/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2008-2017 Cisco Systems, Inc. All rights reserved. * Copyright 2007 Nuova Systems, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "enic_compat.h" #include "enic.h" #include "wq_enet_desc.h" #include "rq_enet_desc.h" #include "cq_enet_desc.h" #include "vnic_enet.h" #include "vnic_dev.h" #include "vnic_wq.h" #include "vnic_rq.h" #include "vnic_cq.h" #include "vnic_intr.h" #include "vnic_nic.h" static inline int enic_is_sriov_vf(struct enic *enic) { return enic->pdev->id.device_id == PCI_DEVICE_ID_CISCO_VIC_ENET_VF; } static int is_zero_addr(uint8_t *addr) { return !(addr[0] | addr[1] | addr[2] | addr[3] | addr[4] | addr[5]); } static int is_mcast_addr(uint8_t *addr) { return addr[0] & 1; } static int is_eth_addr_valid(uint8_t *addr) { return !is_mcast_addr(addr) && !is_zero_addr(addr); } void enic_rxmbuf_queue_release(__rte_unused struct enic *enic, struct vnic_rq *rq) { uint16_t i; if (!rq || !rq->mbuf_ring) { dev_debug(enic, "Pointer to rq or mbuf_ring is NULL"); return; } for (i = 0; i < rq->ring.desc_count; i++) { if (rq->mbuf_ring[i]) { rte_pktmbuf_free_seg(rq->mbuf_ring[i]); rq->mbuf_ring[i] = NULL; } } } void enic_free_wq_buf(struct rte_mbuf **buf) { struct rte_mbuf *mbuf = *buf; rte_pktmbuf_free_seg(mbuf); *buf = NULL; } static void enic_log_q_error(struct enic *enic) { unsigned int i; uint32_t error_status; for (i = 0; i < enic->wq_count; i++) { error_status = vnic_wq_error_status(&enic->wq[i]); if (error_status) dev_err(enic, "WQ[%d] error_status %d\n", i, error_status); } for (i = 0; i < enic_vnic_rq_count(enic); i++) { if (!enic->rq[i].in_use) continue; error_status = vnic_rq_error_status(&enic->rq[i]); if (error_status) dev_err(enic, "RQ[%d] error_status %d\n", i, error_status); } } static void enic_clear_soft_stats(struct enic *enic) { struct enic_soft_stats *soft_stats = &enic->soft_stats; rte_atomic64_clear(&soft_stats->rx_nombuf); rte_atomic64_clear(&soft_stats->rx_packet_errors); rte_atomic64_clear(&soft_stats->tx_oversized); } static void enic_init_soft_stats(struct enic *enic) { struct enic_soft_stats *soft_stats = &enic->soft_stats; rte_atomic64_init(&soft_stats->rx_nombuf); rte_atomic64_init(&soft_stats->rx_packet_errors); rte_atomic64_init(&soft_stats->tx_oversized); enic_clear_soft_stats(enic); } int enic_dev_stats_clear(struct enic *enic) { int ret; ret = vnic_dev_stats_clear(enic->vdev); if (ret != 0) { dev_err(enic, "Error in clearing stats\n"); return ret; } enic_clear_soft_stats(enic); return 0; } int enic_dev_stats_get(struct enic *enic, struct rte_eth_stats *r_stats) { struct vnic_stats *stats; struct enic_soft_stats *soft_stats = &enic->soft_stats; int64_t rx_truncated; uint64_t rx_packet_errors; int ret = vnic_dev_stats_dump(enic->vdev, &stats); if (ret) { dev_err(enic, "Error in getting stats\n"); return ret; } /* The number of truncated packets can only be calculated by * subtracting a hardware counter from error packets received by * the driver. Note: this causes transient inaccuracies in the * ipackets count. Also, the length of truncated packets are * counted in ibytes even though truncated packets are dropped * which can make ibytes be slightly higher than it should be. */ rx_packet_errors = rte_atomic64_read(&soft_stats->rx_packet_errors); rx_truncated = rx_packet_errors - stats->rx.rx_errors; r_stats->ipackets = stats->rx.rx_frames_ok - rx_truncated; r_stats->opackets = stats->tx.tx_frames_ok; r_stats->ibytes = stats->rx.rx_bytes_ok; r_stats->obytes = stats->tx.tx_bytes_ok; r_stats->ierrors = stats->rx.rx_errors + stats->rx.rx_drop; r_stats->oerrors = stats->tx.tx_errors + rte_atomic64_read(&soft_stats->tx_oversized); r_stats->imissed = stats->rx.rx_no_bufs + rx_truncated; r_stats->rx_nombuf = rte_atomic64_read(&soft_stats->rx_nombuf); return 0; } int enic_del_mac_address(struct enic *enic, int mac_index) { struct rte_eth_dev *eth_dev = enic->rte_dev; uint8_t *mac_addr = eth_dev->data->mac_addrs[mac_index].addr_bytes; return vnic_dev_del_addr(enic->vdev, mac_addr); } int enic_set_mac_address(struct enic *enic, uint8_t *mac_addr) { int err; if (!is_eth_addr_valid(mac_addr)) { dev_err(enic, "invalid mac address\n"); return -EINVAL; } err = vnic_dev_add_addr(enic->vdev, mac_addr); if (err) dev_err(enic, "add mac addr failed\n"); return err; } void enic_free_rq_buf(struct rte_mbuf **mbuf) { if (*mbuf == NULL) return; rte_pktmbuf_free(*mbuf); *mbuf = NULL; } void enic_init_vnic_resources(struct enic *enic) { unsigned int error_interrupt_enable = 1; unsigned int error_interrupt_offset = 0; unsigned int rxq_interrupt_enable = 0; unsigned int rxq_interrupt_offset = ENICPMD_RXQ_INTR_OFFSET; unsigned int index = 0; unsigned int cq_idx; struct vnic_rq *data_rq; if (enic->rte_dev->data->dev_conf.intr_conf.rxq) rxq_interrupt_enable = 1; for (index = 0; index < enic->rq_count; index++) { cq_idx = enic_cq_rq(enic, enic_rte_rq_idx_to_sop_idx(index)); vnic_rq_init(&enic->rq[enic_rte_rq_idx_to_sop_idx(index)], cq_idx, error_interrupt_enable, error_interrupt_offset); data_rq = &enic->rq[enic_rte_rq_idx_to_data_idx(index, enic)]; if (data_rq->in_use) vnic_rq_init(data_rq, cq_idx, error_interrupt_enable, error_interrupt_offset); vnic_cq_init(&enic->cq[cq_idx], 0 /* flow_control_enable */, 1 /* color_enable */, 0 /* cq_head */, 0 /* cq_tail */, 1 /* cq_tail_color */, rxq_interrupt_enable, 1 /* cq_entry_enable */, 0 /* cq_message_enable */, rxq_interrupt_offset, 0 /* cq_message_addr */); if (rxq_interrupt_enable) rxq_interrupt_offset++; } for (index = 0; index < enic->wq_count; index++) { vnic_wq_init(&enic->wq[index], enic_cq_wq(enic, index), error_interrupt_enable, error_interrupt_offset); /* Compute unsupported ol flags for enic_prep_pkts() */ enic->wq[index].tx_offload_notsup_mask = RTE_MBUF_F_TX_OFFLOAD_MASK ^ enic->tx_offload_mask; cq_idx = enic_cq_wq(enic, index); vnic_cq_init(&enic->cq[cq_idx], 0 /* flow_control_enable */, 1 /* color_enable */, 0 /* cq_head */, 0 /* cq_tail */, 1 /* cq_tail_color */, 0 /* interrupt_enable */, 0 /* cq_entry_enable */, 1 /* cq_message_enable */, 0 /* interrupt offset */, (uint64_t)enic->wq[index].cqmsg_rz->iova); } for (index = 0; index < enic->intr_count; index++) { vnic_intr_init(&enic->intr[index], enic->config.intr_timer_usec, enic->config.intr_timer_type, /*mask_on_assertion*/1); } } int enic_alloc_rx_queue_mbufs(struct enic *enic, struct vnic_rq *rq) { struct rte_mbuf *mb; struct rq_enet_desc *rqd = rq->ring.descs; unsigned i; dma_addr_t dma_addr; uint32_t max_rx_pktlen; uint16_t rq_buf_len; if (!rq->in_use) return 0; dev_debug(enic, "queue %u, allocating %u rx queue mbufs\n", rq->index, rq->ring.desc_count); /* * If *not* using scatter and the mbuf size is greater than the * requested max packet size (mtu + eth overhead), then reduce the * posted buffer size to max packet size. HW still receives packets * larger than max packet size, but they will be truncated, which we * drop in the rx handler. Not ideal, but better than returning * large packets when the user is not expecting them. */ max_rx_pktlen = enic_mtu_to_max_rx_pktlen(enic->rte_dev->data->mtu); rq_buf_len = rte_pktmbuf_data_room_size(rq->mp) - RTE_PKTMBUF_HEADROOM; if (max_rx_pktlen < rq_buf_len && !rq->data_queue_enable) rq_buf_len = max_rx_pktlen; for (i = 0; i < rq->ring.desc_count; i++, rqd++) { mb = rte_mbuf_raw_alloc(rq->mp); if (mb == NULL) { dev_err(enic, "RX mbuf alloc failed queue_id=%u\n", (unsigned)rq->index); return -ENOMEM; } mb->data_off = RTE_PKTMBUF_HEADROOM; dma_addr = (dma_addr_t)(mb->buf_iova + RTE_PKTMBUF_HEADROOM); rq_enet_desc_enc(rqd, dma_addr, (rq->is_sop ? RQ_ENET_TYPE_ONLY_SOP : RQ_ENET_TYPE_NOT_SOP), rq_buf_len); rq->mbuf_ring[i] = mb; } /* * Do not post the buffers to the NIC until we enable the RQ via * enic_start_rq(). */ rq->need_initial_post = true; /* Initialize fetch index while RQ is disabled */ iowrite32(0, &rq->ctrl->fetch_index); return 0; } /* * Post the Rx buffers for the first time. enic_alloc_rx_queue_mbufs() has * allocated the buffers and filled the RQ descriptor ring. Just need to push * the post index to the NIC. */ static void enic_initial_post_rx(struct enic *enic, struct vnic_rq *rq) { if (!rq->in_use || !rq->need_initial_post) return; /* make sure all prior writes are complete before doing the PIO write */ rte_rmb(); /* Post all but the last buffer to VIC. */ rq->posted_index = rq->ring.desc_count - 1; rq->rx_nb_hold = 0; dev_debug(enic, "port=%u, qidx=%u, Write %u posted idx, %u sw held\n", enic->port_id, rq->index, rq->posted_index, rq->rx_nb_hold); iowrite32(rq->posted_index, &rq->ctrl->posted_index); rte_rmb(); rq->need_initial_post = false; } void * enic_alloc_consistent(void *priv, size_t size, dma_addr_t *dma_handle, uint8_t *name) { void *vaddr; const struct rte_memzone *rz; *dma_handle = 0; struct enic *enic = (struct enic *)priv; struct enic_memzone_entry *mze; rz = rte_memzone_reserve_aligned((const char *)name, size, SOCKET_ID_ANY, RTE_MEMZONE_IOVA_CONTIG, ENIC_PAGE_SIZE); if (!rz) { pr_err("%s : Failed to allocate memory requested for %s\n", __func__, name); return NULL; } vaddr = rz->addr; *dma_handle = (dma_addr_t)rz->iova; mze = rte_malloc("enic memzone entry", sizeof(struct enic_memzone_entry), 0); if (!mze) { pr_err("%s : Failed to allocate memory for memzone list\n", __func__); rte_memzone_free(rz); return NULL; } mze->rz = rz; rte_spinlock_lock(&enic->memzone_list_lock); LIST_INSERT_HEAD(&enic->memzone_list, mze, entries); rte_spinlock_unlock(&enic->memzone_list_lock); return vaddr; } void enic_free_consistent(void *priv, __rte_unused size_t size, void *vaddr, dma_addr_t dma_handle) { struct enic_memzone_entry *mze; struct enic *enic = (struct enic *)priv; rte_spinlock_lock(&enic->memzone_list_lock); LIST_FOREACH(mze, &enic->memzone_list, entries) { if (mze->rz->addr == vaddr && mze->rz->iova == dma_handle) break; } if (mze == NULL) { rte_spinlock_unlock(&enic->memzone_list_lock); dev_warning(enic, "Tried to free memory, but couldn't find it in the memzone list\n"); return; } LIST_REMOVE(mze, entries); rte_spinlock_unlock(&enic->memzone_list_lock); rte_memzone_free(mze->rz); rte_free(mze); } int enic_link_update(struct rte_eth_dev *eth_dev) { struct enic *enic = pmd_priv(eth_dev); struct rte_eth_link link; memset(&link, 0, sizeof(link)); link.link_status = enic_get_link_status(enic); link.link_duplex = RTE_ETH_LINK_FULL_DUPLEX; link.link_speed = vnic_dev_port_speed(enic->vdev); return rte_eth_linkstatus_set(eth_dev, &link); } static void enic_intr_handler(void *arg) { struct rte_eth_dev *dev = (struct rte_eth_dev *)arg; struct enic *enic = pmd_priv(dev); vnic_intr_return_all_credits(&enic->intr[ENICPMD_LSC_INTR_OFFSET]); enic_link_update(dev); rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL); enic_log_q_error(enic); /* Re-enable irq in case of INTx */ rte_intr_ack(enic->pdev->intr_handle); } static int enic_rxq_intr_init(struct enic *enic) { struct rte_intr_handle *intr_handle; uint32_t rxq_intr_count, i; int err; intr_handle = enic->rte_dev->intr_handle; if (!enic->rte_dev->data->dev_conf.intr_conf.rxq) return 0; /* * Rx queue interrupts only work when we have MSI-X interrupts, * one per queue. Sharing one interrupt is technically * possible with VIC, but it is not worth the complications it brings. */ if (!rte_intr_cap_multiple(intr_handle)) { dev_err(enic, "Rx queue interrupts require MSI-X interrupts" " (vfio-pci driver)\n"); return -ENOTSUP; } rxq_intr_count = enic->intr_count - ENICPMD_RXQ_INTR_OFFSET; err = rte_intr_efd_enable(intr_handle, rxq_intr_count); if (err) { dev_err(enic, "Failed to enable event fds for Rx queue" " interrupts\n"); return err; } if (rte_intr_vec_list_alloc(intr_handle, "enic_intr_vec", rxq_intr_count)) { dev_err(enic, "Failed to allocate intr_vec\n"); return -ENOMEM; } for (i = 0; i < rxq_intr_count; i++) if (rte_intr_vec_list_index_set(intr_handle, i, i + ENICPMD_RXQ_INTR_OFFSET)) return -rte_errno; return 0; } static void enic_rxq_intr_deinit(struct enic *enic) { struct rte_intr_handle *intr_handle; intr_handle = enic->rte_dev->intr_handle; rte_intr_efd_disable(intr_handle); rte_intr_vec_list_free(intr_handle); } static void enic_prep_wq_for_simple_tx(struct enic *enic, uint16_t queue_idx) { struct wq_enet_desc *desc; struct vnic_wq *wq; unsigned int i; /* * Fill WQ descriptor fields that never change. Every descriptor is * one packet, so set EOP. Also set CQ_ENTRY every ENIC_WQ_CQ_THRESH * descriptors (i.e. request one completion update every 32 packets). */ wq = &enic->wq[queue_idx]; desc = (struct wq_enet_desc *)wq->ring.descs; for (i = 0; i < wq->ring.desc_count; i++, desc++) { desc->header_length_flags = 1 << WQ_ENET_FLAGS_EOP_SHIFT; if (i % ENIC_WQ_CQ_THRESH == ENIC_WQ_CQ_THRESH - 1) desc->header_length_flags |= (1 << WQ_ENET_FLAGS_CQ_ENTRY_SHIFT); } } /* * The 'strong' version is in enic_rxtx_vec_avx2.c. This weak version is used * used when that file is not compiled. */ __rte_weak bool enic_use_vector_rx_handler(__rte_unused struct rte_eth_dev *eth_dev) { return false; } void enic_pick_rx_handler(struct rte_eth_dev *eth_dev) { struct enic *enic = pmd_priv(eth_dev); if (enic->cq64) { ENICPMD_LOG(DEBUG, " use the normal Rx handler for 64B CQ entry"); eth_dev->rx_pkt_burst = &enic_recv_pkts_64; return; } /* * Preference order: * 1. The vectorized handler if possible and requested. * 2. The non-scatter, simplified handler if scatter Rx is not used. * 3. The default handler as a fallback. */ if (enic_use_vector_rx_handler(eth_dev)) return; if (enic->rq_count > 0 && enic->rq[0].data_queue_enable == 0) { ENICPMD_LOG(DEBUG, " use the non-scatter Rx handler"); eth_dev->rx_pkt_burst = &enic_noscatter_recv_pkts; } else { ENICPMD_LOG(DEBUG, " use the normal Rx handler"); eth_dev->rx_pkt_burst = &enic_recv_pkts; } } /* Secondary process uses this to set the Tx handler */ void enic_pick_tx_handler(struct rte_eth_dev *eth_dev) { struct enic *enic = pmd_priv(eth_dev); if (enic->use_simple_tx_handler) { ENICPMD_LOG(DEBUG, " use the simple tx handler"); eth_dev->tx_pkt_burst = &enic_simple_xmit_pkts; } else { ENICPMD_LOG(DEBUG, " use the default tx handler"); eth_dev->tx_pkt_burst = &enic_xmit_pkts; } } int enic_enable(struct enic *enic) { unsigned int index; int err; struct rte_eth_dev *eth_dev = enic->rte_dev; uint64_t simple_tx_offloads; uintptr_t p; if (enic->enable_avx2_rx) { struct rte_mbuf mb_def = { .buf_addr = 0 }; /* * mbuf_initializer contains const-after-init fields of * receive mbufs (i.e. 64 bits of fields from rearm_data). * It is currently used by the vectorized handler. */ mb_def.nb_segs = 1; mb_def.data_off = RTE_PKTMBUF_HEADROOM; mb_def.port = enic->port_id; rte_mbuf_refcnt_set(&mb_def, 1); rte_compiler_barrier(); p = (uintptr_t)&mb_def.rearm_data; enic->mbuf_initializer = *(uint64_t *)p; } eth_dev->data->dev_link.link_speed = vnic_dev_port_speed(enic->vdev); eth_dev->data->dev_link.link_duplex = RTE_ETH_LINK_FULL_DUPLEX; /* vnic notification of link status has already been turned on in * enic_dev_init() which is called during probe time. Here we are * just turning on interrupt vector 0 if needed. */ if (eth_dev->data->dev_conf.intr_conf.lsc) vnic_dev_notify_set(enic->vdev, 0); err = enic_rxq_intr_init(enic); if (err) return err; /* Initialize flowman if not already initialized during probe */ if (enic->fm == NULL && enic_fm_init(enic)) dev_warning(enic, "Init of flowman failed.\n"); for (index = 0; index < enic->rq_count; index++) { err = enic_alloc_rx_queue_mbufs(enic, &enic->rq[enic_rte_rq_idx_to_sop_idx(index)]); if (err) { dev_err(enic, "Failed to alloc sop RX queue mbufs\n"); return err; } err = enic_alloc_rx_queue_mbufs(enic, &enic->rq[enic_rte_rq_idx_to_data_idx(index, enic)]); if (err) { /* release the allocated mbufs for the sop rq*/ enic_rxmbuf_queue_release(enic, &enic->rq[enic_rte_rq_idx_to_sop_idx(index)]); dev_err(enic, "Failed to alloc data RX queue mbufs\n"); return err; } } /* * Use the simple TX handler if possible. Only checksum offloads * and vlan insertion are supported. */ simple_tx_offloads = enic->tx_offload_capa & (RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM | RTE_ETH_TX_OFFLOAD_VLAN_INSERT | RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM); if ((eth_dev->data->dev_conf.txmode.offloads & ~simple_tx_offloads) == 0) { ENICPMD_LOG(DEBUG, " use the simple tx handler"); eth_dev->tx_pkt_burst = &enic_simple_xmit_pkts; for (index = 0; index < enic->wq_count; index++) enic_prep_wq_for_simple_tx(enic, index); enic->use_simple_tx_handler = 1; } else { ENICPMD_LOG(DEBUG, " use the default tx handler"); eth_dev->tx_pkt_burst = &enic_xmit_pkts; } enic_pick_rx_handler(eth_dev); for (index = 0; index < enic->wq_count; index++) enic_start_wq(enic, index); for (index = 0; index < enic->rq_count; index++) enic_start_rq(enic, index); vnic_dev_add_addr(enic->vdev, enic->mac_addr); vnic_dev_enable_wait(enic->vdev); /* Register and enable error interrupt */ rte_intr_callback_register(enic->pdev->intr_handle, enic_intr_handler, (void *)enic->rte_dev); rte_intr_enable(enic->pdev->intr_handle); /* Unmask LSC interrupt */ vnic_intr_unmask(&enic->intr[ENICPMD_LSC_INTR_OFFSET]); return 0; } int enic_alloc_intr_resources(struct enic *enic) { int err; unsigned int i; dev_info(enic, "vNIC resources used: "\ "wq %d rq %d cq %d intr %d\n", enic->wq_count, enic_vnic_rq_count(enic), enic->cq_count, enic->intr_count); for (i = 0; i < enic->intr_count; i++) { err = vnic_intr_alloc(enic->vdev, &enic->intr[i], i); if (err) { enic_free_vnic_resources(enic); return err; } } return 0; } void enic_free_rq(void *rxq) { struct vnic_rq *rq_sop, *rq_data; struct enic *enic; if (rxq == NULL) return; rq_sop = (struct vnic_rq *)rxq; enic = vnic_dev_priv(rq_sop->vdev); rq_data = &enic->rq[rq_sop->data_queue_idx]; if (rq_sop->free_mbufs) { struct rte_mbuf **mb; int i; mb = rq_sop->free_mbufs; for (i = ENIC_RX_BURST_MAX - rq_sop->num_free_mbufs; i < ENIC_RX_BURST_MAX; i++) rte_pktmbuf_free(mb[i]); rte_free(rq_sop->free_mbufs); rq_sop->free_mbufs = NULL; rq_sop->num_free_mbufs = 0; } enic_rxmbuf_queue_release(enic, rq_sop); if (rq_data->in_use) enic_rxmbuf_queue_release(enic, rq_data); rte_free(rq_sop->mbuf_ring); if (rq_data->in_use) rte_free(rq_data->mbuf_ring); rq_sop->mbuf_ring = NULL; rq_data->mbuf_ring = NULL; vnic_rq_free(rq_sop); if (rq_data->in_use) vnic_rq_free(rq_data); vnic_cq_free(&enic->cq[enic_sop_rq_idx_to_cq_idx(rq_sop->index)]); rq_sop->in_use = 0; rq_data->in_use = 0; } void enic_start_wq(struct enic *enic, uint16_t queue_idx) { struct rte_eth_dev_data *data = enic->dev_data; vnic_wq_enable(&enic->wq[queue_idx]); data->tx_queue_state[queue_idx] = RTE_ETH_QUEUE_STATE_STARTED; } int enic_stop_wq(struct enic *enic, uint16_t queue_idx) { struct rte_eth_dev_data *data = enic->dev_data; int ret; ret = vnic_wq_disable(&enic->wq[queue_idx]); if (ret) return ret; data->tx_queue_state[queue_idx] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } void enic_start_rq(struct enic *enic, uint16_t queue_idx) { struct rte_eth_dev_data *data = enic->dev_data; struct vnic_rq *rq_sop; struct vnic_rq *rq_data; rq_sop = &enic->rq[enic_rte_rq_idx_to_sop_idx(queue_idx)]; rq_data = &enic->rq[rq_sop->data_queue_idx]; if (rq_data->in_use) { vnic_rq_enable(rq_data); enic_initial_post_rx(enic, rq_data); } rte_mb(); vnic_rq_enable(rq_sop); enic_initial_post_rx(enic, rq_sop); data->rx_queue_state[queue_idx] = RTE_ETH_QUEUE_STATE_STARTED; } int enic_stop_rq(struct enic *enic, uint16_t queue_idx) { struct rte_eth_dev_data *data = enic->dev_data; int ret1 = 0, ret2 = 0; struct vnic_rq *rq_sop; struct vnic_rq *rq_data; rq_sop = &enic->rq[enic_rte_rq_idx_to_sop_idx(queue_idx)]; rq_data = &enic->rq[rq_sop->data_queue_idx]; ret2 = vnic_rq_disable(rq_sop); rte_mb(); if (rq_data->in_use) ret1 = vnic_rq_disable(rq_data); if (ret2) return ret2; else if (ret1) return ret1; data->rx_queue_state[queue_idx] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } int enic_alloc_rq(struct enic *enic, uint16_t queue_idx, unsigned int socket_id, struct rte_mempool *mp, uint16_t nb_desc, uint16_t free_thresh) { struct enic_vf_representor *vf; int rc; uint16_t sop_queue_idx; uint16_t data_queue_idx; uint16_t cq_idx; struct vnic_rq *rq_sop; struct vnic_rq *rq_data; unsigned int mbuf_size, mbufs_per_pkt; unsigned int nb_sop_desc, nb_data_desc; uint16_t min_sop, max_sop, min_data, max_data; uint32_t max_rx_pktlen; /* * Representor uses a reserved PF queue. Translate representor * queue number to PF queue number. */ if (enic_is_vf_rep(enic)) { RTE_ASSERT(queue_idx == 0); vf = VF_ENIC_TO_VF_REP(enic); sop_queue_idx = vf->pf_rq_sop_idx; data_queue_idx = vf->pf_rq_data_idx; enic = vf->pf; queue_idx = sop_queue_idx; } else { sop_queue_idx = enic_rte_rq_idx_to_sop_idx(queue_idx); data_queue_idx = enic_rte_rq_idx_to_data_idx(queue_idx, enic); } cq_idx = enic_cq_rq(enic, sop_queue_idx); rq_sop = &enic->rq[sop_queue_idx]; rq_data = &enic->rq[data_queue_idx]; rq_sop->is_sop = 1; rq_sop->data_queue_idx = data_queue_idx; rq_data->is_sop = 0; rq_data->data_queue_idx = 0; rq_sop->socket_id = socket_id; rq_sop->mp = mp; rq_data->socket_id = socket_id; rq_data->mp = mp; rq_sop->in_use = 1; rq_sop->rx_free_thresh = free_thresh; rq_data->rx_free_thresh = free_thresh; dev_debug(enic, "Set queue_id:%u free thresh:%u\n", queue_idx, free_thresh); mbuf_size = (uint16_t)(rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM); /* max_rx_pktlen includes the ethernet header and CRC. */ max_rx_pktlen = enic_mtu_to_max_rx_pktlen(enic->rte_dev->data->mtu); if (enic->rte_dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_SCATTER) { dev_info(enic, "Rq %u Scatter rx mode enabled\n", queue_idx); /* ceil((max pkt len)/mbuf_size) */ mbufs_per_pkt = (max_rx_pktlen + mbuf_size - 1) / mbuf_size; } else { dev_info(enic, "Scatter rx mode disabled\n"); mbufs_per_pkt = 1; if (max_rx_pktlen > mbuf_size) { dev_warning(enic, "The maximum Rx packet size (%u) is" " larger than the mbuf size (%u), and" " scatter is disabled. Larger packets will" " be truncated.\n", max_rx_pktlen, mbuf_size); } } if (mbufs_per_pkt > 1) { dev_info(enic, "Rq %u Scatter rx mode in use\n", queue_idx); rq_sop->data_queue_enable = 1; rq_data->in_use = 1; /* * HW does not directly support MTU. HW always * receives packet sizes up to the "max" MTU. * If not using scatter, we can achieve the effect of dropping * larger packets by reducing the size of posted buffers. * See enic_alloc_rx_queue_mbufs(). */ if (enic->rte_dev->data->mtu < enic->max_mtu) { dev_warning(enic, "mtu is ignored when scatter rx mode is in use.\n"); } } else { dev_info(enic, "Rq %u Scatter rx mode not being used\n", queue_idx); rq_sop->data_queue_enable = 0; rq_data->in_use = 0; } /* number of descriptors have to be a multiple of 32 */ nb_sop_desc = (nb_desc / mbufs_per_pkt) & ENIC_ALIGN_DESCS_MASK; nb_data_desc = (nb_desc - nb_sop_desc) & ENIC_ALIGN_DESCS_MASK; rq_sop->max_mbufs_per_pkt = mbufs_per_pkt; rq_data->max_mbufs_per_pkt = mbufs_per_pkt; if (mbufs_per_pkt > 1) { min_sop = ENIC_RX_BURST_MAX; max_sop = ((enic->config.rq_desc_count / (mbufs_per_pkt - 1)) & ENIC_ALIGN_DESCS_MASK); min_data = min_sop * (mbufs_per_pkt - 1); max_data = enic->config.rq_desc_count; } else { min_sop = ENIC_RX_BURST_MAX; max_sop = enic->config.rq_desc_count; min_data = 0; max_data = 0; } if (nb_desc < (min_sop + min_data)) { dev_warning(enic, "Number of rx descs too low, adjusting to minimum\n"); nb_sop_desc = min_sop; nb_data_desc = min_data; } else if (nb_desc > (max_sop + max_data)) { dev_warning(enic, "Number of rx_descs too high, adjusting to maximum\n"); nb_sop_desc = max_sop; nb_data_desc = max_data; } if (mbufs_per_pkt > 1) { dev_info(enic, "For max packet size %u and mbuf size %u valid" " rx descriptor range is %u to %u\n", max_rx_pktlen, mbuf_size, min_sop + min_data, max_sop + max_data); } dev_info(enic, "Using %d rx descriptors (sop %d, data %d)\n", nb_sop_desc + nb_data_desc, nb_sop_desc, nb_data_desc); /* Allocate sop queue resources */ rc = vnic_rq_alloc(enic->vdev, rq_sop, sop_queue_idx, nb_sop_desc, sizeof(struct rq_enet_desc)); if (rc) { dev_err(enic, "error in allocation of sop rq\n"); goto err_exit; } nb_sop_desc = rq_sop->ring.desc_count; if (rq_data->in_use) { /* Allocate data queue resources */ rc = vnic_rq_alloc(enic->vdev, rq_data, data_queue_idx, nb_data_desc, sizeof(struct rq_enet_desc)); if (rc) { dev_err(enic, "error in allocation of data rq\n"); goto err_free_rq_sop; } nb_data_desc = rq_data->ring.desc_count; } /* Enable 64B CQ entry if requested */ if (enic->cq64 && vnic_dev_set_cq_entry_size(enic->vdev, sop_queue_idx, VNIC_RQ_CQ_ENTRY_SIZE_64)) { dev_err(enic, "failed to enable 64B CQ entry on sop rq\n"); goto err_free_rq_data; } if (rq_data->in_use && enic->cq64 && vnic_dev_set_cq_entry_size(enic->vdev, data_queue_idx, VNIC_RQ_CQ_ENTRY_SIZE_64)) { dev_err(enic, "failed to enable 64B CQ entry on data rq\n"); goto err_free_rq_data; } rc = vnic_cq_alloc(enic->vdev, &enic->cq[cq_idx], cq_idx, socket_id, nb_sop_desc + nb_data_desc, enic->cq64 ? sizeof(struct cq_enet_rq_desc_64) : sizeof(struct cq_enet_rq_desc)); if (rc) { dev_err(enic, "error in allocation of cq for rq\n"); goto err_free_rq_data; } /* Allocate the mbuf rings */ rq_sop->mbuf_ring = (struct rte_mbuf **) rte_zmalloc_socket("rq->mbuf_ring", sizeof(struct rte_mbuf *) * nb_sop_desc, RTE_CACHE_LINE_SIZE, rq_sop->socket_id); if (rq_sop->mbuf_ring == NULL) goto err_free_cq; if (rq_data->in_use) { rq_data->mbuf_ring = (struct rte_mbuf **) rte_zmalloc_socket("rq->mbuf_ring", sizeof(struct rte_mbuf *) * nb_data_desc, RTE_CACHE_LINE_SIZE, rq_sop->socket_id); if (rq_data->mbuf_ring == NULL) goto err_free_sop_mbuf; } rq_sop->free_mbufs = (struct rte_mbuf **) rte_zmalloc_socket("rq->free_mbufs", sizeof(struct rte_mbuf *) * ENIC_RX_BURST_MAX, RTE_CACHE_LINE_SIZE, rq_sop->socket_id); if (rq_sop->free_mbufs == NULL) goto err_free_data_mbuf; rq_sop->num_free_mbufs = 0; rq_sop->tot_nb_desc = nb_desc; /* squirl away for MTU update function */ return 0; err_free_data_mbuf: rte_free(rq_data->mbuf_ring); err_free_sop_mbuf: rte_free(rq_sop->mbuf_ring); err_free_cq: /* cleanup on error */ vnic_cq_free(&enic->cq[cq_idx]); err_free_rq_data: if (rq_data->in_use) vnic_rq_free(rq_data); err_free_rq_sop: vnic_rq_free(rq_sop); err_exit: return -ENOMEM; } void enic_free_wq(void *txq) { struct vnic_wq *wq; struct enic *enic; if (txq == NULL) return; wq = (struct vnic_wq *)txq; enic = vnic_dev_priv(wq->vdev); rte_memzone_free(wq->cqmsg_rz); vnic_wq_free(wq); vnic_cq_free(&enic->cq[enic->rq_count + wq->index]); } int enic_alloc_wq(struct enic *enic, uint16_t queue_idx, unsigned int socket_id, uint16_t nb_desc) { struct enic_vf_representor *vf; int err; struct vnic_wq *wq; unsigned int cq_index; char name[RTE_MEMZONE_NAMESIZE]; static int instance; /* * Representor uses a reserved PF queue. Translate representor * queue number to PF queue number. */ if (enic_is_vf_rep(enic)) { RTE_ASSERT(queue_idx == 0); vf = VF_ENIC_TO_VF_REP(enic); queue_idx = vf->pf_wq_idx; cq_index = vf->pf_wq_cq_idx; enic = vf->pf; } else { cq_index = enic_cq_wq(enic, queue_idx); } wq = &enic->wq[queue_idx]; wq->socket_id = socket_id; /* * rte_eth_tx_queue_setup() checks min, max, and alignment. So just * print an info message for diagnostics. */ dev_info(enic, "TX Queues - effective number of descs:%d\n", nb_desc); /* Allocate queue resources */ err = vnic_wq_alloc(enic->vdev, &enic->wq[queue_idx], queue_idx, nb_desc, sizeof(struct wq_enet_desc)); if (err) { dev_err(enic, "error in allocation of wq\n"); return err; } err = vnic_cq_alloc(enic->vdev, &enic->cq[cq_index], cq_index, socket_id, nb_desc, sizeof(struct cq_enet_wq_desc)); if (err) { vnic_wq_free(wq); dev_err(enic, "error in allocation of cq for wq\n"); } /* setup up CQ message */ snprintf((char *)name, sizeof(name), "vnic_cqmsg-%s-%d-%d", enic->bdf_name, queue_idx, instance++); wq->cqmsg_rz = rte_memzone_reserve_aligned((const char *)name, sizeof(uint32_t), SOCKET_ID_ANY, RTE_MEMZONE_IOVA_CONTIG, ENIC_PAGE_SIZE); if (!wq->cqmsg_rz) return -ENOMEM; return err; } int enic_disable(struct enic *enic) { unsigned int i; int err; for (i = 0; i < enic->intr_count; i++) { vnic_intr_mask(&enic->intr[i]); (void)vnic_intr_masked(&enic->intr[i]); /* flush write */ } enic_rxq_intr_deinit(enic); rte_intr_disable(enic->pdev->intr_handle); rte_intr_callback_unregister(enic->pdev->intr_handle, enic_intr_handler, (void *)enic->rte_dev); vnic_dev_disable(enic->vdev); enic_fm_destroy(enic); if (!enic_is_sriov_vf(enic)) vnic_dev_del_addr(enic->vdev, enic->mac_addr); for (i = 0; i < enic->wq_count; i++) { err = vnic_wq_disable(&enic->wq[i]); if (err) return err; } for (i = 0; i < enic_vnic_rq_count(enic); i++) { if (enic->rq[i].in_use) { err = vnic_rq_disable(&enic->rq[i]); if (err) return err; } } /* If we were using interrupts, set the interrupt vector to -1 * to disable interrupts. We are not disabling link notifications, * though, as we want the polling of link status to continue working. */ if (enic->rte_dev->data->dev_conf.intr_conf.lsc) vnic_dev_notify_set(enic->vdev, -1); vnic_dev_set_reset_flag(enic->vdev, 1); for (i = 0; i < enic->wq_count; i++) vnic_wq_clean(&enic->wq[i], enic_free_wq_buf); for (i = 0; i < enic_vnic_rq_count(enic); i++) if (enic->rq[i].in_use) vnic_rq_clean(&enic->rq[i], enic_free_rq_buf); for (i = 0; i < enic->cq_count; i++) vnic_cq_clean(&enic->cq[i]); for (i = 0; i < enic->intr_count; i++) vnic_intr_clean(&enic->intr[i]); return 0; } static int enic_dev_wait(struct vnic_dev *vdev, int (*start)(struct vnic_dev *, int), int (*finished)(struct vnic_dev *, int *), int arg) { int done; int err; int i; err = start(vdev, arg); if (err) return err; /* Wait for func to complete...2 seconds max */ for (i = 0; i < 2000; i++) { err = finished(vdev, &done); if (err) return err; if (done) return 0; usleep(1000); } return -ETIMEDOUT; } static int enic_dev_open(struct enic *enic) { int err; int flags = CMD_OPENF_IG_DESCCACHE; err = enic_dev_wait(enic->vdev, vnic_dev_open, vnic_dev_open_done, flags); if (err) dev_err(enic_get_dev(enic), "vNIC device open failed, err %d\n", err); return err; } static int enic_set_rsskey(struct enic *enic, uint8_t *user_key) { dma_addr_t rss_key_buf_pa; union vnic_rss_key *rss_key_buf_va = NULL; int err, i; uint8_t name[RTE_MEMZONE_NAMESIZE]; RTE_ASSERT(user_key != NULL); snprintf((char *)name, sizeof(name), "rss_key-%s", enic->bdf_name); rss_key_buf_va = enic_alloc_consistent(enic, sizeof(union vnic_rss_key), &rss_key_buf_pa, name); if (!rss_key_buf_va) return -ENOMEM; for (i = 0; i < ENIC_RSS_HASH_KEY_SIZE; i++) rss_key_buf_va->key[i / 10].b[i % 10] = user_key[i]; err = enic_set_rss_key(enic, rss_key_buf_pa, sizeof(union vnic_rss_key)); /* Save for later queries */ if (!err) { rte_memcpy(&enic->rss_key, rss_key_buf_va, sizeof(union vnic_rss_key)); } enic_free_consistent(enic, sizeof(union vnic_rss_key), rss_key_buf_va, rss_key_buf_pa); return err; } int enic_set_rss_reta(struct enic *enic, union vnic_rss_cpu *rss_cpu) { dma_addr_t rss_cpu_buf_pa; union vnic_rss_cpu *rss_cpu_buf_va = NULL; int err; uint8_t name[RTE_MEMZONE_NAMESIZE]; snprintf((char *)name, sizeof(name), "rss_cpu-%s", enic->bdf_name); rss_cpu_buf_va = enic_alloc_consistent(enic, sizeof(union vnic_rss_cpu), &rss_cpu_buf_pa, name); if (!rss_cpu_buf_va) return -ENOMEM; rte_memcpy(rss_cpu_buf_va, rss_cpu, sizeof(union vnic_rss_cpu)); err = enic_set_rss_cpu(enic, rss_cpu_buf_pa, sizeof(union vnic_rss_cpu)); enic_free_consistent(enic, sizeof(union vnic_rss_cpu), rss_cpu_buf_va, rss_cpu_buf_pa); /* Save for later queries */ if (!err) rte_memcpy(&enic->rss_cpu, rss_cpu, sizeof(union vnic_rss_cpu)); return err; } static int enic_set_niccfg(struct enic *enic, uint8_t rss_default_cpu, uint8_t rss_hash_type, uint8_t rss_hash_bits, uint8_t rss_base_cpu, uint8_t rss_enable) { const uint8_t tso_ipid_split_en = 0; int err; err = enic_set_nic_cfg(enic, rss_default_cpu, rss_hash_type, rss_hash_bits, rss_base_cpu, rss_enable, tso_ipid_split_en, enic->ig_vlan_strip_en); return err; } /* Initialize RSS with defaults, called from dev_configure */ int enic_init_rss_nic_cfg(struct enic *enic) { static uint8_t default_rss_key[] = { 85, 67, 83, 97, 119, 101, 115, 111, 109, 101, 80, 65, 76, 79, 117, 110, 105, 113, 117, 101, 76, 73, 78, 85, 88, 114, 111, 99, 107, 115, 69, 78, 73, 67, 105, 115, 99, 111, 111, 108, }; struct rte_eth_rss_conf rss_conf; union vnic_rss_cpu rss_cpu; int ret, i; rss_conf = enic->rte_dev->data->dev_conf.rx_adv_conf.rss_conf; /* * If setting key for the first time, and the user gives us none, then * push the default key to NIC. */ if (rss_conf.rss_key == NULL) { rss_conf.rss_key = default_rss_key; rss_conf.rss_key_len = ENIC_RSS_HASH_KEY_SIZE; } ret = enic_set_rss_conf(enic, &rss_conf); if (ret) { dev_err(enic, "Failed to configure RSS\n"); return ret; } if (enic->rss_enable) { /* If enabling RSS, use the default reta */ for (i = 0; i < ENIC_RSS_RETA_SIZE; i++) { rss_cpu.cpu[i / 4].b[i % 4] = enic_rte_rq_idx_to_sop_idx(i % enic->rq_count); } ret = enic_set_rss_reta(enic, &rss_cpu); if (ret) dev_err(enic, "Failed to set RSS indirection table\n"); } return ret; } int enic_setup_finish(struct enic *enic) { enic_init_soft_stats(enic); /* switchdev: enable promisc mode on PF */ if (enic->switchdev_mode) { vnic_dev_packet_filter(enic->vdev, 0 /* directed */, 0 /* multicast */, 0 /* broadcast */, 1 /* promisc */, 0 /* allmulti */); enic->promisc = 1; enic->allmulti = 0; return 0; } /* Default conf */ vnic_dev_packet_filter(enic->vdev, 1 /* directed */, 1 /* multicast */, 1 /* broadcast */, 0 /* promisc */, 1 /* allmulti */); enic->promisc = 0; enic->allmulti = 1; return 0; } static int enic_rss_conf_valid(struct enic *enic, struct rte_eth_rss_conf *rss_conf) { /* RSS is disabled per VIC settings. Ignore rss_conf. */ if (enic->flow_type_rss_offloads == 0) return 0; if (rss_conf->rss_key != NULL && rss_conf->rss_key_len != ENIC_RSS_HASH_KEY_SIZE) { dev_err(enic, "Given rss_key is %d bytes, it must be %d\n", rss_conf->rss_key_len, ENIC_RSS_HASH_KEY_SIZE); return -EINVAL; } if (rss_conf->rss_hf != 0 && (rss_conf->rss_hf & enic->flow_type_rss_offloads) == 0) { dev_err(enic, "Given rss_hf contains none of the supported" " types\n"); return -EINVAL; } return 0; } /* Set hash type and key according to rss_conf */ int enic_set_rss_conf(struct enic *enic, struct rte_eth_rss_conf *rss_conf) { struct rte_eth_dev *eth_dev; uint64_t rss_hf; uint8_t rss_hash_type; uint8_t rss_enable; int ret; RTE_ASSERT(rss_conf != NULL); ret = enic_rss_conf_valid(enic, rss_conf); if (ret) { dev_err(enic, "RSS configuration (rss_conf) is invalid\n"); return ret; } eth_dev = enic->rte_dev; rss_hash_type = 0; rss_hf = rss_conf->rss_hf & enic->flow_type_rss_offloads; if (enic->rq_count > 1 && (eth_dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) && rss_hf != 0) { rss_enable = 1; if (rss_hf & (RTE_ETH_RSS_IPV4 | RTE_ETH_RSS_FRAG_IPV4 | RTE_ETH_RSS_NONFRAG_IPV4_OTHER)) rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_IPV4; if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP) rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_TCP_IPV4; if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP) { rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_UDP_IPV4; if (enic->udp_rss_weak) { /* * 'TCP' is not a typo. The "weak" version of * UDP RSS requires both the TCP and UDP bits * be set. It does enable TCP RSS as well. */ rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_TCP_IPV4; } } if (rss_hf & (RTE_ETH_RSS_IPV6 | RTE_ETH_RSS_IPV6_EX | RTE_ETH_RSS_FRAG_IPV6 | RTE_ETH_RSS_NONFRAG_IPV6_OTHER)) rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_IPV6; if (rss_hf & (RTE_ETH_RSS_NONFRAG_IPV6_TCP | RTE_ETH_RSS_IPV6_TCP_EX)) rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_TCP_IPV6; if (rss_hf & (RTE_ETH_RSS_NONFRAG_IPV6_UDP | RTE_ETH_RSS_IPV6_UDP_EX)) { rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_UDP_IPV6; if (enic->udp_rss_weak) rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_TCP_IPV6; } } else { rss_enable = 0; rss_hf = 0; } /* Set the hash key if provided */ if (rss_enable && rss_conf->rss_key) { ret = enic_set_rsskey(enic, rss_conf->rss_key); if (ret) { dev_err(enic, "Failed to set RSS key\n"); return ret; } } ret = enic_set_niccfg(enic, ENIC_RSS_DEFAULT_CPU, rss_hash_type, ENIC_RSS_HASH_BITS, ENIC_RSS_BASE_CPU, rss_enable); if (!ret) { enic->rss_hf = rss_hf; enic->rss_hash_type = rss_hash_type; enic->rss_enable = rss_enable; } else { dev_err(enic, "Failed to update RSS configurations." " hash=0x%x\n", rss_hash_type); } return ret; } int enic_set_vlan_strip(struct enic *enic) { /* * Unfortunately, VLAN strip on/off and RSS on/off are configured * together. So, re-do niccfg, preserving the current RSS settings. */ return enic_set_niccfg(enic, ENIC_RSS_DEFAULT_CPU, enic->rss_hash_type, ENIC_RSS_HASH_BITS, ENIC_RSS_BASE_CPU, enic->rss_enable); } int enic_add_packet_filter(struct enic *enic) { /* switchdev ignores packet filters */ if (enic->switchdev_mode) { ENICPMD_LOG(DEBUG, " switchdev: ignore packet filter"); return 0; } /* Args -> directed, multicast, broadcast, promisc, allmulti */ return vnic_dev_packet_filter(enic->vdev, 1, 1, 1, enic->promisc, enic->allmulti); } int enic_get_link_status(struct enic *enic) { return vnic_dev_link_status(enic->vdev); } static void enic_dev_deinit(struct enic *enic) { /* stop link status checking */ vnic_dev_notify_unset(enic->vdev); /* mac_addrs is freed by rte_eth_dev_release_port() */ rte_free(enic->cq); rte_free(enic->intr); rte_free(enic->rq); rte_free(enic->wq); } int enic_set_vnic_res(struct enic *enic) { struct rte_eth_dev *eth_dev = enic->rte_dev; int rc = 0; unsigned int required_rq, required_wq, required_cq, required_intr; /* Always use two vNIC RQs per eth_dev RQ, regardless of Rx scatter. */ required_rq = eth_dev->data->nb_rx_queues * 2; required_wq = eth_dev->data->nb_tx_queues; required_cq = eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues; required_intr = 1; /* 1 for LSC even if intr_conf.lsc is 0 */ if (eth_dev->data->dev_conf.intr_conf.rxq) { required_intr += eth_dev->data->nb_rx_queues; } ENICPMD_LOG(DEBUG, "Required queues for PF: rq %u wq %u cq %u", required_rq, required_wq, required_cq); if (enic->vf_required_rq) { /* Queues needed for VF representors */ required_rq += enic->vf_required_rq; required_wq += enic->vf_required_wq; required_cq += enic->vf_required_cq; ENICPMD_LOG(DEBUG, "Required queues for VF representors: rq %u wq %u cq %u", enic->vf_required_rq, enic->vf_required_wq, enic->vf_required_cq); } if (enic->conf_rq_count < required_rq) { dev_err(dev, "Not enough Receive queues. Requested:%u which uses %d RQs on VIC, Configured:%u\n", eth_dev->data->nb_rx_queues, required_rq, enic->conf_rq_count); rc = -EINVAL; } if (enic->conf_wq_count < required_wq) { dev_err(dev, "Not enough Transmit queues. Requested:%u, Configured:%u\n", eth_dev->data->nb_tx_queues, enic->conf_wq_count); rc = -EINVAL; } if (enic->conf_cq_count < required_cq) { dev_err(dev, "Not enough Completion queues. Required:%u, Configured:%u\n", required_cq, enic->conf_cq_count); rc = -EINVAL; } if (enic->conf_intr_count < required_intr) { dev_err(dev, "Not enough Interrupts to support Rx queue" " interrupts. Required:%u, Configured:%u\n", required_intr, enic->conf_intr_count); rc = -EINVAL; } if (rc == 0) { enic->rq_count = eth_dev->data->nb_rx_queues; enic->wq_count = eth_dev->data->nb_tx_queues; enic->cq_count = enic->rq_count + enic->wq_count; enic->intr_count = required_intr; } return rc; } /* Initialize the completion queue for an RQ */ static int enic_reinit_rq(struct enic *enic, unsigned int rq_idx) { struct vnic_rq *sop_rq, *data_rq; unsigned int cq_idx; int rc = 0; sop_rq = &enic->rq[enic_rte_rq_idx_to_sop_idx(rq_idx)]; data_rq = &enic->rq[enic_rte_rq_idx_to_data_idx(rq_idx, enic)]; cq_idx = enic_cq_rq(enic, rq_idx); vnic_cq_clean(&enic->cq[cq_idx]); vnic_cq_init(&enic->cq[cq_idx], 0 /* flow_control_enable */, 1 /* color_enable */, 0 /* cq_head */, 0 /* cq_tail */, 1 /* cq_tail_color */, 0 /* interrupt_enable */, 1 /* cq_entry_enable */, 0 /* cq_message_enable */, 0 /* interrupt offset */, 0 /* cq_message_addr */); vnic_rq_init_start(sop_rq, enic_cq_rq(enic, enic_rte_rq_idx_to_sop_idx(rq_idx)), 0, sop_rq->ring.desc_count - 1, 1, 0); if (data_rq->in_use) { vnic_rq_init_start(data_rq, enic_cq_rq(enic, enic_rte_rq_idx_to_data_idx(rq_idx, enic)), 0, data_rq->ring.desc_count - 1, 1, 0); } rc = enic_alloc_rx_queue_mbufs(enic, sop_rq); if (rc) return rc; if (data_rq->in_use) { rc = enic_alloc_rx_queue_mbufs(enic, data_rq); if (rc) { enic_rxmbuf_queue_release(enic, sop_rq); return rc; } } return 0; } /* The Cisco NIC can send and receive packets up to a max packet size * determined by the NIC type and firmware. There is also an MTU * configured into the NIC via the CIMC/UCSM management interface * which can be overridden by this function (up to the max packet size). * Depending on the network setup, doing so may cause packet drops * and unexpected behavior. */ int enic_set_mtu(struct enic *enic, uint16_t new_mtu) { unsigned int rq_idx; struct vnic_rq *rq; int rc = 0; uint16_t old_mtu; /* previous setting */ uint16_t config_mtu; /* Value configured into NIC via CIMC/UCSM */ struct rte_eth_dev *eth_dev = enic->rte_dev; old_mtu = eth_dev->data->mtu; config_mtu = enic->config.mtu; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -E_RTE_SECONDARY; if (new_mtu > enic->max_mtu) { dev_err(enic, "MTU not updated: requested (%u) greater than max (%u)\n", new_mtu, enic->max_mtu); return -EINVAL; } if (new_mtu < ENIC_MIN_MTU) { dev_info(enic, "MTU not updated: requested (%u) less than min (%u)\n", new_mtu, ENIC_MIN_MTU); return -EINVAL; } if (new_mtu > config_mtu) dev_warning(enic, "MTU (%u) is greater than value configured in NIC (%u)\n", new_mtu, config_mtu); /* * If the device has not started (enic_enable), nothing to do. * Later, enic_enable() will set up RQs reflecting the new maximum * packet length. */ if (!eth_dev->data->dev_started) goto set_mtu_done; /* * The device has started, re-do RQs on the fly. In the process, we * pick up the new maximum packet length. * * Some applications rely on the ability to change MTU without stopping * the device. So keep this behavior for now. */ rte_spinlock_lock(&enic->mtu_lock); /* Stop traffic on all RQs */ for (rq_idx = 0; rq_idx < enic->rq_count * 2; rq_idx++) { rq = &enic->rq[rq_idx]; if (rq->is_sop && rq->in_use) { rc = enic_stop_rq(enic, enic_sop_rq_idx_to_rte_idx(rq_idx)); if (rc) { dev_err(enic, "Failed to stop Rq %u\n", rq_idx); goto set_mtu_done; } } } /* replace Rx function with a no-op to avoid getting stale pkts */ eth_dev->rx_pkt_burst = enic_dummy_recv_pkts; rte_eth_fp_ops[enic->port_id].rx_pkt_burst = eth_dev->rx_pkt_burst; rte_mb(); /* Allow time for threads to exit the real Rx function. */ usleep(100000); /* now it is safe to reconfigure the RQs */ /* free and reallocate RQs with the new MTU */ for (rq_idx = 0; rq_idx < enic->rq_count; rq_idx++) { rq = &enic->rq[enic_rte_rq_idx_to_sop_idx(rq_idx)]; if (!rq->in_use) continue; enic_free_rq(rq); rc = enic_alloc_rq(enic, rq_idx, rq->socket_id, rq->mp, rq->tot_nb_desc, rq->rx_free_thresh); if (rc) { dev_err(enic, "Fatal MTU alloc error- No traffic will pass\n"); goto set_mtu_done; } rc = enic_reinit_rq(enic, rq_idx); if (rc) { dev_err(enic, "Fatal MTU RQ reinit- No traffic will pass\n"); goto set_mtu_done; } } /* put back the real receive function */ rte_mb(); enic_pick_rx_handler(eth_dev); rte_eth_fp_ops[enic->port_id].rx_pkt_burst = eth_dev->rx_pkt_burst; rte_mb(); /* restart Rx traffic */ for (rq_idx = 0; rq_idx < enic->rq_count; rq_idx++) { rq = &enic->rq[enic_rte_rq_idx_to_sop_idx(rq_idx)]; if (rq->is_sop && rq->in_use) enic_start_rq(enic, rq_idx); } set_mtu_done: dev_info(enic, "MTU changed from %u to %u\n", old_mtu, new_mtu); rte_spinlock_unlock(&enic->mtu_lock); return rc; } static void enic_disable_overlay_offload(struct enic *enic) { /* * Disabling fails if the feature is provisioned but * not enabled. So ignore result and do not log error. */ if (enic->vxlan) { vnic_dev_overlay_offload_ctrl(enic->vdev, OVERLAY_FEATURE_VXLAN, OVERLAY_OFFLOAD_DISABLE); } if (enic->geneve) { vnic_dev_overlay_offload_ctrl(enic->vdev, OVERLAY_FEATURE_GENEVE, OVERLAY_OFFLOAD_DISABLE); } } static int enic_enable_overlay_offload(struct enic *enic) { if (enic->vxlan && vnic_dev_overlay_offload_ctrl(enic->vdev, OVERLAY_FEATURE_VXLAN, OVERLAY_OFFLOAD_ENABLE) != 0) { dev_err(NULL, "failed to enable VXLAN offload\n"); return -EINVAL; } if (enic->geneve && vnic_dev_overlay_offload_ctrl(enic->vdev, OVERLAY_FEATURE_GENEVE, OVERLAY_OFFLOAD_ENABLE) != 0) { dev_err(NULL, "failed to enable Geneve offload\n"); return -EINVAL; } enic->tx_offload_capa |= RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM | (enic->geneve ? RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO : 0) | (enic->vxlan ? RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO : 0); enic->tx_offload_mask |= RTE_MBUF_F_TX_OUTER_IPV6 | RTE_MBUF_F_TX_OUTER_IPV4 | RTE_MBUF_F_TX_OUTER_IP_CKSUM | RTE_MBUF_F_TX_TUNNEL_MASK; enic->overlay_offload = true; if (enic->vxlan && enic->geneve) dev_info(NULL, "Overlay offload is enabled (VxLAN, Geneve)\n"); else if (enic->vxlan) dev_info(NULL, "Overlay offload is enabled (VxLAN)\n"); else dev_info(NULL, "Overlay offload is enabled (Geneve)\n"); return 0; } static int enic_reset_overlay_port(struct enic *enic) { if (enic->vxlan) { enic->vxlan_port = RTE_VXLAN_DEFAULT_PORT; /* * Reset the vxlan port to the default, as the NIC firmware * does not reset it automatically and keeps the old setting. */ if (vnic_dev_overlay_offload_cfg(enic->vdev, OVERLAY_CFG_VXLAN_PORT_UPDATE, RTE_VXLAN_DEFAULT_PORT)) { dev_err(enic, "failed to update vxlan port\n"); return -EINVAL; } } if (enic->geneve) { enic->geneve_port = RTE_GENEVE_DEFAULT_PORT; if (vnic_dev_overlay_offload_cfg(enic->vdev, OVERLAY_CFG_GENEVE_PORT_UPDATE, RTE_GENEVE_DEFAULT_PORT)) { dev_err(enic, "failed to update vxlan port\n"); return -EINVAL; } } return 0; } static int enic_dev_init(struct enic *enic) { int err; struct rte_eth_dev *eth_dev = enic->rte_dev; vnic_dev_intr_coal_timer_info_default(enic->vdev); /* Get vNIC configuration */ err = enic_get_vnic_config(enic); if (err) { dev_err(dev, "Get vNIC configuration failed, aborting\n"); return err; } /* Get available resource counts */ enic_get_res_counts(enic); if (enic->conf_rq_count == 1) { dev_err(enic, "Running with only 1 RQ configured in the vNIC is not supported.\n"); dev_err(enic, "Please configure 2 RQs in the vNIC for each Rx queue used by DPDK.\n"); dev_err(enic, "See the ENIC PMD guide for more information.\n"); return -EINVAL; } /* Queue counts may be zeros. rte_zmalloc returns NULL in that case. */ enic->cq = rte_zmalloc("enic_vnic_cq", sizeof(struct vnic_cq) * enic->conf_cq_count, 8); enic->intr = rte_zmalloc("enic_vnic_intr", sizeof(struct vnic_intr) * enic->conf_intr_count, 8); enic->rq = rte_zmalloc("enic_vnic_rq", sizeof(struct vnic_rq) * enic->conf_rq_count, 8); enic->wq = rte_zmalloc("enic_vnic_wq", sizeof(struct vnic_wq) * enic->conf_wq_count, 8); if (enic->conf_cq_count > 0 && enic->cq == NULL) { dev_err(enic, "failed to allocate vnic_cq, aborting.\n"); return -1; } if (enic->conf_intr_count > 0 && enic->intr == NULL) { dev_err(enic, "failed to allocate vnic_intr, aborting.\n"); return -1; } if (enic->conf_rq_count > 0 && enic->rq == NULL) { dev_err(enic, "failed to allocate vnic_rq, aborting.\n"); return -1; } if (enic->conf_wq_count > 0 && enic->wq == NULL) { dev_err(enic, "failed to allocate vnic_wq, aborting.\n"); return -1; } eth_dev->data->mac_addrs = rte_zmalloc("enic_mac_addr", sizeof(struct rte_ether_addr) * ENIC_UNICAST_PERFECT_FILTERS, 0); if (!eth_dev->data->mac_addrs) { dev_err(enic, "mac addr storage alloc failed, aborting.\n"); return -1; } rte_ether_addr_copy((struct rte_ether_addr *)enic->mac_addr, eth_dev->data->mac_addrs); vnic_dev_set_reset_flag(enic->vdev, 0); LIST_INIT(&enic->flows); /* set up link status checking */ vnic_dev_notify_set(enic->vdev, -1); /* No Intr for notify */ enic->overlay_offload = false; /* * First, explicitly disable overlay offload as the setting is * sticky, and resetting vNIC may not disable it. */ enic_disable_overlay_offload(enic); /* Then, enable overlay offload according to vNIC flags */ if (!enic->disable_overlay && (enic->vxlan || enic->geneve)) { err = enic_enable_overlay_offload(enic); if (err) { dev_info(NULL, "failed to enable overlay offload\n"); return err; } } /* * Reset the vxlan/geneve port if HW parsing is available. It * is always enabled regardless of overlay offload * enable/disable. */ err = enic_reset_overlay_port(enic); if (err) return err; if (enic_fm_init(enic)) dev_warning(enic, "Init of flowman failed.\n"); return 0; } static void lock_devcmd(void *priv) { struct enic *enic = priv; rte_spinlock_lock(&enic->devcmd_lock); } static void unlock_devcmd(void *priv) { struct enic *enic = priv; rte_spinlock_unlock(&enic->devcmd_lock); } int enic_probe(struct enic *enic) { struct rte_pci_device *pdev = enic->pdev; int err = -1; dev_debug(enic, "Initializing ENIC PMD\n"); /* if this is a secondary process the hardware is already initialized */ if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; enic->bar0.vaddr = (void *)pdev->mem_resource[0].addr; enic->bar0.len = pdev->mem_resource[0].len; /* Register vNIC device */ enic->vdev = vnic_dev_register(NULL, enic, enic->pdev, &enic->bar0, 1); if (!enic->vdev) { dev_err(enic, "vNIC registration failed, aborting\n"); goto err_out; } LIST_INIT(&enic->memzone_list); rte_spinlock_init(&enic->memzone_list_lock); vnic_register_cbacks(enic->vdev, enic_alloc_consistent, enic_free_consistent); /* * Allocate the consistent memory for stats upfront so both primary and * secondary processes can dump stats. */ err = vnic_dev_alloc_stats_mem(enic->vdev); if (err) { dev_err(enic, "Failed to allocate cmd memory, aborting\n"); goto err_out_unregister; } /* Issue device open to get device in known state */ err = enic_dev_open(enic); if (err) { dev_err(enic, "vNIC dev open failed, aborting\n"); goto err_out_unregister; } /* Set ingress vlan rewrite mode before vnic initialization */ dev_debug(enic, "Set ig_vlan_rewrite_mode=%u\n", enic->ig_vlan_rewrite_mode); err = vnic_dev_set_ig_vlan_rewrite_mode(enic->vdev, enic->ig_vlan_rewrite_mode); if (err) { dev_err(enic, "Failed to set ingress vlan rewrite mode, aborting.\n"); goto err_out_dev_close; } /* Issue device init to initialize the vnic-to-switch link. * We'll start with carrier off and wait for link UP * notification later to turn on carrier. We don't need * to wait here for the vnic-to-switch link initialization * to complete; link UP notification is the indication that * the process is complete. */ err = vnic_dev_init(enic->vdev, 0); if (err) { dev_err(enic, "vNIC dev init failed, aborting\n"); goto err_out_dev_close; } err = enic_dev_init(enic); if (err) { dev_err(enic, "Device initialization failed, aborting\n"); goto err_out_dev_close; } /* Use a PF spinlock to serialize devcmd from PF and VF representors */ if (enic->switchdev_mode) { rte_spinlock_init(&enic->devcmd_lock); vnic_register_lock(enic->vdev, lock_devcmd, unlock_devcmd); } return 0; err_out_dev_close: vnic_dev_close(enic->vdev); err_out_unregister: vnic_dev_unregister(enic->vdev); err_out: return err; } void enic_remove(struct enic *enic) { enic_dev_deinit(enic); vnic_dev_close(enic->vdev); vnic_dev_unregister(enic->vdev); }