/* SPDX-License-Identifier: BSD-3-Clause * Copyright(C) 2021 HiSilicon Limited */ #include #include #include #include #include "hns3_common.h" #include "hns3_logs.h" #include "hns3_regs.h" #include "hns3_rxtx.h" int hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version, size_t fw_size) { struct hns3_adapter *hns = eth_dev->data->dev_private; struct hns3_hw *hw = &hns->hw; uint32_t version = hw->fw_version; int ret; ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu", hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M, HNS3_FW_VERSION_BYTE3_S), hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M, HNS3_FW_VERSION_BYTE2_S), hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M, HNS3_FW_VERSION_BYTE1_S), hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M, HNS3_FW_VERSION_BYTE0_S)); if (ret < 0) return -EINVAL; ret += 1; /* add the size of '\0' */ if (fw_size < (size_t)ret) return ret; else return 0; } int hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info) { struct hns3_adapter *hns = eth_dev->data->dev_private; struct hns3_hw *hw = &hns->hw; uint16_t queue_num = hw->tqps_num; /* * In interrupt mode, 'max_rx_queues' is set based on the number of * MSI-X interrupt resources of the hardware. */ if (hw->data->dev_conf.intr_conf.rxq == 1) queue_num = hw->intr_tqps_num; info->max_rx_queues = queue_num; info->max_tx_queues = hw->tqps_num; info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */ info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE; info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD; info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE; info->rx_offload_capa = (RTE_ETH_RX_OFFLOAD_IPV4_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM | RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_SCTP_CKSUM | RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM | RTE_ETH_RX_OFFLOAD_OUTER_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_SCATTER | RTE_ETH_RX_OFFLOAD_VLAN_STRIP | RTE_ETH_RX_OFFLOAD_VLAN_FILTER | RTE_ETH_RX_OFFLOAD_RSS_HASH | RTE_ETH_RX_OFFLOAD_TCP_LRO); info->tx_offload_capa = (RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM | RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM | RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_SCTP_CKSUM | RTE_ETH_TX_OFFLOAD_MULTI_SEGS | RTE_ETH_TX_OFFLOAD_TCP_TSO | RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO | RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO | RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO | RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE | RTE_ETH_TX_OFFLOAD_VLAN_INSERT); if (!hw->port_base_vlan_cfg.state) info->tx_offload_capa |= RTE_ETH_TX_OFFLOAD_QINQ_INSERT; if (hns3_dev_get_support(hw, OUTER_UDP_CKSUM)) info->tx_offload_capa |= RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM; if (hns3_dev_get_support(hw, INDEP_TXRX)) info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP; if (hns3_dev_get_support(hw, PTP)) info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_TIMESTAMP; info->rx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = HNS3_MAX_RING_DESC, .nb_min = HNS3_MIN_RING_DESC, .nb_align = HNS3_ALIGN_RING_DESC, }; info->tx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = HNS3_MAX_RING_DESC, .nb_min = HNS3_MIN_RING_DESC, .nb_align = HNS3_ALIGN_RING_DESC, .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT, .nb_mtu_seg_max = hw->max_non_tso_bd_num, }; info->default_rxconf = (struct rte_eth_rxconf) { .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH, /* * If there are no available Rx buffer descriptors, incoming * packets are always dropped by hardware based on hns3 network * engine. */ .rx_drop_en = 1, .offloads = 0, }; info->default_txconf = (struct rte_eth_txconf) { .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH, .offloads = 0, }; info->reta_size = hw->rss_ind_tbl_size; info->hash_key_size = HNS3_RSS_KEY_SIZE; info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT; info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE; info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE; info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM; info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM; info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC; info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC; /* * Next is the PF/VF difference section. */ if (!hns->is_vf) { info->max_mac_addrs = HNS3_UC_MACADDR_NUM; info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_KEEP_CRC; info->speed_capa = hns3_get_speed_capa(hw); } else { info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM; } return 0; } static int hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args) { uint32_t hint = HNS3_IO_FUNC_HINT_NONE; RTE_SET_USED(key); if (strcmp(value, "vec") == 0) hint = HNS3_IO_FUNC_HINT_VEC; else if (strcmp(value, "sve") == 0) hint = HNS3_IO_FUNC_HINT_SVE; else if (strcmp(value, "simple") == 0) hint = HNS3_IO_FUNC_HINT_SIMPLE; else if (strcmp(value, "common") == 0) hint = HNS3_IO_FUNC_HINT_COMMON; /* If the hint is valid then update output parameters */ if (hint != HNS3_IO_FUNC_HINT_NONE) *(uint32_t *)extra_args = hint; return 0; } static const char * hns3_get_io_hint_func_name(uint32_t hint) { switch (hint) { case HNS3_IO_FUNC_HINT_VEC: return "vec"; case HNS3_IO_FUNC_HINT_SVE: return "sve"; case HNS3_IO_FUNC_HINT_SIMPLE: return "simple"; case HNS3_IO_FUNC_HINT_COMMON: return "common"; default: return "none"; } } static int hns3_parse_dev_caps_mask(const char *key, const char *value, void *extra_args) { uint64_t val; RTE_SET_USED(key); val = strtoull(value, NULL, HNS3_CONVERT_TO_HEXADECIMAL); *(uint64_t *)extra_args = val; return 0; } static int hns3_parse_mbx_time_limit(const char *key, const char *value, void *extra_args) { uint32_t val; RTE_SET_USED(key); val = strtoul(value, NULL, HNS3_CONVERT_TO_DECIMAL); /* * 500ms is empirical value in process of mailbox communication. If * the delay value is set to one lower than the empirical value, mailbox * communication may fail. */ if (val > HNS3_MBX_DEF_TIME_LIMIT_MS && val <= UINT16_MAX) *(uint16_t *)extra_args = val; return 0; } void hns3_parse_devargs(struct rte_eth_dev *dev) { uint16_t mbx_time_limit_ms = HNS3_MBX_DEF_TIME_LIMIT_MS; struct hns3_adapter *hns = dev->data->dev_private; uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE; uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE; struct hns3_hw *hw = &hns->hw; uint64_t dev_caps_mask = 0; struct rte_kvargs *kvlist; /* Set default value of runtime config parameters. */ hns->rx_func_hint = HNS3_IO_FUNC_HINT_NONE; hns->tx_func_hint = HNS3_IO_FUNC_HINT_NONE; hns->dev_caps_mask = 0; hns->mbx_time_limit_ms = HNS3_MBX_DEF_TIME_LIMIT_MS; if (dev->device->devargs == NULL) return; kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL); if (!kvlist) return; (void)rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT, &hns3_parse_io_hint_func, &rx_func_hint); (void)rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT, &hns3_parse_io_hint_func, &tx_func_hint); (void)rte_kvargs_process(kvlist, HNS3_DEVARG_DEV_CAPS_MASK, &hns3_parse_dev_caps_mask, &dev_caps_mask); (void)rte_kvargs_process(kvlist, HNS3_DEVARG_MBX_TIME_LIMIT_MS, &hns3_parse_mbx_time_limit, &mbx_time_limit_ms); rte_kvargs_free(kvlist); if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE) hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT, hns3_get_io_hint_func_name(rx_func_hint)); hns->rx_func_hint = rx_func_hint; if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE) hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT, hns3_get_io_hint_func_name(tx_func_hint)); hns->tx_func_hint = tx_func_hint; if (dev_caps_mask != 0) hns3_warn(hw, "parsed %s = 0x%" PRIx64 ".", HNS3_DEVARG_DEV_CAPS_MASK, dev_caps_mask); hns->dev_caps_mask = dev_caps_mask; if (mbx_time_limit_ms != HNS3_MBX_DEF_TIME_LIMIT_MS) hns3_warn(hw, "parsed %s = %u.", HNS3_DEVARG_MBX_TIME_LIMIT_MS, mbx_time_limit_ms); hns->mbx_time_limit_ms = mbx_time_limit_ms; } void hns3_clock_gettime(struct timeval *tv) { #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */ #define CLOCK_TYPE CLOCK_MONOTONIC_RAW #else #define CLOCK_TYPE CLOCK_MONOTONIC #endif #define NSEC_TO_USEC_DIV 1000 struct timespec spec; (void)clock_gettime(CLOCK_TYPE, &spec); tv->tv_sec = spec.tv_sec; tv->tv_usec = spec.tv_nsec / NSEC_TO_USEC_DIV; } uint64_t hns3_clock_calctime_ms(struct timeval *tv) { return (uint64_t)tv->tv_sec * MSEC_PER_SEC + tv->tv_usec / USEC_PER_MSEC; } uint64_t hns3_clock_gettime_ms(void) { struct timeval tv; hns3_clock_gettime(&tv); return hns3_clock_calctime_ms(&tv); } void hns3_ether_format_addr(char *buf, uint16_t size, const struct rte_ether_addr *ether_addr) { (void)snprintf(buf, size, "%02X:**:**:**:%02X:%02X", ether_addr->addr_bytes[0], ether_addr->addr_bytes[4], ether_addr->addr_bytes[5]); } static int hns3_set_mc_addr_chk_param(struct hns3_hw *hw, struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); char mac_str[RTE_ETHER_ADDR_FMT_SIZE]; struct rte_ether_addr *addr; uint16_t mac_addrs_capa; uint32_t i; uint32_t j; if (nb_mc_addr > HNS3_MC_MACADDR_NUM) { hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) " "invalid. valid range: 0~%d", nb_mc_addr, HNS3_MC_MACADDR_NUM); return -EINVAL; } /* Check if input mac addresses are valid */ for (i = 0; i < nb_mc_addr; i++) { addr = &mc_addr_set[i]; if (!rte_is_multicast_ether_addr(addr)) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, addr); hns3_err(hw, "failed to set mc mac addr, addr(%s) invalid.", mac_str); return -EINVAL; } /* Check if there are duplicate addresses */ for (j = i + 1; j < nb_mc_addr; j++) { if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, addr); hns3_err(hw, "failed to set mc mac addr, " "addrs invalid. two same addrs(%s).", mac_str); return -EINVAL; } } /* * Check if there are duplicate addresses between mac_addrs * and mc_addr_set */ mac_addrs_capa = hns->is_vf ? HNS3_VF_UC_MACADDR_NUM : HNS3_UC_MACADDR_NUM; for (j = 0; j < mac_addrs_capa; j++) { if (rte_is_same_ether_addr(addr, &hw->data->mac_addrs[j])) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, addr); hns3_err(hw, "failed to set mc mac addr, " "addrs invalid. addrs(%s) has already " "configured in mac_addr add API", mac_str); return -EINVAL; } } } return 0; } int hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev, struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_ether_addr *addr; int cur_addr_num; int set_addr_num; int num; int ret; int i; /* Check if input parameters are valid */ ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr); if (ret) return ret; rte_spinlock_lock(&hw->lock); cur_addr_num = hw->mc_addrs_num; for (i = 0; i < cur_addr_num; i++) { num = cur_addr_num - i - 1; addr = &hw->mc_addrs[num]; ret = hw->ops.del_mc_mac_addr(hw, addr); if (ret) { rte_spinlock_unlock(&hw->lock); return ret; } hw->mc_addrs_num--; } set_addr_num = (int)nb_mc_addr; for (i = 0; i < set_addr_num; i++) { addr = &mc_addr_set[i]; ret = hw->ops.add_mc_mac_addr(hw, addr); if (ret) { rte_spinlock_unlock(&hw->lock); return ret; } rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]); hw->mc_addrs_num++; } rte_spinlock_unlock(&hw->lock); return 0; } int hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del) { char mac_str[RTE_ETHER_ADDR_FMT_SIZE]; struct hns3_hw *hw = &hns->hw; struct rte_ether_addr *addr; int ret = 0; int i; for (i = 0; i < hw->mc_addrs_num; i++) { addr = &hw->mc_addrs[i]; if (!rte_is_multicast_ether_addr(addr)) continue; if (del) ret = hw->ops.del_mc_mac_addr(hw, addr); else ret = hw->ops.add_mc_mac_addr(hw, addr); if (ret) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, addr); hns3_dbg(hw, "failed to %s mc mac addr: %s ret = %d", del ? "Remove" : "Restore", mac_str, ret); } } return ret; } int hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del) { char mac_str[RTE_ETHER_ADDR_FMT_SIZE]; struct hns3_hw *hw = &hns->hw; struct hns3_hw_ops *ops = &hw->ops; struct rte_ether_addr *addr; uint16_t mac_addrs_capa; int ret = 0; int i; mac_addrs_capa = hns->is_vf ? HNS3_VF_UC_MACADDR_NUM : HNS3_UC_MACADDR_NUM; for (i = 0; i < mac_addrs_capa; i++) { addr = &hw->data->mac_addrs[i]; if (rte_is_zero_ether_addr(addr)) continue; if (rte_is_multicast_ether_addr(addr)) ret = del ? ops->del_mc_mac_addr(hw, addr) : ops->add_mc_mac_addr(hw, addr); else ret = del ? ops->del_uc_mac_addr(hw, addr) : ops->add_uc_mac_addr(hw, addr); if (ret) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, addr); hns3_err(hw, "failed to %s mac addr(%s) index:%d ret = %d.", del ? "remove" : "restore", mac_str, i, ret); } } return ret; } static bool hns3_find_duplicate_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mc_addr) { char mac_str[RTE_ETHER_ADDR_FMT_SIZE]; struct rte_ether_addr *addr; int i; for (i = 0; i < hw->mc_addrs_num; i++) { addr = &hw->mc_addrs[i]; /* Check if there are duplicate addresses in mc_addrs[] */ if (rte_is_same_ether_addr(addr, mc_addr)) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, addr); hns3_err(hw, "failed to add mc mac addr, same addrs" "(%s) is added by the set_mc_mac_addr_list " "API", mac_str); return true; } } return false; } int hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr, __rte_unused uint32_t idx, __rte_unused uint32_t pool) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); char mac_str[RTE_ETHER_ADDR_FMT_SIZE]; int ret; rte_spinlock_lock(&hw->lock); /* * In hns3 network engine adding UC and MC mac address with different * commands with firmware. We need to determine whether the input * address is a UC or a MC address to call different commands. * By the way, it is recommended calling the API function named * rte_eth_dev_set_mc_addr_list to set the MC mac address, because * using the rte_eth_dev_mac_addr_add API function to set MC mac address * may affect the specifications of UC mac addresses. */ if (rte_is_multicast_ether_addr(mac_addr)) { if (hns3_find_duplicate_mc_addr(hw, mac_addr)) { rte_spinlock_unlock(&hw->lock); return -EINVAL; } ret = hw->ops.add_mc_mac_addr(hw, mac_addr); } else { ret = hw->ops.add_uc_mac_addr(hw, mac_addr); } rte_spinlock_unlock(&hw->lock); if (ret) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr); hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str, ret); } return ret; } void hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* index will be checked by upper level rte interface */ struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx]; char mac_str[RTE_ETHER_ADDR_FMT_SIZE]; int ret; rte_spinlock_lock(&hw->lock); if (rte_is_multicast_ether_addr(mac_addr)) ret = hw->ops.del_mc_mac_addr(hw, mac_addr); else ret = hw->ops.del_uc_mac_addr(hw, mac_addr); rte_spinlock_unlock(&hw->lock); if (ret) { hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr); hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str, ret); } } int hns3_init_ring_with_vector(struct hns3_hw *hw) { uint16_t vec; int ret; int i; /* * In hns3 network engine, vector 0 is always the misc interrupt of this * function, vector 1~N can be used respectively for the queues of the * function. Tx and Rx queues with the same number share the interrupt * vector. In the initialization clearing the all hardware mapping * relationship configurations between queues and interrupt vectors is * needed, so some error caused by the residual configurations, such as * the unexpected Tx interrupt, can be avoid. */ vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */ if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE) vec = vec - 1; /* the last interrupt is reserved */ hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num); for (i = 0; i < hw->intr_tqps_num; i++) { /* * Set gap limiter/rate limiter/quantity limiter algorithm * configuration for interrupt coalesce of queue's interrupt. */ hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX, HNS3_TQP_INTR_GL_DEFAULT); hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX, HNS3_TQP_INTR_GL_DEFAULT); hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT); /* * QL(quantity limiter) is not used currently, just set 0 to * close it. */ hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT); ret = hw->ops.bind_ring_with_vector(hw, vec, false, HNS3_RING_TYPE_TX, i); if (ret) { PMD_INIT_LOG(ERR, "fail to unbind TX ring(%d) with " "vector: %u, ret=%d", i, vec, ret); return ret; } ret = hw->ops.bind_ring_with_vector(hw, vec, false, HNS3_RING_TYPE_RX, i); if (ret) { PMD_INIT_LOG(ERR, "fail to unbind RX ring(%d) with " "vector: %u, ret=%d", i, vec, ret); return ret; } } return 0; } int hns3_map_rx_interrupt(struct rte_eth_dev *dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = pci_dev->intr_handle; struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint16_t base = RTE_INTR_VEC_ZERO_OFFSET; uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET; uint32_t intr_vector; uint16_t q_id; int ret; /* * hns3 needs a separate interrupt to be used as event interrupt which * could not be shared with task queue pair, so KERNEL drivers need * support multiple interrupt vectors. */ if (dev->data->dev_conf.intr_conf.rxq == 0 || !rte_intr_cap_multiple(intr_handle)) return 0; rte_intr_disable(intr_handle); intr_vector = hw->used_rx_queues; /* creates event fd for each intr vector when MSIX is used */ if (rte_intr_efd_enable(intr_handle, intr_vector)) return -EINVAL; /* Allocate vector list */ if (rte_intr_vec_list_alloc(intr_handle, "intr_vec", hw->used_rx_queues)) { hns3_err(hw, "failed to allocate %u rx_queues intr_vec", hw->used_rx_queues); ret = -ENOMEM; goto alloc_intr_vec_error; } if (rte_intr_allow_others(intr_handle)) { vec = RTE_INTR_VEC_RXTX_OFFSET; base = RTE_INTR_VEC_RXTX_OFFSET; } for (q_id = 0; q_id < hw->used_rx_queues; q_id++) { ret = hw->ops.bind_ring_with_vector(hw, vec, true, HNS3_RING_TYPE_RX, q_id); if (ret) goto bind_vector_error; if (rte_intr_vec_list_index_set(intr_handle, q_id, vec)) goto bind_vector_error; /* * If there are not enough efds (e.g. not enough interrupt), * remaining queues will be bond to the last interrupt. */ if (vec < base + rte_intr_nb_efd_get(intr_handle) - 1) vec++; } rte_intr_enable(intr_handle); return 0; bind_vector_error: rte_intr_vec_list_free(intr_handle); alloc_intr_vec_error: rte_intr_efd_disable(intr_handle); return ret; } void hns3_unmap_rx_interrupt(struct rte_eth_dev *dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = pci_dev->intr_handle; struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; uint8_t base = RTE_INTR_VEC_ZERO_OFFSET; uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET; uint16_t q_id; if (dev->data->dev_conf.intr_conf.rxq == 0) return; /* unmap the ring with vector */ if (rte_intr_allow_others(intr_handle)) { vec = RTE_INTR_VEC_RXTX_OFFSET; base = RTE_INTR_VEC_RXTX_OFFSET; } if (rte_intr_dp_is_en(intr_handle)) { for (q_id = 0; q_id < hw->used_rx_queues; q_id++) { (void)hw->ops.bind_ring_with_vector(hw, vec, false, HNS3_RING_TYPE_RX, q_id); if (vec < base + rte_intr_nb_efd_get(intr_handle) - 1) vec++; } } /* Clean datapath event and queue/vec mapping */ rte_intr_efd_disable(intr_handle); rte_intr_vec_list_free(intr_handle); } int hns3_restore_rx_interrupt(struct hns3_hw *hw) { struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id]; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = pci_dev->intr_handle; uint16_t q_id; int ret; if (dev->data->dev_conf.intr_conf.rxq == 0) return 0; if (rte_intr_dp_is_en(intr_handle)) { for (q_id = 0; q_id < hw->used_rx_queues; q_id++) { ret = hw->ops.bind_ring_with_vector(hw, rte_intr_vec_list_index_get(intr_handle, q_id), true, HNS3_RING_TYPE_RX, q_id); if (ret) return ret; } } return 0; }