rx_desc = cfg.tqp_desc_num; hw->dcb_info.num_pg = 1; hw->dcb_info.hw_pfc_map = 0; ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed); if (ret) { PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d", cfg.default_speed, ret); return ret; } pf->tc_max = cfg.tc_num; if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) { PMD_INIT_LOG(WARNING, "Get TC num(%u) from flash, set TC num to 1", pf->tc_max); pf->tc_max = 1; } /* Dev does not support DCB */ if (!hns3_dev_get_support(hw, DCB)) { pf->tc_max = 1; pf->pfc_max = 0; } else pf->pfc_max = pf->tc_max; hw->dcb_info.num_tc = 1; hw->alloc_rss_size = RTE_MIN(hw->rss_size_max, hw->tqps_num / hw->dcb_info.num_tc); hns3_set_bit(hw->hw_tc_map, 0, 1); pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE; pf->wanted_umv_size = cfg.umv_space; return ret; } static int hns3_get_configuration(struct hns3_hw *hw) { int ret; ret = hns3_query_function_status(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret); return ret; } /* Get device capability */ ret = hns3_get_capability(hw); if (ret) { PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret); return ret; } /* Get pf resource */ ret = hns3_query_pf_resource(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret); return ret; } ret = hns3_get_board_configuration(hw); if (ret) { PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret); return ret; } ret = hns3_query_dev_fec_info(hw); if (ret) PMD_INIT_LOG(ERR, "failed to query FEC information, ret = %d", ret); return ret; } static int hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid, uint16_t tqp_vid, bool is_pf) { struct hns3_tqp_map_cmd *req; struct hns3_cmd_desc desc; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false); req = (struct hns3_tqp_map_cmd *)desc.data; req->tqp_id = rte_cpu_to_le_16(tqp_pid); req->tqp_vf = func_id; req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B; if (!is_pf) req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B); req->tqp_vid = rte_cpu_to_le_16(tqp_vid); ret = hns3_cmd_send(hw, &desc, 1); if (ret) PMD_INIT_LOG(ERR, "TQP map failed %d", ret); return ret; } static int hns3_map_tqp(struct hns3_hw *hw) { int ret; int i; /* * In current version, VF is not supported when PF is driven by DPDK * driver, so we assign total tqps_num tqps allocated to this port * to PF. */ for (i = 0; i < hw->total_tqps_num; i++) { ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true); if (ret) return ret; } return 0; } static int hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex) { struct hns3_config_mac_speed_dup_cmd *req; struct hns3_cmd_desc desc; int ret; req = (struct hns3_config_mac_speed_dup_cmd *)desc.data; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false); hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0); switch (speed) { case RTE_ETH_SPEED_NUM_10M: hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M, HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M); break; case RTE_ETH_SPEED_NUM_100M: hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M, HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M); break; case RTE_ETH_SPEED_NUM_1G: hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M, HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G); break; case RTE_ETH_SPEED_NUM_10G: hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M, HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G); break; case RTE_ETH_SPEED_NUM_25G: hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M, HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G); break; case RTE_ETH_SPEED_NUM_40G: hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M, HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G); break; case RTE_ETH_SPEED_NUM_50G: hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M, HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G); break; case RTE_ETH_SPEED_NUM_100G: hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M, HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G); break; case RTE_ETH_SPEED_NUM_200G: hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M, HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G); break; default: PMD_INIT_LOG(ERR, "invalid speed (%u)", speed); return -EINVAL; } hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1); ret = hns3_cmd_send(hw, &desc, 1); if (ret) PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret); return ret; } static int hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; struct hns3_priv_buf *priv; uint32_t i, total_size; total_size = pf->pkt_buf_size; /* alloc tx buffer for all enabled tc */ for (i = 0; i < HNS3_MAX_TC_NUM; i++) { priv = &buf_alloc->priv_buf[i]; if (hw->hw_tc_map & BIT(i)) { if (total_size < pf->tx_buf_size) return -ENOMEM; priv->tx_buf_size = pf->tx_buf_size; } else priv->tx_buf_size = 0; total_size -= priv->tx_buf_size; } return 0; } static int hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc) { /* TX buffer size is unit by 128 byte */ #define HNS3_BUF_SIZE_UNIT_SHIFT 7 #define HNS3_BUF_SIZE_UPDATE_EN_MSK BIT(15) struct hns3_tx_buff_alloc_cmd *req; struct hns3_cmd_desc desc; uint32_t buf_size; uint32_t i; int ret; req = (struct hns3_tx_buff_alloc_cmd *)desc.data; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0); for (i = 0; i < HNS3_MAX_TC_NUM; i++) { buf_size = buf_alloc->priv_buf[i].tx_buf_size; buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT; req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size | HNS3_BUF_SIZE_UPDATE_EN_MSK); } ret = hns3_cmd_send(hw, &desc, 1); if (ret) PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret); return ret; } static int hns3_get_tc_num(struct hns3_hw *hw) { int cnt = 0; uint8_t i; for (i = 0; i < HNS3_MAX_TC_NUM; i++) if (hw->hw_tc_map & BIT(i)) cnt++; return cnt; } static uint32_t hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc) { struct hns3_priv_buf *priv; uint32_t rx_priv = 0; int i; for (i = 0; i < HNS3_MAX_TC_NUM; i++) { priv = &buf_alloc->priv_buf[i]; if (priv->enable) rx_priv += priv->buf_size; } return rx_priv; } static uint32_t hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc) { uint32_t total_tx_size = 0; uint32_t i; for (i = 0; i < HNS3_MAX_TC_NUM; i++) total_tx_size += buf_alloc->priv_buf[i].tx_buf_size; return total_tx_size; } /* Get the number of pfc enabled TCs, which have private buffer */ static int hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc) { struct hns3_priv_buf *priv; int cnt = 0; uint8_t i; for (i = 0; i < HNS3_MAX_TC_NUM; i++) { priv = &buf_alloc->priv_buf[i]; if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable) cnt++; } return cnt; } /* Get the number of pfc disabled TCs, which have private buffer */ static int hns3_get_no_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc) { struct hns3_priv_buf *priv; int cnt = 0; uint8_t i; for (i = 0; i < HNS3_MAX_TC_NUM; i++) { priv = &buf_alloc->priv_buf[i]; if (hw->hw_tc_map & BIT(i) && !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable) cnt++; } return cnt; } static bool hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc, uint32_t rx_all) { uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd; struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; uint32_t shared_buf, aligned_mps; uint32_t rx_priv; uint8_t tc_num; uint8_t i; tc_num = hns3_get_tc_num(hw); aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT); if (hns3_dev_get_support(hw, DCB)) shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps + pf->dv_buf_size; else shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF + pf->dv_buf_size; shared_buf_tc = tc_num * aligned_mps + aligned_mps; shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc), HNS3_BUF_SIZE_UNIT); rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc); if (rx_all < rx_priv + shared_std) return false; shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT); buf_alloc->s_buf.buf_size = shared_buf; if (hns3_dev_get_support(hw, DCB)) { buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size; buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high - roundup(aligned_mps / HNS3_BUF_DIV_BY, HNS3_BUF_SIZE_UNIT); } else { buf_alloc->s_buf.self.high = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF; buf_alloc->s_buf.self.low = aligned_mps; } if (hns3_dev_get_support(hw, DCB)) { hi_thrd = shared_buf - pf->dv_buf_size; if (tc_num <= NEED_RESERVE_TC_NUM) hi_thrd = hi_thrd * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT; if (tc_num) hi_thrd = hi_thrd / tc_num; hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps); hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT); lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY; } else { hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF; lo_thrd = aligned_mps; } for (i = 0; i < HNS3_MAX_TC_NUM; i++) { buf_alloc->s_buf.tc_thrd[i].low = lo_thrd; buf_alloc->s_buf.tc_thrd[i].high = hi_thrd; } return true; } static bool hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max, struct hns3_pkt_buf_alloc *buf_alloc) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; struct hns3_priv_buf *priv; uint32_t aligned_mps; uint32_t rx_all; uint8_t i; rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc); aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT); for (i = 0; i < HNS3_MAX_TC_NUM; i++) { priv = &buf_alloc->priv_buf[i]; priv->enable = 0; priv->wl.low = 0; priv->wl.high = 0; priv->buf_size = 0; if (!(hw->hw_tc_map & BIT(i))) continue; priv->enable = 1; if (hw->dcb_info.hw_pfc_map & BIT(i)) { priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT; priv->wl.high = roundup(priv->wl.low + aligned_mps, HNS3_BUF_SIZE_UNIT); } else { priv->wl.low = 0; priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) : aligned_mps; } priv->buf_size = priv->wl.high + pf->dv_buf_size; } return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all); } static bool hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; struct hns3_priv_buf *priv; int no_pfc_priv_num; uint32_t rx_all; uint8_t mask; int i; rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc); no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc); /* let the last to be cleared first */ for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) { priv = &buf_alloc->priv_buf[i]; mask = BIT((uint8_t)i); if (hw->hw_tc_map & mask && !(hw->dcb_info.hw_pfc_map & mask)) { /* Clear the no pfc TC private buffer */ priv->wl.low = 0; priv->wl.high = 0; priv->buf_size = 0; priv->enable = 0; no_pfc_priv_num--; } if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) || no_pfc_priv_num == 0) break; } return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all); } static bool hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; struct hns3_priv_buf *priv; uint32_t rx_all; int pfc_priv_num; uint8_t mask; int i; rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc); pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc); /* let the last to be cleared first */ for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) { priv = &buf_alloc->priv_buf[i]; mask = BIT((uint8_t)i); if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) { /* Reduce the number of pfc TC with private buffer */ priv->wl.low = 0; priv->enable = 0; priv->wl.high = 0; priv->buf_size = 0; pfc_priv_num--; } if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) || pfc_priv_num == 0) break; } return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all); } static bool hns3_only_alloc_priv_buff(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc) { #define COMPENSATE_BUFFER 0x3C00 #define COMPENSATE_HALF_MPS_NUM 5 #define PRIV_WL_GAP 0x1800 struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; uint32_t tc_num = hns3_get_tc_num(hw); uint32_t half_mps = pf->mps >> 1; struct hns3_priv_buf *priv; uint32_t min_rx_priv; uint32_t rx_priv; uint8_t i; rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc); if (tc_num) rx_priv = rx_priv / tc_num; if (tc_num <= NEED_RESERVE_TC_NUM) rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT; /* * Minimum value of private buffer in rx direction (min_rx_priv) is * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private * buffer if rx_priv is greater than min_rx_priv. */ min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER + COMPENSATE_HALF_MPS_NUM * half_mps; min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT); rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT); if (rx_priv < min_rx_priv) return false; for (i = 0; i < HNS3_MAX_TC_NUM; i++) { priv = &buf_alloc->priv_buf[i]; priv->enable = 0; priv->wl.low = 0; priv->wl.high = 0; priv->buf_size = 0; if (!(hw->hw_tc_map & BIT(i))) continue; priv->enable = 1; priv->buf_size = rx_priv; priv->wl.high = rx_priv - pf->dv_buf_size; priv->wl.low = priv->wl.high - PRIV_WL_GAP; } buf_alloc->s_buf.buf_size = 0; return true; } /* * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs * @hw: pointer to struct hns3_hw * @buf_alloc: pointer to buffer calculation data * @return: 0: calculate successful, negative: fail */ static int hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc) { /* When DCB is not supported, rx private buffer is not allocated. */ if (!hns3_dev_get_support(hw, DCB)) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; uint32_t rx_all = pf->pkt_buf_size; rx_all -= hns3_get_tx_buff_alloced(buf_alloc); if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all)) return -ENOMEM; return 0; } /* * Try to allocate privated packet buffer for all TCs without share * buffer. */ if (hns3_only_alloc_priv_buff(hw, buf_alloc)) return 0; /* * Try to allocate privated packet buffer for all TCs with share * buffer. */ if (hns3_rx_buf_calc_all(hw, true, buf_alloc)) return 0; /* * For different application scenes, the enabled port number, TC number * and no_drop TC number are different. In order to obtain the better * performance, software could allocate the buffer size and configure * the waterline by trying to decrease the private buffer size according * to the order, namely, waterline of valid tc, pfc disabled tc, pfc * enabled tc. */ if (hns3_rx_buf_calc_all(hw, false, buf_alloc)) return 0; if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc)) return 0; if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc)) return 0; return -ENOMEM; } static int hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc) { struct hns3_rx_priv_buff_cmd *req; struct hns3_cmd_desc desc; uint32_t buf_size; int ret; int i; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false); req = (struct hns3_rx_priv_buff_cmd *)desc.data; /* Alloc private buffer TCs */ for (i = 0; i < HNS3_MAX_TC_NUM; i++) { struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i]; req->buf_num[i] = rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S); req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B); } buf_size = buf_alloc->s_buf.buf_size; req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) | (1 << HNS3_TC0_PRI_BUF_EN_B)); ret = hns3_cmd_send(hw, &desc, 1); if (ret) PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret); return ret; } static int hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc) { #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2 struct hns3_rx_priv_wl_buf *req; struct hns3_priv_buf *priv; struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM]; int i, j; int ret; for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) { hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC, false); req = (struct hns3_rx_priv_wl_buf *)desc[i].data; /* The first descriptor set the NEXT bit to 1 */ if (i == 0) desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT); else desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT); for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) { uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j; priv = &buf_alloc->priv_buf[idx]; req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >> HNS3_BUF_UNIT_S); req->tc_wl[j].high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B)); req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >> HNS3_BUF_UNIT_S); req->tc_wl[j].low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B)); } } /* Send 2 descriptor at one time */ ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM); if (ret) PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d", ret); return ret; } static int hns3_common_thrd_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc) { #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2 struct hns3_shared_buf *s_buf = &buf_alloc->s_buf; struct hns3_rx_com_thrd *req; struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM]; struct hns3_tc_thrd *tc; int tc_idx; int i, j; int ret; for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) { hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC, false); req = (struct hns3_rx_com_thrd *)&desc[i].data; /* The first descriptor set the NEXT bit to 1 */ if (i == 0) desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT); else desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT); for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) { tc_idx = i * HNS3_TC_NUM_ONE_DESC + j; tc = &s_buf->tc_thrd[tc_idx]; req->com_thrd[j].high = rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S); req->com_thrd[j].high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B)); req->com_thrd[j].low = rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S); req->com_thrd[j].low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B)); } } /* Send 2 descriptors at one time */ ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM); if (ret) PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret); return ret; } static int hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc) { struct hns3_shared_buf *buf = &buf_alloc->s_buf; struct hns3_rx_com_wl *req; struct hns3_cmd_desc desc; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false); req = (struct hns3_rx_com_wl *)desc.data; req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S); req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B)); req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S); req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B)); ret = hns3_cmd_send(hw, &desc, 1); if (ret) PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret); return ret; } int hns3_buffer_alloc(struct hns3_hw *hw) { struct hns3_pkt_buf_alloc pkt_buf; int ret; memset(&pkt_buf, 0, sizeof(pkt_buf)); ret = hns3_tx_buffer_calc(hw, &pkt_buf); if (ret) { PMD_INIT_LOG(ERR, "could not calc tx buffer size for all TCs %d", ret); return ret; } ret = hns3_tx_buffer_alloc(hw, &pkt_buf); if (ret) { PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret); return ret; } ret = hns3_rx_buffer_calc(hw, &pkt_buf); if (ret) { PMD_INIT_LOG(ERR, "could not calc rx priv buffer size for all TCs %d", ret); return ret; } ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf); if (ret) { PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret); return ret; } if (hns3_dev_get_support(hw, DCB)) { ret = hns3_rx_priv_wl_config(hw, &pkt_buf); if (ret) { PMD_INIT_LOG(ERR, "could not configure rx private waterline %d", ret); return ret; } ret = hns3_common_thrd_config(hw, &pkt_buf); if (ret) { PMD_INIT_LOG(ERR, "could not configure common threshold %d", ret); return ret; } } ret = hns3_common_wl_config(hw, &pkt_buf); if (ret) PMD_INIT_LOG(ERR, "could not configure common waterline %d", ret); return ret; } static int hns3_mac_init(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_mac *mac = &hw->mac; struct hns3_pf *pf = &hns->pf; int ret; pf->support_sfp_query = true; mac->link_duplex = RTE_ETH_LINK_FULL_DUPLEX; ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex); if (ret) { PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret); return ret; } mac->link_status = RTE_ETH_LINK_DOWN; return hns3_config_mtu(hw, pf->mps); } static int hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code) { #define HNS3_ETHERTYPE_SUCCESS_ADD 0 #define HNS3_ETHERTYPE_ALREADY_ADD 1 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW 2 #define HNS3_ETHERTYPE_KEY_CONFLICT 3 int return_status; if (cmdq_resp) { PMD_INIT_LOG(ERR, "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n", cmdq_resp); return -EIO; } switch (resp_code) { case HNS3_ETHERTYPE_SUCCESS_ADD: case HNS3_ETHERTYPE_ALREADY_ADD: return_status = 0; break; case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW: PMD_INIT_LOG(ERR, "add mac ethertype failed for manager table overflow."); return_status = -EIO; break; case HNS3_ETHERTYPE_KEY_CONFLICT: PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict."); return_status = -EIO; break; default: PMD_INIT_LOG(ERR, "add mac ethertype failed for undefined, code=%u.", resp_code); return_status = -EIO; break; } return return_status; } static int hns3_add_mgr_tbl(struct hns3_hw *hw, const struct hns3_mac_mgr_tbl_entry_cmd *req) { struct hns3_cmd_desc desc; uint8_t resp_code; uint16_t retval; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false); memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd)); ret = hns3_cmd_send(hw, &desc, 1); if (ret) { PMD_INIT_LOG(ERR, "add mac ethertype failed for cmd_send, ret =%d.", ret); return ret; } resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff; retval = rte_le_to_cpu_16(desc.retval); return hns3_get_mac_ethertype_cmd_status(retval, resp_code); } static void hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table, int *table_item_num) { struct hns3_mac_mgr_tbl_entry_cmd *tbl; /* * In current version, we add one item in management table as below: * 0x0180C200000E -- LLDP MC address */ tbl = mgr_table; tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B; tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP); tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200)); tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E)); tbl->i_port_bitmap = 0x1; *table_item_num = 1; } static int hns3_init_mgr_tbl(struct hns3_hw *hw) { #define HNS_MAC_MGR_TBL_MAX_SIZE 16 struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE]; int table_item_num; int ret; int i; memset(mgr_table, 0, sizeof(mgr_table)); hns3_prepare_mgr_tbl(mgr_table, &table_item_num); for (i = 0; i < table_item_num; i++) { ret = hns3_add_mgr_tbl(hw, &mgr_table[i]); if (ret) { PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d", ret); return ret; } } return 0; } static void hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc, bool en_mc, bool en_bc, int vport_id) { if (!param) return; memset(param, 0, sizeof(struct hns3_promisc_param)); if (en_uc) param->enable = HNS3_PROMISC_EN_UC; if (en_mc) param->enable |= HNS3_PROMISC_EN_MC; if (en_bc) param->enable |= HNS3_PROMISC_EN_BC; param->vf_id = vport_id; } static int hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param) { struct hns3_promisc_cfg_cmd *req; struct hns3_cmd_desc desc; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false); req = (struct hns3_promisc_cfg_cmd *)desc.data; req->vf_id = param->vf_id; req->flag = (param->enable << HNS3_PROMISC_EN_B) | HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B; ret = hns3_cmd_send(hw, &desc, 1); if (ret) PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret); return ret; } static int hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc) { struct hns3_promisc_param param; bool en_bc_pmc = true; uint8_t vf_id; /* * In current version VF is not supported when PF is driven by DPDK * driver, just need to configure parameters for PF vport. */ vf_id = HNS3_PF_FUNC_ID; hns3_promisc_param_init(¶m, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id); return hns3_cmd_set_promisc_mode(hw, ¶m); } static int hns3_promisc_init(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; struct hns3_promisc_param param; uint16_t func_id; int ret; ret = hns3_set_promisc_mode(hw, false, false); if (ret) { PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret); return ret; } /* * In current version VFs are not supported when PF is driven by DPDK * driver. After PF has been taken over by DPDK, the original VF will * be invalid. So, there is a possibility of entry residues. It should * clear VFs's promisc mode to avoid unnecessary bandwidth usage * during init. */ for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) { hns3_promisc_param_init(¶m, false, false, false, func_id); ret = hns3_cmd_set_promisc_mode(hw, ¶m); if (ret) { PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode," " ret = %d", func_id, ret); return ret; } } return 0; } static void hns3_promisc_uninit(struct hns3_hw *hw) { struct hns3_promisc_param param; uint16_t func_id; int ret; func_id = HNS3_PF_FUNC_ID; /* * In current version VFs are not supported when PF is driven by * DPDK driver, and VFs' promisc mode status has been cleared during * init and their status will not change. So just clear PF's promisc * mode status during uninit. */ hns3_promisc_param_init(¶m, false, false, false, func_id); ret = hns3_cmd_set_promisc_mode(hw, ¶m); if (ret) PMD_INIT_LOG(ERR, "failed to clear promisc status during" " uninit, ret = %d", ret); } static int hns3_dev_promiscuous_enable(struct rte_eth_dev *dev) { bool allmulti = dev->data->all_multicast ? true : false; struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; uint64_t offloads; int err; int ret; rte_spinlock_lock(&hw->lock); ret = hns3_set_promisc_mode(hw, true, true); if (ret) { rte_spinlock_unlock(&hw->lock); hns3_err(hw, "failed to enable promiscuous mode, ret = %d", ret); return ret; } /* * When promiscuous mode was enabled, disable the vlan filter to let * all packets coming in in the receiving direction. */ offloads = dev->data->dev_conf.rxmode.offloads; if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) { ret = hns3_enable_vlan_filter(hns, false); if (ret) { hns3_err(hw, "failed to enable promiscuous mode due to " "failure to disable vlan filter, ret = %d", ret); err = hns3_set_promisc_mode(hw, false, allmulti); if (err) hns3_err(hw, "failed to restore promiscuous " "status after disable vlan filter " "failed during enabling promiscuous " "mode, ret = %d", ret); } } rte_spinlock_unlock(&hw->lock); return ret; } static int hns3_dev_promiscuous_disable(struct rte_eth_dev *dev) { bool allmulti = dev->data->all_multicast ? true : false; struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; uint64_t offloads; int err; int ret; /* If now in all_multicast mode, must remain in all_multicast mode. */ rte_spinlock_lock(&hw->lock); ret = hns3_set_promisc_mode(hw, false, allmulti); if (ret) { rte_spinlock_unlock(&hw->lock); hns3_err(hw, "failed to disable promiscuous mode, ret = %d", ret); return ret; } /* when promiscuous mode was disabled, restore the vlan filter status */ offloads = dev->data->dev_conf.rxmode.offloads; if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) { ret = hns3_enable_vlan_filter(hns, true); if (ret) { hns3_err(hw, "failed to disable promiscuous mode due to" " failure to restore vlan filter, ret = %d", ret); err = hns3_set_promisc_mode(hw, true, true); if (err) hns3_err(hw, "failed to restore promiscuous " "status after enabling vlan filter " "failed during disabling promiscuous " "mode, ret = %d", ret); } } rte_spinlock_unlock(&hw->lock); return ret; } static int hns3_dev_allmulticast_enable(struct rte_eth_dev *dev) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; int ret; if (dev->data->promiscuous) return 0; rte_spinlock_lock(&hw->lock); ret = hns3_set_promisc_mode(hw, false, true); rte_spinlock_unlock(&hw->lock); if (ret) hns3_err(hw, "failed to enable allmulticast mode, ret = %d", ret); return ret; } static int hns3_dev_allmulticast_disable(struct rte_eth_dev *dev) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; int ret; /* If now in promiscuous mode, must remain in all_multicast mode. */ if (dev->data->promiscuous) return 0; rte_spinlock_lock(&hw->lock); ret = hns3_set_promisc_mode(hw, false, false); rte_spinlock_unlock(&hw->lock); if (ret) hns3_err(hw, "failed to disable allmulticast mode, ret = %d", ret); return ret; } static int hns3_dev_promisc_restore(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; bool allmulti = hw->data->all_multicast ? true : false; int ret; if (hw->data->promiscuous) { ret = hns3_set_promisc_mode(hw, true, true); if (ret) hns3_err(hw, "failed to restore promiscuous mode, " "ret = %d", ret); return ret; } ret = hns3_set_promisc_mode(hw, false, allmulti); if (ret) hns3_err(hw, "failed to restore allmulticast mode, ret = %d", ret); return ret; } static int hns3_get_sfp_info(struct hns3_hw *hw, struct hns3_mac *mac_info) { struct hns3_sfp_info_cmd *resp; struct hns3_cmd_desc desc; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true); resp = (struct hns3_sfp_info_cmd *)desc.data; resp->query_type = HNS3_ACTIVE_QUERY; ret = hns3_cmd_send(hw, &desc, 1); if (ret == -EOPNOTSUPP) { hns3_warn(hw, "firmware does not support get SFP info," " ret = %d.", ret); return ret; } else if (ret) { hns3_err(hw, "get sfp info failed, ret = %d.", ret); return ret; } /* * In some case, the speed of MAC obtained from firmware may be 0, it * shouldn't be set to mac->speed. */ if (!rte_le_to_cpu_32(resp->sfp_speed)) return 0; mac_info->link_speed = rte_le_to_cpu_32(resp->sfp_speed); /* * if resp->supported_speed is 0, it means it's an old version * firmware, do not update these params. */ if (resp->supported_speed) { mac_info->query_type = HNS3_ACTIVE_QUERY; mac_info->supported_speed = rte_le_to_cpu_32(resp->supported_speed); mac_info->support_autoneg = resp->autoneg_ability; mac_info->link_autoneg = (resp->autoneg == 0) ? RTE_ETH_LINK_FIXED : RTE_ETH_LINK_AUTONEG; } else { mac_info->query_type = HNS3_DEFAULT_QUERY; } return 0; } static uint8_t hns3_check_speed_dup(uint8_t duplex, uint32_t speed) { if (!(speed == RTE_ETH_SPEED_NUM_10M || speed == RTE_ETH_SPEED_NUM_100M)) duplex = RTE_ETH_LINK_FULL_DUPLEX; return duplex; } static int hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex) { struct hns3_mac *mac = &hw->mac; int ret; duplex = hns3_check_speed_dup(duplex, speed); if (mac->link_speed == speed && mac->link_duplex == duplex) return 0; ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex); if (ret) return ret; ret = hns3_port_shaper_update(hw, speed); if (ret) return ret; mac->link_speed = speed; mac->link_duplex = duplex; return 0; } static int hns3_update_fiber_link_info(struct hns3_hw *hw) { struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw); struct hns3_mac *mac = &hw->mac; struct hns3_mac mac_info; int ret; /* If firmware do not support get SFP/qSFP speed, return directly */ if (!pf->support_sfp_query) return 0; memset(&mac_info, 0, sizeof(struct hns3_mac)); ret = hns3_get_sfp_info(hw, &mac_info); if (ret == -EOPNOTSUPP) { pf->support_sfp_query = false; return ret; } else if (ret) return ret; /* Do nothing if no SFP */ if (mac_info.link_speed == RTE_ETH_SPEED_NUM_NONE) return 0; /* * If query_type is HNS3_ACTIVE_QUERY, it is no need * to reconfigure the speed of MAC. Otherwise, it indicates * that the current firmware only supports to obtain the * speed of the SFP, and the speed of MAC needs to reconfigure. */ mac->query_type = mac_info.query_type; if (mac->query_type == HNS3_ACTIVE_QUERY) { if (mac_info.link_speed != mac->link_speed) { ret = hns3_port_shaper_update(hw, mac_info.link_speed); if (ret) return ret; } mac->link_speed = mac_info.link_speed; mac->supported_speed = mac_info.supported_speed; mac->support_autoneg = mac_info.support_autoneg; mac->link_autoneg = mac_info.link_autoneg; return 0; } /* Config full duplex for SFP */ return hns3_cfg_mac_speed_dup(hw, mac_info.link_speed, RTE_ETH_LINK_FULL_DUPLEX); } static void hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac) { #define HNS3_PHY_SUPPORTED_SPEED_MASK 0x2f struct hns3_phy_params_bd0_cmd *req; uint32_t supported; req = (struct hns3_phy_params_bd0_cmd *)desc[0].data; mac->link_speed = rte_le_to_cpu_32(req->speed); mac->link_duplex = hns3_get_bit(req->duplex, HNS3_PHY_DUPLEX_CFG_B); mac->link_autoneg = hns3_get_bit(req->autoneg, HNS3_PHY_AUTONEG_CFG_B); mac->advertising = rte_le_to_cpu_32(req->advertising); mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising); supported = rte_le_to_cpu_32(req->supported); mac->supported_speed = supported & HNS3_PHY_SUPPORTED_SPEED_MASK; mac->support_autoneg = !!(supported & HNS3_PHY_LINK_MODE_AUTONEG_BIT); } static int hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac) { struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM]; uint16_t i; int ret; for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) { hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true); desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT); } hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true); ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM); if (ret) { hns3_err(hw, "get phy parameters failed, ret = %d.", ret); return ret; } hns3_parse_copper_phy_params(desc, mac); return 0; } static int hns3_update_copper_link_info(struct hns3_hw *hw) { struct hns3_mac *mac = &hw->mac; struct hns3_mac mac_info; int ret; memset(&mac_info, 0, sizeof(struct hns3_mac)); ret = hns3_get_copper_phy_params(hw, &mac_info); if (ret) return ret; if (mac_info.link_speed != mac->link_speed) { ret = hns3_port_shaper_update(hw, mac_info.link_speed); if (ret) return ret; } mac->link_speed = mac_info.link_speed; mac->link_duplex = mac_info.link_duplex; mac->link_autoneg = mac_info.link_autoneg; mac->supported_speed = mac_info.supported_speed; mac->advertising = mac_info.advertising; mac->lp_advertising = mac_info.lp_advertising; mac->support_autoneg = mac_info.support_autoneg; return 0; } static int hns3_update_link_info(struct rte_eth_dev *eth_dev) { struct hns3_adapter *hns = eth_dev->data->dev_private; struct hns3_hw *hw = &hns->hw; if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER) return hns3_update_copper_link_info(hw); return hns3_update_fiber_link_info(hw); } static int hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable) { struct hns3_config_mac_mode_cmd *req; struct hns3_cmd_desc desc; uint32_t loop_en = 0; uint8_t val = 0; int ret; req = (struct hns3_config_mac_mode_cmd *)desc.data; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false); if (enable) val = 1; hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val); hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val); hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val); hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val); hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0); hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0); hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0); hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0); hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val); hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val); /* * If RTE_ETH_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC * when receiving frames. Otherwise, CRC will be stripped. */ if (hw->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC) hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0); else hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val); hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val); hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val); hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val); req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en); ret = hns3_cmd_send(hw, &desc, 1); if (ret) PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret); return ret; } static int hns3_get_mac_link_status(struct hns3_hw *hw) { struct hns3_link_status_cmd *req; struct hns3_cmd_desc desc; int link_status; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true); ret = hns3_cmd_send(hw, &desc, 1); if (ret) { hns3_err(hw, "get link status cmd failed %d", ret); return RTE_ETH_LINK_DOWN; } req = (struct hns3_link_status_cmd *)desc.data; link_status = req->status & HNS3_LINK_STATUS_UP_M; return !!link_status; } static bool hns3_update_link_status(struct hns3_hw *hw) { int state; state = hns3_get_mac_link_status(hw); if (state != hw->mac.link_status) { hw->mac.link_status = state; hns3_warn(hw, "Link status change to %s!", state ? "up" : "down"); return true; } return false; } void hns3_update_linkstatus_and_event(struct hns3_hw *hw, bool query) { struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id]; struct rte_eth_link new_link; int ret; if (query) hns3_update_port_link_info(dev); memset(&new_link, 0, sizeof(new_link)); hns3_setup_linkstatus(dev, &new_link); ret = rte_eth_linkstatus_set(dev, &new_link); if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0) hns3_start_report_lse(dev); } static void hns3_service_handler(void *param) { struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param; struct hns3_adapter *hns = eth_dev->data->dev_private; struct hns3_hw *hw = &hns->hw; if (!hns3_is_reset_pending(hns)) { hns3_update_linkstatus_and_event(hw, true); hns3_update_hw_stats(hw); } else { hns3_warn(hw, "Cancel the query when reset is pending"); } rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev); } static int hns3_init_hardware(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; int ret; /* * All queue-related HW operations must be performed after the TCAM * table is configured. */ ret = hns3_map_tqp(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret); return ret; } ret = hns3_init_umv_space(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret); return ret; } ret = hns3_mac_init(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret); goto err_mac_init; } ret = hns3_init_mgr_tbl(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret); goto err_mac_init; } ret = hns3_promisc_init(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to init promisc: %d", ret); goto err_mac_init; } ret = hns3_init_vlan_config(hns); if (ret) { PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret); goto err_mac_init; } ret = hns3_dcb_init(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret); goto err_mac_init; } ret = hns3_init_fd_config(hns); if (ret) { PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret); goto err_mac_init; } ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX); if (ret) { PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret); goto err_mac_init; } ret = hns3_config_gro(hw, false); if (ret) { PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret); goto err_mac_init; } /* * In the initialization clearing the all hardware mapping relationship * configurations between queues and interrupt vectors is needed, so * some error caused by the residual configurations, such as the * unexpected interrupt, can be avoid. */ ret = hns3_init_ring_with_vector(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret); goto err_mac_init; } return 0; err_mac_init: hns3_uninit_umv_space(hw); return ret; } static int hns3_clear_hw(struct hns3_hw *hw) { struct hns3_cmd_desc desc; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false); ret = hns3_cmd_send(hw, &desc, 1); if (ret && ret != -EOPNOTSUPP) return ret; return 0; } static void hns3_config_all_msix_error(struct hns3_hw *hw, bool enable) { uint32_t val; /* * The new firmware support report more hardware error types by * msix mode. These errors are defined as RAS errors in hardware * and belong to a different type from the MSI-x errors processed * by the network driver. * * Network driver should open the new error report on initialization. */ val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG); hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0); hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val); } static uint32_t hns3_set_firber_default_support_speed(struct hns3_hw *hw) { struct hns3_mac *mac = &hw->mac; switch (mac->link_speed) { case RTE_ETH_SPEED_NUM_1G: return HNS3_FIBER_LINK_SPEED_1G_BIT; case RTE_ETH_SPEED_NUM_10G: return HNS3_FIBER_LINK_SPEED_10G_BIT; case RTE_ETH_SPEED_NUM_25G: return HNS3_FIBER_LINK_SPEED_25G_BIT; case RTE_ETH_SPEED_NUM_40G: return HNS3_FIBER_LINK_SPEED_40G_BIT; case RTE_ETH_SPEED_NUM_50G: return HNS3_FIBER_LINK_SPEED_50G_BIT; case RTE_ETH_SPEED_NUM_100G: return HNS3_FIBER_LINK_SPEED_100G_BIT; case RTE_ETH_SPEED_NUM_200G: return HNS3_FIBER_LINK_SPEED_200G_BIT; default: hns3_warn(hw, "invalid speed %u Mbps.", mac->link_speed); return 0; } } /* * Validity of supported_speed for fiber and copper media type can be * guaranteed by the following policy: * Copper: * Although the initialization of the phy in the firmware may not be * completed, the firmware can guarantees that the supported_speed is * an valid value. * Firber: * If the version of firmware supports the active query way of the * HNS3_OPC_GET_SFP_INFO opcode, the supported_speed can be obtained * through it. If unsupported, use the SFP's speed as the value of the * supported_speed. */ static int hns3_get_port_supported_speed(struct rte_eth_dev *eth_dev) { struct hns3_adapter *hns = eth_dev->data->dev_private; struct hns3_hw *hw = &hns->hw; struct hns3_mac *mac = &hw->mac; int ret; ret = hns3_update_link_info(eth_dev); if (ret) return ret; if (mac->media_type == HNS3_MEDIA_TYPE_FIBER || mac->media_type == HNS3_MEDIA_TYPE_BACKPLANE) { /* * Some firmware does not support the report of supported_speed, * and only report the effective speed of SFP/backplane. In this * case, it is necessary to use the SFP/backplane's speed as the * supported_speed. */ if (mac->supported_speed == 0) mac->supported_speed = hns3_set_firber_default_support_speed(hw); } return 0; } static void hns3_get_fc_autoneg_capability(struct hns3_adapter *hns) { struct hns3_mac *mac = &hns->hw.mac; if (mac->media_type == HNS3_MEDIA_TYPE_COPPER) { hns->pf.support_fc_autoneg = true; return; } /* * Flow control auto-negotiation requires the cooperation of the driver * and firmware. Currently, the optical port does not support flow * control auto-negotiation. */ hns->pf.support_fc_autoneg = false; } static int hns3_init_pf(struct rte_eth_dev *eth_dev) { struct rte_device *dev = eth_dev->device; struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev); struct hns3_adapter *hns = eth_dev->data->dev_private; struct hns3_hw *hw = &hns->hw; int ret; PMD_INIT_FUNC_TRACE(); /* Get hardware io base address from pcie BAR2 IO space */ hw->io_base = pci_dev->mem_resource[2].addr; /* Firmware command queue initialize */ ret = hns3_cmd_init_queue(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret); goto err_cmd_init_queue; } hns3_clear_all_event_cause(hw); /* Firmware command initialize */ ret = hns3_cmd_init(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret); goto err_cmd_init; } hns3_tx_push_init(eth_dev); /* * To ensure that the hardware environment is clean during * initialization, the driver actively clear the hardware environment * during initialization, including PF and corresponding VFs' vlan, mac, * flow table configurations, etc. */ ret = hns3_clear_hw(hw); if (ret) { PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret); goto err_cmd_init; } hns3_config_all_msix_error(hw, true); ret = rte_intr_callback_register(pci_dev->intr_handle, hns3_interrupt_handler, eth_dev); if (ret) { PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret); goto err_intr_callback_register; } ret = hns3_ptp_init(hw); if (ret) goto err_get_config; /* Enable interrupt */ rte_intr_enable(pci_dev->intr_handle); hns3_pf_enable_irq0(hw); /* Get configuration */ ret = hns3_get_configuration(hw); if (ret) { PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret); goto err_get_config; } ret = hns3_stats_init(hw); if (ret) goto err_get_config; ret = hns3_init_hardware(hns); if (ret) { PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret); goto err_init_hw; } /* Initialize flow director filter list & hash */ ret = hns3_fdir_filter_init(hns); if (ret) { PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret); goto err_fdir; } hns3_rss_set_default_args(hw); ret = hns3_enable_hw_error_intr(hns, true); if (ret) { PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d", ret); goto err_enable_intr; } ret = hns3_get_port_supported_speed(eth_dev); if (ret) { PMD_INIT_LOG(ERR, "failed to get speed capabilities supported " "by device, ret = %d.", ret); goto err_supported_speed; } hns3_get_fc_autoneg_capability(hns); hns3_tm_conf_init(eth_dev); return 0; err_supported_speed: (void)hns3_enable_hw_error_intr(hns, false); err_enable_intr: hns3_fdir_filter_uninit(hns); err_fdir: hns3_uninit_umv_space(hw); err_init_hw: hns3_stats_uninit(hw); err_get_config: hns3_pf_disable_irq0(hw); rte_intr_disable(pci_dev->intr_handle); hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler, eth_dev); err_intr_callback_register: err_cmd_init: hns3_cmd_uninit(hw); hns3_cmd_destroy_queue(hw); err_cmd_init_queue: hw->io_base = NULL; return ret; } static void hns3_uninit_pf(struct rte_eth_dev *eth_dev) { struct hns3_adapter *hns = eth_dev->data->dev_private; struct rte_device *dev = eth_dev->device; struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev); struct hns3_hw *hw = &hns->hw; PMD_INIT_FUNC_TRACE(); hns3_tm_conf_uninit(eth_dev); hns3_enable_hw_error_intr(hns, false); hns3_rss_uninit(hns); (void)hns3_config_gro(hw, false); hns3_promisc_uninit(hw); hns3_flow_uninit(eth_dev); hns3_fdir_filter_uninit(hns); hns3_uninit_umv_space(hw); hns3_stats_uninit(hw); hns3_config_mac_tnl_int(hw, false); hns3_pf_disable_irq0(hw); rte_intr_disable(pci_dev->intr_handle); hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler, eth_dev); hns3_config_all_msix_error(hw, false); hns3_cmd_uninit(hw); hns3_cmd_destroy_queue(hw); hw->io_base = NULL; } static uint32_t hns3_convert_link_speeds2bitmap_copper(uint32_t link_speeds) { uint32_t speed_bit; switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) { case RTE_ETH_LINK_SPEED_10M: speed_bit = HNS3_PHY_LINK_SPEED_10M_BIT; break; case RTE_ETH_LINK_SPEED_10M_HD: speed_bit = HNS3_PHY_LINK_SPEED_10M_HD_BIT; break; case RTE_ETH_LINK_SPEED_100M: speed_bit = HNS3_PHY_LINK_SPEED_100M_BIT; break; case RTE_ETH_LINK_SPEED_100M_HD: speed_bit = HNS3_PHY_LINK_SPEED_100M_HD_BIT; break; case RTE_ETH_LINK_SPEED_1G: speed_bit = HNS3_PHY_LINK_SPEED_1000M_BIT; break; default: speed_bit = 0; break; } return speed_bit; } static uint32_t hns3_convert_link_speeds2bitmap_fiber(uint32_t link_speeds) { uint32_t speed_bit; switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) { case RTE_ETH_LINK_SPEED_1G: speed_bit = HNS3_FIBER_LINK_SPEED_1G_BIT; break; case RTE_ETH_LINK_SPEED_10G: speed_bit = HNS3_FIBER_LINK_SPEED_10G_BIT; break; case RTE_ETH_LINK_SPEED_25G: speed_bit = HNS3_FIBER_LINK_SPEED_25G_BIT; break; case RTE_ETH_LINK_SPEED_40G: speed_bit = HNS3_FIBER_LINK_SPEED_40G_BIT; break; case RTE_ETH_LINK_SPEED_50G: speed_bit = HNS3_FIBER_LINK_SPEED_50G_BIT; break; case RTE_ETH_LINK_SPEED_100G: speed_bit = HNS3_FIBER_LINK_SPEED_100G_BIT; break; case RTE_ETH_LINK_SPEED_200G: speed_bit = HNS3_FIBER_LINK_SPEED_200G_BIT; break; default: speed_bit = 0; break; } return speed_bit; } static int hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds) { struct hns3_mac *mac = &hw->mac; uint32_t supported_speed = mac->supported_speed; uint32_t speed_bit = 0; if (mac->media_type == HNS3_MEDIA_TYPE_COPPER) speed_bit = hns3_convert_link_speeds2bitmap_copper(link_speeds); else speed_bit = hns3_convert_link_speeds2bitmap_fiber(link_speeds); if (!(speed_bit & supported_speed)) { hns3_err(hw, "link_speeds(0x%x) exceeds the supported speed capability or is incorrect.", link_speeds); return -EINVAL; } return 0; } static inline uint32_t hns3_get_link_speed(uint32_t link_speeds) { uint32_t speed = RTE_ETH_SPEED_NUM_NONE; if (link_speeds & RTE_ETH_LINK_SPEED_10M || link_speeds & RTE_ETH_LINK_SPEED_10M_HD) speed = RTE_ETH_SPEED_NUM_10M; if (link_speeds & RTE_ETH_LINK_SPEED_100M || link_speeds & RTE_ETH_LINK_SPEED_100M_HD) speed = RTE_ETH_SPEED_NUM_100M; if (link_speeds & RTE_ETH_LINK_SPEED_1G) speed = RTE_ETH_SPEED_NUM_1G; if (link_speeds & RTE_ETH_LINK_SPEED_10G) speed = RTE_ETH_SPEED_NUM_10G; if (link_speeds & RTE_ETH_LINK_SPEED_25G) speed = RTE_ETH_SPEED_NUM_25G; if (link_speeds & RTE_ETH_LINK_SPEED_40G) speed = RTE_ETH_SPEED_NUM_40G; if (link_speeds & RTE_ETH_LINK_SPEED_50G) speed = RTE_ETH_SPEED_NUM_50G; if (link_speeds & RTE_ETH_LINK_SPEED_100G) speed = RTE_ETH_SPEED_NUM_100G; if (link_speeds & RTE_ETH_LINK_SPEED_200G) speed = RTE_ETH_SPEED_NUM_200G; return speed; } static uint8_t hns3_get_link_duplex(uint32_t link_speeds) { if ((link_speeds & RTE_ETH_LINK_SPEED_10M_HD) || (link_speeds & RTE_ETH_LINK_SPEED_100M_HD)) return RTE_ETH_LINK_HALF_DUPLEX; else return RTE_ETH_LINK_FULL_DUPLEX; } static int hns3_set_copper_port_link_speed(struct hns3_hw *hw, struct hns3_set_link_speed_cfg *cfg) { struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM]; struct hns3_phy_params_bd0_cmd *req; uint16_t i; for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) { hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, false); desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT); } hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, false); req = (struct hns3_phy_params_bd0_cmd *)desc[0].data; req->autoneg = cfg->autoneg; /* * The full speed capability is used to negotiate when * auto-negotiation is enabled. */ if (cfg->autoneg) { req->advertising = HNS3_PHY_LINK_SPEED_10M_BIT | HNS3_PHY_LINK_SPEED_10M_HD_BIT | HNS3_PHY_LINK_SPEED_100M_BIT | HNS3_PHY_LINK_SPEED_100M_HD_BIT | HNS3_PHY_LINK_SPEED_1000M_BIT; } else { req->speed = cfg->speed; req->duplex = cfg->duplex; } return hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM); } static int hns3_set_autoneg(struct hns3_hw *hw, bool enable) { struct hns3_config_auto_neg_cmd *req; struct hns3_cmd_desc desc; uint32_t flag = 0; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_AN_MODE, false); req = (struct hns3_config_auto_neg_cmd *)desc.data; if (enable) hns3_set_bit(flag, HNS3_MAC_CFG_AN_EN_B, 1); req->cfg_an_cmd_flag = rte_cpu_to_le_32(flag); ret = hns3_cmd_send(hw, &desc, 1); if (ret) hns3_err(hw, "autoneg set cmd failed, ret = %d.", ret); return ret; } static int hns3_set_fiber_port_link_speed(struct hns3_hw *hw, struct hns3_set_link_speed_cfg *cfg) { int ret; if (hw->mac.support_autoneg) { ret = hns3_set_autoneg(hw, cfg->autoneg); if (ret) { hns3_err(hw, "failed to configure auto-negotiation."); return ret; } /* * To enable auto-negotiation, we only need to open the switch * of auto-negotiation, then firmware sets all speed * capabilities. */ if (cfg->autoneg) return 0; } /* * Some hardware doesn't support auto-negotiation, but users may not * configure link_speeds (default 0), which means auto-negotiation. * In this case, a warning message need to be printed, instead of * an error. */ if (cfg->autoneg) { hns3_warn(hw, "auto-negotiation is not supported, use default fixed speed!"); return 0; } return hns3_cfg_mac_speed_dup(hw, cfg->speed, cfg->duplex); } static const char * hns3_get_media_type_name(uint8_t media_type) { if (media_type == HNS3_MEDIA_TYPE_FIBER) return "fiber"; else if (media_type == HNS3_MEDIA_TYPE_COPPER) return "copper"; else if (media_type == HNS3_MEDIA_TYPE_BACKPLANE) return "backplane"; else return "unknown"; } static int hns3_set_port_link_speed(struct hns3_hw *hw, struct hns3_set_link_speed_cfg *cfg) { int ret; if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER) ret = hns3_set_copper_port_link_speed(hw, cfg); else ret = hns3_set_fiber_port_link_speed(hw, cfg); if (ret) { hns3_err(hw, "failed to set %s port link speed, ret = %d.", hns3_get_media_type_name(hw->mac.media_type), ret); return ret; } return 0; } static int hns3_apply_link_speed(struct hns3_hw *hw) { struct rte_eth_conf *conf = &hw->data->dev_conf; struct hns3_set_link_speed_cfg cfg; memset(&cfg, 0, sizeof(struct hns3_set_link_speed_cfg)); cfg.autoneg = (conf->link_speeds == RTE_ETH_LINK_SPEED_AUTONEG) ? RTE_ETH_LINK_AUTONEG : RTE_ETH_LINK_FIXED; if (cfg.autoneg != RTE_ETH_LINK_AUTONEG) { cfg.speed = hns3_get_link_speed(conf->link_speeds); cfg.duplex = hns3_get_link_duplex(conf->link_speeds); } return hns3_set_port_link_speed(hw, &cfg); } static int hns3_do_start(struct hns3_adapter *hns, bool reset_queue) { struct hns3_hw *hw = &hns->hw; bool link_en; int ret; ret = hns3_update_queue_map_configure(hns); if (ret) { hns3_err(hw, "failed to update queue mapping configuration, ret = %d", ret); return ret; } /* Note: hns3_tm_conf_update must be called after configuring DCB. */ ret = hns3_tm_conf_update(hw); if (ret) { PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret); return ret; } hns3_enable_rxd_adv_layout(hw); ret = hns3_init_queues(hns, reset_queue); if (ret) { PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret); return ret; } link_en = hw->set_link_down ? false : true; ret = hns3_cfg_mac_mode(hw, link_en); if (ret) { PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret); goto err_config_mac_mode; } ret = hns3_apply_link_speed(hw); if (ret) goto err_set_link_speed; return 0; err_set_link_speed: (void)hns3_cfg_mac_mode(hw, false); err_config_mac_mode: hns3_dev_release_mbufs(hns); /* * Here is exception handling, hns3_reset_all_tqps will have the * corresponding error message if it is handled incorrectly, so it is * not necessary to check hns3_reset_all_tqps return value, here keep * ret as the error code causing the exception. */ (void)hns3_reset_all_tqps(hns); return ret; } static void hns3_restore_filter(struct rte_eth_dev *dev) { hns3_restore_rss_filter(dev); } static int hns3_dev_start(struct rte_eth_dev *dev) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; bool old_state = hw->set_link_down; int ret; PMD_INIT_FUNC_TRACE(); if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) return -EBUSY; rte_spinlock_lock(&hw->lock); hw->adapter_state = HNS3_NIC_STARTING; /* * If the dev_set_link_down() API has been called, the "set_link_down" * flag can be cleared by dev_start() API. In addition, the flag should * also be cleared before calling hns3_do_start() so that MAC can be * enabled in dev_start stage. */ hw->set_link_down = false; ret = hns3_do_start(hns, true); if (ret) goto do_start_fail; ret = hns3_map_rx_interrupt(dev); if (ret) goto map_rx_inter_err; /* * There are three register used to control the status of a TQP * (contains a pair of Tx queue and Rx queue) in the new version network * engine. One is used to control the enabling of Tx queue, the other is * used to control the enabling of Rx queue, and the last is the master * switch used to control the enabling of the tqp. The Tx register and * TQP register must be enabled at the same time to enable a Tx queue. * The same applies to the Rx queue. For the older network engine, this * function only refresh the enabled flag, and it is used to update the * status of queue in the dpdk framework. */ ret = hns3_start_all_txqs(dev); if (ret) goto map_rx_inter_err; ret = hns3_start_all_rxqs(dev); if (ret) goto start_all_rxqs_fail; hw->adapter_state = HNS3_NIC_STARTED; rte_spinlock_unlock(&hw->lock); hns3_rx_scattered_calc(dev); hns3_set_rxtx_function(dev); hns3_mp_req_start_rxtx(dev); hns3_restore_filter(dev); /* Enable interrupt of all rx queues before enabling queues */ hns3_dev_all_rx_queue_intr_enable(hw, true); /* * After finished the initialization, enable tqps to receive/transmit * packets and refresh all queue status. */ hns3_start_tqps(hw); hns3_tm_dev_start_proc(hw); if (dev->data->dev_conf.intr_conf.lsc != 0) hns3_dev_link_update(dev, 0); rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev); hns3_info(hw, "hns3 dev start successful!"); return 0; start_all_rxqs_fail: hns3_stop_all_txqs(dev); map_rx_inter_err: (void)hns3_do_stop(hns); do_start_fail: hw->set_link_down = old_state; hw->adapter_state = HNS3_NIC_CONFIGURED; rte_spinlock_unlock(&hw->lock); return ret; } static int hns3_do_stop(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; int ret; /* * The "hns3_do_stop" function will also be called by .stop_service to * prepare reset. At the time of global or IMP reset, the command cannot * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be * accessed during the reset process. So the mbuf can not be released * during reset and is required to be released after the reset is * completed. */ if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) hns3_dev_release_mbufs(hns); ret = hns3_cfg_mac_mode(hw, false); if (ret) return ret; hw->mac.link_status = RTE_ETH_LINK_DOWN; if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) { hns3_configure_all_mac_addr(hns, true); ret = hns3_reset_all_tqps(hns); if (ret) { hns3_err(hw, "failed to reset all queues ret = %d.", ret); return ret; } } return 0; } static int hns3_dev_stop(struct rte_eth_dev *dev) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; PMD_INIT_FUNC_TRACE(); dev->data->dev_started = 0; hw->adapter_state = HNS3_NIC_STOPPING; hns3_set_rxtx_function(dev); rte_wmb(); /* Disable datapath on secondary process. */ hns3_mp_req_stop_rxtx(dev); /* Prevent crashes when queues are still in use. */ rte_delay_ms(hw->cfg_max_queues); rte_spinlock_lock(&hw->lock); if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) { hns3_tm_dev_stop_proc(hw); hns3_config_mac_tnl_int(hw, false); hns3_stop_tqps(hw); hns3_do_stop(hns); hns3_unmap_rx_interrupt(dev); hw->adapter_state = HNS3_NIC_CONFIGURED; } hns3_rx_scattered_reset(dev); rte_eal_alarm_cancel(hns3_service_handler, dev); hns3_stop_report_lse(dev); rte_spinlock_unlock(&hw->lock); return 0; } static int hns3_dev_close(struct rte_eth_dev *eth_dev) { struct hns3_adapter *hns = eth_dev->data->dev_private; struct hns3_hw *hw = &hns->hw; int ret = 0; if (rte_eal_process_type() != RTE_PROC_PRIMARY) { hns3_mp_uninit(eth_dev); return 0; } if (hw->adapter_state == HNS3_NIC_STARTED) ret = hns3_dev_stop(eth_dev); hw->adapter_state = HNS3_NIC_CLOSING; hns3_reset_abort(hns); hw->adapter_state = HNS3_NIC_CLOSED; hns3_configure_all_mc_mac_addr(hns, true); hns3_remove_all_vlan_table(hns); hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0); hns3_uninit_pf(eth_dev); hns3_free_all_queues(eth_dev); rte_free(hw->reset.wait_data); hns3_mp_uninit(eth_dev); hns3_warn(hw, "Close port %u finished", hw->data->port_id); return ret; } static void hns3_get_autoneg_rxtx_pause_copper(struct hns3_hw *hw, bool *rx_pause, bool *tx_pause) { struct hns3_mac *mac = &hw->mac; uint32_t advertising = mac->advertising; uint32_t lp_advertising = mac->lp_advertising; *rx_pause = false; *tx_pause = false; if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) { *rx_pause = true; *tx_pause = true; } else if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_ASYM_PAUSE_BIT) { if (advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) *rx_pause = true; else if (lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) *tx_pause = true; } } static enum hns3_fc_mode hns3_get_autoneg_fc_mode(struct hns3_hw *hw) { enum hns3_fc_mode current_mode; bool rx_pause = false; bool tx_pause = false; switch (hw->mac.media_type) { case HNS3_MEDIA_TYPE_COPPER: hns3_get_autoneg_rxtx_pause_copper(hw, &rx_pause, &tx_pause); break; /* * Flow control auto-negotiation is not supported for fiber and * backplane media type. */ case HNS3_MEDIA_TYPE_FIBER: case HNS3_MEDIA_TYPE_BACKPLANE: hns3_err(hw, "autoneg FC mode can't be obtained, but flow control auto-negotiation is enabled."); current_mode = hw->requested_fc_mode; goto out; default: hns3_err(hw, "autoneg FC mode can't be obtained for unknown media type(%u).", hw->mac.media_type); current_mode = HNS3_FC_NONE; goto out; } if (rx_pause && tx_pause) current_mode = HNS3_FC_FULL; else if (rx_pause) current_mode = HNS3_FC_RX_PAUSE; else if (tx_pause) current_mode = HNS3_FC_TX_PAUSE; else current_mode = HNS3_FC_NONE; out: return current_mode; } static enum hns3_fc_mode hns3_get_current_fc_mode(struct rte_eth_dev *dev) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); struct hns3_mac *mac = &hw->mac; /* * When the flow control mode is obtained, the device may not complete * auto-negotiation. It is necessary to wait for link establishment. */ (void)hns3_dev_link_update(dev, 1); /* * If the link auto-negotiation of the nic is disabled, or the flow * control auto-negotiation is not supported, the forced flow control * mode is used. */ if (mac->link_autoneg == 0 || !pf->support_fc_autoneg) return hw->requested_fc_mode; return hns3_get_autoneg_fc_mode(hw); } static int hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); enum hns3_fc_mode current_mode; current_mode = hns3_get_current_fc_mode(dev); switch (current_mode) { case HNS3_FC_FULL: fc_conf->mode = RTE_ETH_FC_FULL; break; case HNS3_FC_TX_PAUSE: fc_conf->mode = RTE_ETH_FC_TX_PAUSE; break; case HNS3_FC_RX_PAUSE: fc_conf->mode = RTE_ETH_FC_RX_PAUSE; break; case HNS3_FC_NONE: default: fc_conf->mode = RTE_ETH_FC_NONE; break; } fc_conf->pause_time = pf->pause_time; fc_conf->autoneg = pf->support_fc_autoneg ? hw->mac.link_autoneg : 0; return 0; } static int hns3_check_fc_autoneg_valid(struct hns3_hw *hw, uint8_t autoneg) { struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw); if (!pf->support_fc_autoneg) { if (autoneg != 0) { hns3_err(hw, "unsupported fc auto-negotiation setting."); return -EOPNOTSUPP; } /* * Flow control auto-negotiation of the NIC is not supported, * but other auto-negotiation features may be supported. */ if (autoneg != hw->mac.link_autoneg) { hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to disable autoneg!"); return -EOPNOTSUPP; } return 0; } /* * If flow control auto-negotiation of the NIC is supported, all * auto-negotiation features are supported. */ if (autoneg != hw->mac.link_autoneg) { hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to change autoneg!"); return -EOPNOTSUPP; } return 0; } static int hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); int ret; if (fc_conf->high_water || fc_conf->low_water || fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) { hns3_err(hw, "Unsupported flow control settings specified, " "high_water(%u), low_water(%u), send_xon(%u) and " "mac_ctrl_frame_fwd(%u) must be set to '0'", fc_conf->high_water, fc_conf->low_water, fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd); return -EINVAL; } ret = hns3_check_fc_autoneg_valid(hw, fc_conf->autoneg); if (ret) return ret; if (!fc_conf->pause_time) { hns3_err(hw, "Invalid pause time %u setting.", fc_conf->pause_time); return -EINVAL; } if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE || hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) { hns3_err(hw, "PFC is enabled. Cannot set MAC pause. " "current_fc_status = %d", hw->current_fc_status); return -EOPNOTSUPP; } if (hw->num_tc > 1 && !pf->support_multi_tc_pause) { hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported."); return -EOPNOTSUPP; } rte_spinlock_lock(&hw->lock); ret = hns3_fc_enable(dev, fc_conf); rte_spinlock_unlock(&hw->lock); return ret; } static int hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_pfc_conf *pfc_conf) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); int ret; if (!hns3_dev_get_support(hw, DCB)) { hns3_err(hw, "This port does not support dcb configurations."); return -EOPNOTSUPP; } if (pfc_conf->fc.high_water || pfc_conf->fc.low_water || pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) { hns3_err(hw, "Unsupported flow control settings specified, " "high_water(%u), low_water(%u), send_xon(%u) and " "mac_ctrl_frame_fwd(%u) must be set to '0'", pfc_conf->fc.high_water, pfc_conf->fc.low_water, pfc_conf->fc.send_xon, pfc_conf->fc.mac_ctrl_frame_fwd); return -EINVAL; } if (pfc_conf->fc.autoneg) { hns3_err(hw, "Unsupported fc auto-negotiation setting."); return -EINVAL; } if (pfc_conf->fc.pause_time == 0) { hns3_err(hw, "Invalid pause time %u setting.", pfc_conf->fc.pause_time); return -EINVAL; } if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE || hw->current_fc_status == HNS3_FC_STATUS_PFC)) { hns3_err(hw, "MAC pause is enabled. Cannot set PFC." "current_fc_status = %d", hw->current_fc_status); return -EOPNOTSUPP; } rte_spinlock_lock(&hw->lock); ret = hns3_dcb_pfc_enable(dev, pfc_conf); rte_spinlock_unlock(&hw->lock); return ret; } static int hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode; int i; rte_spinlock_lock(&hw->lock); if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) dcb_info->nb_tcs = pf->local_max_tc; else dcb_info->nb_tcs = 1; for (i = 0; i < HNS3_MAX_USER_PRIO; i++) dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i]; for (i = 0; i < dcb_info->nb_tcs; i++) dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i]; for (i = 0; i < hw->num_tc; i++) { dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i; dcb_info->tc_queue.tc_txq[0][i].base = hw->tc_queue[i].tqp_offset; dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size; dcb_info->tc_queue.tc_txq[0][i].nb_queue = hw->tc_queue[i].tqp_count; } rte_spinlock_unlock(&hw->lock); return 0; } static int hns3_reinit_dev(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; int ret; ret = hns3_cmd_init(hw); if (ret) { hns3_err(hw, "Failed to init cmd: %d", ret); return ret; } ret = hns3_init_hardware(hns); if (ret) { hns3_err(hw, "Failed to init hardware: %d", ret); return ret; } ret = hns3_reset_all_tqps(hns); if (ret) { hns3_err(hw, "Failed to reset all queues: %d", ret); return ret; } ret = hns3_enable_hw_error_intr(hns, true); if (ret) { hns3_err(hw, "fail to enable hw error interrupts: %d", ret); return ret; } hns3_info(hw, "Reset done, driver initialization finished."); return 0; } static bool is_pf_reset_done(struct hns3_hw *hw) { uint32_t val, reg, reg_bit; switch (hw->reset.level) { case HNS3_IMP_RESET: reg = HNS3_GLOBAL_RESET_REG; reg_bit = HNS3_IMP_RESET_BIT; break; case HNS3_GLOBAL_RESET: reg = HNS3_GLOBAL_RESET_REG; reg_bit = HNS3_GLOBAL_RESET_BIT; break; case HNS3_FUNC_RESET: reg = HNS3_FUN_RST_ING; reg_bit = HNS3_FUN_RST_ING_B; break; case HNS3_FLR_RESET: default: hns3_err(hw, "Wait for unsupported reset level: %d", hw->reset.level); return true; } val = hns3_read_dev(hw, reg); if (hns3_get_bit(val, reg_bit)) return false; else return true; } bool hns3_is_reset_pending(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; enum hns3_reset_level reset; hns3_check_event_cause(hns, NULL); reset = hns3_get_reset_level(hns, &hw->reset.pending); if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) { hns3_warn(hw, "High level reset %d is pending", reset); return true; } reset = hns3_get_reset_level(hns, &hw->reset.request); if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) { hns3_warn(hw, "High level reset %d is request", reset); return true; } return false; } static int hns3_wait_hardware_ready(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; struct hns3_wait_data *wait_data = hw->reset.wait_data; struct timeval tv; if (wait_data->result == HNS3_WAIT_SUCCESS) return 0; else if (wait_data->result == HNS3_WAIT_TIMEOUT) { hns3_clock_gettime(&tv); hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld", tv.tv_sec, tv.tv_usec); return -ETIME; } else if (wait_data->result == HNS3_WAIT_REQUEST) return -EAGAIN; wait_data->hns = hns; wait_data->check_completion = is_pf_reset_done; wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT * HNS3_RESET_WAIT_MS + hns3_clock_gettime_ms(); wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC; wait_data->count = HNS3_RESET_WAIT_CNT; wait_data->result = HNS3_WAIT_REQUEST; rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data); return -EAGAIN; } static int hns3_func_reset_cmd(struct hns3_hw *hw, int func_id) { struct hns3_cmd_desc desc; struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false); hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1); req->fun_reset_vfid = func_id; return hns3_cmd_send(hw, &desc, 1); } static int hns3_imp_reset_cmd(struct hns3_hw *hw) { struct hns3_cmd_desc desc; hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false); desc.data[0] = 0xeedd; return hns3_cmd_send(hw, &desc, 1); } static void hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level) { struct hns3_hw *hw = &hns->hw; struct timeval tv; uint32_t val; hns3_clock_gettime(&tv); if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) || hns3_read_dev(hw, HNS3_FUN_RST_ING)) { hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld", tv.tv_sec, tv.tv_usec); return; } switch (reset_level) { case HNS3_IMP_RESET: hns3_imp_reset_cmd(hw); hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld", tv.tv_sec, tv.tv_usec); break; case HNS3_GLOBAL_RESET: val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG); hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1); hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val); hns3_warn(hw, "Global Reset requested time=%ld.%.6ld", tv.tv_sec, tv.tv_usec); break; case HNS3_FUNC_RESET: hns3_warn(hw, "PF Reset requested time=%ld.%.6ld", tv.tv_sec, tv.tv_usec); /* schedule again to check later */ hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending); hns3_schedule_reset(hns); break; default: hns3_warn(hw, "Unsupported reset level: %d", reset_level); return; } hns3_atomic_clear_bit(reset_level, &hw->reset.request); } static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels) { struct hns3_hw *hw = &hns->hw; enum hns3_reset_level reset_level = HNS3_NONE_RESET; /* Return the highest priority reset level amongst all */ if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels)) reset_level = HNS3_IMP_RESET; else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels)) reset_level = HNS3_GLOBAL_RESET; else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels)) reset_level = HNS3_FUNC_RESET; else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels)) reset_level = HNS3_FLR_RESET; if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level) return HNS3_NONE_RESET; return reset_level; } static void hns3_record_imp_error(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; uint32_t reg_val; reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG); if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) { hns3_warn(hw, "Detected IMP RD poison!"); hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0); hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val); } if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) { hns3_warn(hw, "Detected IMP CMDQ error!"); hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0); hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val); } } static int hns3_prepare_reset(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; uint32_t reg_val; int ret; switch (hw->reset.level) { case HNS3_FUNC_RESET: ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID); if (ret) return ret; /* * After performaning pf reset, it is not necessary to do the * mailbox handling or send any command to firmware, because * any mailbox handling or command to firmware is only valid * after hns3_cmd_init is called. */ __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED); hw->reset.stats.request_cnt++; break; case HNS3_IMP_RESET: hns3_record_imp_error(hns); reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG); hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val | BIT(HNS3_VECTOR0_IMP_RESET_INT_B)); break; default: break; } return 0; } static int hns3_set_rst_done(struct hns3_hw *hw) { struct hns3_pf_rst_done_cmd *req; struct hns3_cmd_desc desc; req = (struct hns3_pf_rst_done_cmd *)desc.data; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false); req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT; return hns3_cmd_send(hw, &desc, 1); } static int hns3_stop_service(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; struct rte_eth_dev *eth_dev; eth_dev = &rte_eth_devices[hw->data->port_id]; hw->mac.link_status = RTE_ETH_LINK_DOWN; if (hw->adapter_state == HNS3_NIC_STARTED) { rte_eal_alarm_cancel(hns3_service_handler, eth_dev); hns3_update_linkstatus_and_event(hw, false); } hns3_set_rxtx_function(eth_dev); rte_wmb(); /* Disable datapath on secondary process. */ hns3_mp_req_stop_rxtx(eth_dev); rte_delay_ms(hw->cfg_max_queues); rte_spinlock_lock(&hw->lock); if (hns->hw.adapter_state == HNS3_NIC_STARTED || hw->adapter_state == HNS3_NIC_STOPPING) { hns3_enable_all_queues(hw, false); hns3_do_stop(hns); hw->reset.mbuf_deferred_free = true; } else hw->reset.mbuf_deferred_free = false; /* * It is cumbersome for hardware to pick-and-choose entries for deletion * from table space. Hence, for function reset software intervention is * required to delete the entries */ if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) hns3_configure_all_mc_mac_addr(hns, true); rte_spinlock_unlock(&hw->lock); return 0; } static int hns3_start_service(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; struct rte_eth_dev *eth_dev; if (hw->reset.level == HNS3_IMP_RESET || hw->reset.level == HNS3_GLOBAL_RESET) hns3_set_rst_done(hw); eth_dev = &rte_eth_devices[hw->data->port_id]; hns3_set_rxtx_function(eth_dev); hns3_mp_req_start_rxtx(eth_dev); if (hw->adapter_state == HNS3_NIC_STARTED) { /* * This API parent function already hold the hns3_hw.lock, the * hns3_service_handler may report lse, in bonding application * it will call driver's ops which may acquire the hns3_hw.lock * again, thus lead to deadlock. * We defer calls hns3_service_handler to avoid the deadlock. */ rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL, hns3_service_handler, eth_dev); /* Enable interrupt of all rx queues before enabling queues */ hns3_dev_all_rx_queue_intr_enable(hw, true); /* * Enable state of each rxq and txq will be recovered after * reset, so we need to restore them before enable all tqps; */ hns3_restore_tqp_enable_state(hw); /* * When finished the initialization, enable queues to receive * and transmit packets. */ hns3_enable_all_queues(hw, true); } return 0; } static int hns3_restore_conf(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; int ret; ret = hns3_configure_all_mac_addr(hns, false); if (ret) return ret; ret = hns3_configure_all_mc_mac_addr(hns, false); if (ret) goto err_mc_mac; ret = hns3_dev_promisc_restore(hns); if (ret) goto err_promisc; ret = hns3_restore_vlan_table(hns); if (ret) goto err_promisc; ret = hns3_restore_vlan_conf(hns); if (ret) goto err_promisc; ret = hns3_restore_all_fdir_filter(hns); if (ret) goto err_promisc; ret = hns3_restore_ptp(hns); if (ret) goto err_promisc; ret = hns3_restore_rx_interrupt(hw); if (ret) goto err_promisc; ret = hns3_restore_gro_conf(hw); if (ret) goto err_promisc; ret = hns3_restore_fec(hw); if (ret) goto err_promisc; if (hns->hw.adapter_state == HNS3_NIC_STARTED) { ret = hns3_do_start(hns, false); if (ret) goto err_promisc; hns3_info(hw, "hns3 dev restart successful!"); } else if (hw->adapter_state == HNS3_NIC_STOPPING) hw->adapter_state = HNS3_NIC_CONFIGURED; return 0; err_promisc: hns3_configure_all_mc_mac_addr(hns, true); err_mc_mac: hns3_configure_all_mac_addr(hns, true); return ret; } static void hns3_reset_service(void *param) { struct hns3_adapter *hns = (struct hns3_adapter *)param; struct hns3_hw *hw = &hns->hw; enum hns3_reset_level reset_level; struct timeval tv_delta; struct timeval tv_start; struct timeval tv; uint64_t msec; int ret; /* * The interrupt is not triggered within the delay time. * The interrupt may have been lost. It is necessary to handle * the interrupt to recover from the error. */ if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) == SCHEDULE_DEFERRED) { __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED, __ATOMIC_RELAXED); hns3_err(hw, "Handling interrupts in delayed tasks"); hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]); reset_level = hns3_get_reset_level(hns, &hw->reset.pending); if (reset_level == HNS3_NONE_RESET) { hns3_err(hw, "No reset level is set, try IMP reset"); hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending); } } __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED); /* * Check if there is any ongoing reset in the hardware. This status can * be checked from reset_pending. If there is then, we need to wait for * hardware to complete reset. * a. If we are able to figure out in reasonable time that hardware * has fully resetted then, we can proceed with driver, client * reset. * b. else, we can come back later to check this status so re-sched * now. */ reset_level = hns3_get_reset_level(hns, &hw->reset.pending); if (reset_level != HNS3_NONE_RESET) { hns3_clock_gettime(&tv_start); ret = hns3_reset_process(hns, reset_level); hns3_clock_gettime(&tv); timersub(&tv, &tv_start, &tv_delta); msec = hns3_clock_calctime_ms(&tv_delta); if (msec > HNS3_RESET_PROCESS_MS) hns3_err(hw, "%d handle long time delta %" PRIu64 " ms time=%ld.%.6ld", hw->reset.level, msec, tv.tv_sec, tv.tv_usec); if (ret == -EAGAIN) return; } /* Check if we got any *new* reset requests to be honored */ reset_level = hns3_get_reset_level(hns, &hw->reset.request); if (reset_level != HNS3_NONE_RESET) hns3_msix_process(hns, reset_level); } static unsigned int hns3_get_speed_capa_num(uint16_t device_id) { unsigned int num; switch (device_id) { case HNS3_DEV_ID_25GE: case HNS3_DEV_ID_25GE_RDMA: num = 2; break; case HNS3_DEV_ID_100G_RDMA_MACSEC: case HNS3_DEV_ID_200G_RDMA: num = 1; break; default: num = 0; break; } return num; } static int hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa, uint16_t device_id) { switch (device_id) { case HNS3_DEV_ID_25GE: /* fallthrough */ case HNS3_DEV_ID_25GE_RDMA: speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed; speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa; /* In HNS3 device, the 25G NIC is compatible with 10G rate */ speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed; speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa; break; case HNS3_DEV_ID_100G_RDMA_MACSEC: speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed; speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa; break; case HNS3_DEV_ID_200G_RDMA: speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed; speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa; break; default: return -ENOTSUP; } return 0; } static int hns3_fec_get_capability(struct rte_eth_dev *dev, struct rte_eth_fec_capa *speed_fec_capa, unsigned int num) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); uint16_t device_id = pci_dev->id.device_id; unsigned int capa_num; int ret; capa_num = hns3_get_speed_capa_num(device_id); if (capa_num == 0) { hns3_err(hw, "device(0x%x) is not supported by hns3 PMD", device_id); return -ENOTSUP; } if (speed_fec_capa == NULL || num < capa_num) return capa_num; ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id); if (ret) return -ENOTSUP; return capa_num; } static int get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state) { struct hns3_config_fec_cmd *req; struct hns3_cmd_desc desc; int ret; /* * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported * in device of link speed * below 10 Gbps. */ if (hw->mac.link_speed < RTE_ETH_SPEED_NUM_10G) { *state = 0; return 0; } hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true); req = (struct hns3_config_fec_cmd *)desc.data; ret = hns3_cmd_send(hw, &desc, 1); if (ret) { hns3_err(hw, "get current fec auto state failed, ret = %d", ret); return ret; } *state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B); return 0; } static int hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa) { struct hns3_sfp_info_cmd *resp; uint32_t tmp_fec_capa; uint8_t auto_state; struct hns3_cmd_desc desc; int ret; /* * If link is down and AUTO is enabled, AUTO is returned, otherwise, * configured FEC mode is returned. * If link is up, current FEC mode is returned. */ if (hw->mac.link_status == RTE_ETH_LINK_DOWN) { ret = get_current_fec_auto_state(hw, &auto_state); if (ret) return ret; if (auto_state == 0x1) { *fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO); return 0; } } hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true); resp = (struct hns3_sfp_info_cmd *)desc.data; resp->query_type = HNS3_ACTIVE_QUERY; ret = hns3_cmd_send(hw, &desc, 1); if (ret == -EOPNOTSUPP) { hns3_err(hw, "IMP do not support get FEC, ret = %d", ret); return ret; } else if (ret) { hns3_err(hw, "get FEC failed, ret = %d", ret); return ret; } /* * FEC mode order defined in hns3 hardware is inconsistent with * that defined in the ethdev library. So the sequence needs * to be converted. */ switch (resp->active_fec) { case HNS3_HW_FEC_MODE_NOFEC: tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC); break; case HNS3_HW_FEC_MODE_BASER: tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER); break; case HNS3_HW_FEC_MODE_RS: tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS); break; default: tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC); break; } *fec_capa = tmp_fec_capa; return 0; } static int hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); return hns3_fec_get_internal(hw, fec_capa); } static int hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode) { struct hns3_config_fec_cmd *req; struct hns3_cmd_desc desc; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false); req = (struct hns3_config_fec_cmd *)desc.data; switch (mode) { case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC): hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M, HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF); break; case RTE_ETH_FEC_MODE_CAPA_MASK(BASER): hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M, HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER); break; case RTE_ETH_FEC_MODE_CAPA_MASK(RS): hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M, HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS); break; case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO): hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1); break; default: return 0; } ret = hns3_cmd_send(hw, &desc, 1); if (ret) hns3_err(hw, "set fec mode failed, ret = %d", ret); return ret; } static uint32_t get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa) { struct hns3_mac *mac = &hw->mac; uint32_t cur_capa; switch (mac->link_speed) { case RTE_ETH_SPEED_NUM_10G: cur_capa = fec_capa[1].capa; break; case RTE_ETH_SPEED_NUM_25G: case RTE_ETH_SPEED_NUM_100G: case RTE_ETH_SPEED_NUM_200G: cur_capa = fec_capa[0].capa; break; default: cur_capa = 0; break; } return cur_capa; } static bool is_fec_mode_one_bit_set(uint32_t mode) { int cnt = 0; uint8_t i; for (i = 0; i < sizeof(mode); i++) if (mode >> i & 0x1) cnt++; return cnt == 1 ? true : false; } static int hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode) { #define FEC_CAPA_NUM 2 struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns); struct hns3_pf *pf = &hns->pf; struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM]; uint32_t cur_capa; uint32_t num = FEC_CAPA_NUM; int ret; ret = hns3_fec_get_capability(dev, fec_capa, num); if (ret < 0) return ret; /* HNS3 PMD only support one bit set mode, e.g. 0x1, 0x4 */ if (!is_fec_mode_one_bit_set(mode)) { hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD, " "FEC mode should be only one bit set", mode); return -EINVAL; } /* * Check whether the configured mode is within the FEC capability. * If not, the configured mode will not be supported. */ cur_capa = get_current_speed_fec_cap(hw, fec_capa); if (!(cur_capa & mode)) { hns3_err(hw, "unsupported FEC mode = 0x%x", mode); return -EINVAL; } rte_spinlock_lock(&hw->lock); ret = hns3_set_fec_hw(hw, mode); if (ret) { rte_spinlock_unlock(&hw->lock); return ret; } pf->fec_mode = mode; rte_spinlock_unlock(&hw->lock); return 0; } static int hns3_restore_fec(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; uint32_t mode = pf->fec_mode; int ret; ret = hns3_set_fec_hw(hw, mode); if (ret) hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d", mode, ret); return ret; } static int hns3_query_dev_fec_info(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns); int ret; ret = hns3_fec_get_internal(hw, &pf->fec_mode); if (ret) hns3_err(hw, "query device FEC info failed, ret = %d", ret); return ret; } static bool hns3_optical_module_existed(struct hns3_hw *hw) { struct hns3_cmd_desc desc; bool existed; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true); ret = hns3_cmd_send(hw, &desc, 1); if (ret) { hns3_err(hw, "fail to get optical module exist state, ret = %d.\n", ret); return false; } existed = !!desc.data[0]; return existed; } static int hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset, uint32_t len, uint8_t *data) { #define HNS3_SFP_INFO_CMD_NUM 6 #define HNS3_SFP_INFO_MAX_LEN \ (HNS3_SFP_INFO_BD0_LEN + \ (HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN) struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM]; struct hns3_sfp_info_bd0_cmd *sfp_info_bd0; uint16_t read_len; uint16_t copy_len; int ret; int i; for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) { hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM, true); if (i < HNS3_SFP_INFO_CMD_NUM - 1) desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT); } sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data; sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset); read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN); sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len); ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM); if (ret) { hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n", ret); return ret; } /* The data format in BD0 is different with the others. */ copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN); memcpy(data, sfp_info_bd0->data, copy_len); read_len = copy_len; for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) { if (read_len >= len) break; copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN); memcpy(data + read_len, desc[i].data, copy_len); read_len += copy_len; } return (int)read_len; } static int hns3_get_module_eeprom(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *info) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns); uint32_t offset = info->offset; uint32_t len = info->length; uint8_t *data = info->data; uint32_t read_len = 0; if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER) return -ENOTSUP; if (!hns3_optical_module_existed(hw)) { hns3_err(hw, "fail to read module EEPROM: no module is connected.\n"); return -EIO; } while (read_len < len) { int ret; ret = hns3_get_module_eeprom_data(hw, offset + read_len, len - read_len, data + read_len); if (ret < 0) return -EIO; read_len += ret; } return 0; } static int hns3_get_module_info(struct rte_eth_dev *dev, struct rte_eth_dev_module_info *modinfo) { #define HNS3_SFF8024_ID_SFP 0x03 #define HNS3_SFF8024_ID_QSFP_8438 0x0c #define HNS3_SFF8024_ID_QSFP_8436_8636 0x0d #define HNS3_SFF8024_ID_QSFP28_8636 0x11 #define HNS3_SFF_8636_V1_3 0x03 struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns); struct rte_dev_eeprom_info info; struct hns3_sfp_type sfp_type; int ret; memset(&sfp_type, 0, sizeof(sfp_type)); memset(&info, 0, sizeof(info)); info.data = (uint8_t *)&sfp_type; info.length = sizeof(sfp_type); ret = hns3_get_module_eeprom(dev, &info); if (ret) return ret; switch (sfp_type.type) { case HNS3_SFF8024_ID_SFP: modinfo->type = RTE_ETH_MODULE_SFF_8472; modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN; break; case HNS3_SFF8024_ID_QSFP_8438: modinfo->type = RTE_ETH_MODULE_SFF_8436; modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN; break; case HNS3_SFF8024_ID_QSFP_8436_8636: if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) { modinfo->type = RTE_ETH_MODULE_SFF_8436; modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN; } else { modinfo->type = RTE_ETH_MODULE_SFF_8636; modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN; } break; case HNS3_SFF8024_ID_QSFP28_8636: modinfo->type = RTE_ETH_MODULE_SFF_8636; modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN; break; default: hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n", sfp_type.type, sfp_type.ext_type); return -EINVAL; } return 0; } static const struct eth_dev_ops hns3_eth_dev_ops = { .dev_configure = hns3_dev_configure, .dev_start = hns3_dev_start, .dev_stop = hns3_dev_stop, .dev_close = hns3_dev_close, .promiscuous_enable = hns3_dev_promiscuous_enable, .promiscuous_disable = hns3_dev_promiscuous_disable, .allmulticast_enable = hns3_dev_allmulticast_enable, .allmulticast_disable = hns3_dev_allmulticast_disable, .mtu_set = hns3_dev_mtu_set, .stats_get = hns3_stats_get, .stats_reset = hns3_stats_reset, .xstats_get = hns3_dev_xstats_get, .xstats_get_names = hns3_dev_xstats_get_names, .xstats_reset = hns3_dev_xstats_reset, .xstats_get_by_id = hns3_dev_xstats_get_by_id, .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id, .dev_infos_get = hns3_dev_infos_get, .fw_version_get = hns3_fw_version_get, .rx_queue_setup = hns3_rx_queue_setup, .tx_queue_setup = hns3_tx_queue_setup, .rx_queue_release = hns3_dev_rx_queue_release, .tx_queue_release = hns3_dev_tx_queue_release, .rx_queue_start = hns3_dev_rx_queue_start, .rx_queue_stop = hns3_dev_rx_queue_stop, .tx_queue_start = hns3_dev_tx_queue_start, .tx_queue_stop = hns3_dev_tx_queue_stop, .rx_queue_intr_enable = hns3_dev_rx_queue_intr_enable, .rx_queue_intr_disable = hns3_dev_rx_queue_intr_disable, .rxq_info_get = hns3_rxq_info_get, .txq_info_get = hns3_txq_info_get, .rx_burst_mode_get = hns3_rx_burst_mode_get, .tx_burst_mode_get = hns3_tx_burst_mode_get, .flow_ctrl_get = hns3_flow_ctrl_get, .flow_ctrl_set = hns3_flow_ctrl_set, .priority_flow_ctrl_set = hns3_priority_flow_ctrl_set, .mac_addr_add = hns3_add_mac_addr, .mac_addr_remove = hns3_remove_mac_addr, .mac_addr_set = hns3_set_default_mac_addr, .set_mc_addr_list = hns3_set_mc_mac_addr_list, .link_update = hns3_dev_link_update, .dev_set_link_up = hns3_dev_set_link_up, .dev_set_link_down = hns3_dev_set_link_down, .rss_hash_update = hns3_dev_rss_hash_update, .rss_hash_conf_get = hns3_dev_rss_hash_conf_get, .reta_update = hns3_dev_rss_reta_update, .reta_query = hns3_dev_rss_reta_query, .flow_ops_get = hns3_dev_flow_ops_get, .vlan_filter_set = hns3_vlan_filter_set, .vlan_tpid_set = hns3_vlan_tpid_set, .vlan_offload_set = hns3_vlan_offload_set, .vlan_pvid_set = hns3_vlan_pvid_set, .get_reg = hns3_get_regs, .get_module_info = hns3_get_module_info, .get_module_eeprom = hns3_get_module_eeprom, .get_dcb_info = hns3_get_dcb_info, .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get, .fec_get_capability = hns3_fec_get_capability, .fec_get = hns3_fec_get, .fec_set = hns3_fec_set, .tm_ops_get = hns3_tm_ops_get, .tx_done_cleanup = hns3_tx_done_cleanup, .timesync_enable = hns3_timesync_enable, .timesync_disable = hns3_timesync_disable, .timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp, .timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp, .timesync_adjust_time = hns3_timesync_adjust_time, .timesync_read_time = hns3_timesync_read_time, .timesync_write_time = hns3_timesync_write_time, }; static const struct hns3_reset_ops hns3_reset_ops = { .reset_service = hns3_reset_service, .stop_service = hns3_stop_service, .prepare_reset = hns3_prepare_reset, .wait_hardware_ready = hns3_wait_hardware_ready, .reinit_dev = hns3_reinit_dev, .restore_conf = hns3_restore_conf, .start_service = hns3_start_service, }; static void hns3_init_hw_ops(struct hns3_hw *hw) { hw->ops.add_mc_mac_addr = hns3_add_mc_mac_addr; hw->ops.del_mc_mac_addr = hns3_remove_mc_mac_addr; hw->ops.add_uc_mac_addr = hns3_add_uc_mac_addr; hw->ops.del_uc_mac_addr = hns3_remove_uc_mac_addr; hw->ops.bind_ring_with_vector = hns3_bind_ring_with_vector; } static int hns3_dev_init(struct rte_eth_dev *eth_dev) { struct hns3_adapter *hns = eth_dev->data->dev_private; char mac_str[RTE_ETHER_ADDR_FMT_SIZE]; struct rte_ether_addr *eth_addr; struct hns3_hw *hw = &hns->hw; int ret; PMD_INIT_FUNC_TRACE(); hns3_flow_init(eth_dev); hns3_set_rxtx_function(eth_dev); eth_dev->dev_ops = &hns3_eth_dev_ops; eth_dev->rx_queue_count = hns3_rx_queue_count; ret = hns3_mp_init(eth_dev); if (ret) goto err_mp_init; if (rte_eal_process_type() != RTE_PROC_PRIMARY) { hns3_tx_push_init(eth_dev); return 0; } hw->adapter_state = HNS3_NIC_UNINITIALIZED; hns->is_vf = false; hw->data = eth_dev->data; hns3_parse_devargs(eth_dev); /* * Set default max packet size according to the mtu * default vale in DPDK frame. */ hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD; ret = hns3_reset_init(hw); if (ret) goto err_init_reset; hw->reset.ops = &hns3_reset_ops; hns3_init_hw_ops(hw); ret = hns3_init_pf(eth_dev); if (ret) { PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret); goto err_init_pf; } /* Allocate memory for storing MAC addresses */ eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac", sizeof(struct rte_ether_addr) * HNS3_UC_MACADDR_NUM, 0); if (eth_dev->data->mac_addrs == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed " "to store MAC addresses", sizeof(struct rte_ether_addr) * HNS3_UC_MACADDR_NUM); ret = -ENOMEM; goto err_rte_zmalloc; } eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr; if (!rte_is_valid_assigned_ether_addr(eth_addr)) { rte_eth_random_addr(hw->mac.mac_addr); hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, (struct rte_ether_addr *)hw->mac.mac_addr); hns3_warn(hw, "default mac_addr from firmware is an invalid " "unicast address, using random MAC address %s", mac_str); } rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr, ð_dev->data->mac_addrs[0]); hw->adapter_state = HNS3_NIC_INITIALIZED; if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) == SCHEDULE_PENDING) { hns3_err(hw, "Reschedule reset service after dev_init"); hns3_schedule_reset(hns); } else { /* IMP will wait ready flag before reset */ hns3_notify_reset_ready(hw, false); } hns3_info(hw, "hns3 dev initialization successful!"); return 0; err_rte_zmalloc: hns3_uninit_pf(eth_dev); err_init_pf: rte_free(hw->reset.wait_data); err_init_reset: hns3_mp_uninit(eth_dev); err_mp_init: eth_dev->dev_ops = NULL; eth_dev->rx_pkt_burst = NULL; eth_dev->rx_descriptor_status = NULL; eth_dev->tx_pkt_burst = NULL; eth_dev->tx_pkt_prepare = NULL; eth_dev->tx_descriptor_status = NULL; return ret; } static int hns3_dev_uninit(struct rte_eth_dev *eth_dev) { struct hns3_adapter *hns = eth_dev->data->dev_private; struct hns3_hw *hw = &hns->hw; PMD_INIT_FUNC_TRACE(); if (rte_eal_process_type() != RTE_PROC_PRIMARY) { hns3_mp_uninit(eth_dev); return 0; } if (hw->adapter_state < HNS3_NIC_CLOSING) hns3_dev_close(eth_dev); hw->adapter_state = HNS3_NIC_REMOVED; return 0; } static int eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct hns3_adapter), hns3_dev_init); } static int eth_hns3_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit); } static const struct rte_pci_id pci_id_hns3_map[] = { { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) }, { .vendor_id = 0, }, /* sentinel */ }; static struct rte_pci_driver rte_hns3_pmd = { .id_table = pci_id_hns3_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC, .probe = eth_hns3_pci_probe, .remove = eth_hns3_pci_remove, }; RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map); RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci"); RTE_PMD_REGISTER_PARAM_STRING(net_hns3, HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common " HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common " HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> " HNS3_DEVARG_MBX_TIME_LIMIT_MS "= "); RTE_LOG_REGISTER_SUFFIX(hns3_logtype_init, init, NOTICE); RTE_LOG_REGISTER_SUFFIX(hns3_logtype_driver, driver, NOTICE);