/* SPDX-License-Identifier: BSD-3-Clause * Copyright(C) 2019 Marvell International Ltd. */ #ifndef __OTX2_TIM_WORKER_H__ #define __OTX2_TIM_WORKER_H__ #include "otx2_tim_evdev.h" static inline uint8_t tim_bkt_fetch_lock(uint64_t w1) { return (w1 >> TIM_BUCKET_W1_S_LOCK) & TIM_BUCKET_W1_M_LOCK; } static inline int16_t tim_bkt_fetch_rem(uint64_t w1) { return (w1 >> TIM_BUCKET_W1_S_CHUNK_REMAINDER) & TIM_BUCKET_W1_M_CHUNK_REMAINDER; } static inline int16_t tim_bkt_get_rem(struct otx2_tim_bkt *bktp) { return __atomic_load_n(&bktp->chunk_remainder, __ATOMIC_ACQUIRE); } static inline void tim_bkt_set_rem(struct otx2_tim_bkt *bktp, uint16_t v) { __atomic_store_n(&bktp->chunk_remainder, v, __ATOMIC_RELAXED); } static inline void tim_bkt_sub_rem(struct otx2_tim_bkt *bktp, uint16_t v) { __atomic_fetch_sub(&bktp->chunk_remainder, v, __ATOMIC_RELAXED); } static inline uint8_t tim_bkt_get_hbt(uint64_t w1) { return (w1 >> TIM_BUCKET_W1_S_HBT) & TIM_BUCKET_W1_M_HBT; } static inline uint8_t tim_bkt_get_bsk(uint64_t w1) { return (w1 >> TIM_BUCKET_W1_S_BSK) & TIM_BUCKET_W1_M_BSK; } static inline uint64_t tim_bkt_clr_bsk(struct otx2_tim_bkt *bktp) { /* Clear everything except lock. */ const uint64_t v = TIM_BUCKET_W1_M_LOCK << TIM_BUCKET_W1_S_LOCK; return __atomic_fetch_and(&bktp->w1, v, __ATOMIC_ACQ_REL); } static inline uint64_t tim_bkt_fetch_sema_lock(struct otx2_tim_bkt *bktp) { return __atomic_fetch_add(&bktp->w1, TIM_BUCKET_SEMA_WLOCK, __ATOMIC_ACQUIRE); } static inline uint64_t tim_bkt_fetch_sema(struct otx2_tim_bkt *bktp) { return __atomic_fetch_add(&bktp->w1, TIM_BUCKET_SEMA, __ATOMIC_RELAXED); } static inline uint64_t tim_bkt_inc_lock(struct otx2_tim_bkt *bktp) { const uint64_t v = 1ull << TIM_BUCKET_W1_S_LOCK; return __atomic_fetch_add(&bktp->w1, v, __ATOMIC_ACQUIRE); } static inline void tim_bkt_dec_lock(struct otx2_tim_bkt *bktp) { __atomic_fetch_sub(&bktp->lock, 1, __ATOMIC_RELEASE); } static inline void tim_bkt_dec_lock_relaxed(struct otx2_tim_bkt *bktp) { __atomic_fetch_sub(&bktp->lock, 1, __ATOMIC_RELAXED); } static inline uint32_t tim_bkt_get_nent(uint64_t w1) { return (w1 >> TIM_BUCKET_W1_S_NUM_ENTRIES) & TIM_BUCKET_W1_M_NUM_ENTRIES; } static inline void tim_bkt_inc_nent(struct otx2_tim_bkt *bktp) { __atomic_add_fetch(&bktp->nb_entry, 1, __ATOMIC_RELAXED); } static inline void tim_bkt_add_nent(struct otx2_tim_bkt *bktp, uint32_t v) { __atomic_add_fetch(&bktp->nb_entry, v, __ATOMIC_RELAXED); } static inline uint64_t tim_bkt_clr_nent(struct otx2_tim_bkt *bktp) { const uint64_t v = ~(TIM_BUCKET_W1_M_NUM_ENTRIES << TIM_BUCKET_W1_S_NUM_ENTRIES); return __atomic_and_fetch(&bktp->w1, v, __ATOMIC_ACQ_REL); } static inline uint64_t tim_bkt_fast_mod(uint64_t n, uint64_t d, struct rte_reciprocal_u64 R) { return (n - (d * rte_reciprocal_divide_u64(n, &R))); } static __rte_always_inline void tim_get_target_bucket(struct otx2_tim_ring *const tim_ring, const uint32_t rel_bkt, struct otx2_tim_bkt **bkt, struct otx2_tim_bkt **mirr_bkt) { const uint64_t bkt_cyc = tim_cntvct() - tim_ring->ring_start_cyc; uint64_t bucket = rte_reciprocal_divide_u64(bkt_cyc, &tim_ring->fast_div) + rel_bkt; uint64_t mirr_bucket = 0; bucket = tim_bkt_fast_mod(bucket, tim_ring->nb_bkts, tim_ring->fast_bkt); mirr_bucket = tim_bkt_fast_mod(bucket + (tim_ring->nb_bkts >> 1), tim_ring->nb_bkts, tim_ring->fast_bkt); *bkt = &tim_ring->bkt[bucket]; *mirr_bkt = &tim_ring->bkt[mirr_bucket]; } static struct otx2_tim_ent * tim_clr_bkt(struct otx2_tim_ring * const tim_ring, struct otx2_tim_bkt * const bkt) { #define TIM_MAX_OUTSTANDING_OBJ 64 void *pend_chunks[TIM_MAX_OUTSTANDING_OBJ]; struct otx2_tim_ent *chunk; struct otx2_tim_ent *pnext; uint8_t objs = 0; chunk = ((struct otx2_tim_ent *)(uintptr_t)bkt->first_chunk); chunk = (struct otx2_tim_ent *)(uintptr_t)(chunk + tim_ring->nb_chunk_slots)->w0; while (chunk) { pnext = (struct otx2_tim_ent *)(uintptr_t) ((chunk + tim_ring->nb_chunk_slots)->w0); if (objs == TIM_MAX_OUTSTANDING_OBJ) { rte_mempool_put_bulk(tim_ring->chunk_pool, pend_chunks, objs); objs = 0; } pend_chunks[objs++] = chunk; chunk = pnext; } if (objs) rte_mempool_put_bulk(tim_ring->chunk_pool, pend_chunks, objs); return (struct otx2_tim_ent *)(uintptr_t)bkt->first_chunk; } static struct otx2_tim_ent * tim_refill_chunk(struct otx2_tim_bkt * const bkt, struct otx2_tim_bkt * const mirr_bkt, struct otx2_tim_ring * const tim_ring) { struct otx2_tim_ent *chunk; if (bkt->nb_entry || !bkt->first_chunk) { if (unlikely(rte_mempool_get(tim_ring->chunk_pool, (void **)&chunk))) return NULL; if (bkt->nb_entry) { *(uint64_t *)(((struct otx2_tim_ent *) mirr_bkt->current_chunk) + tim_ring->nb_chunk_slots) = (uintptr_t)chunk; } else { bkt->first_chunk = (uintptr_t)chunk; } } else { chunk = tim_clr_bkt(tim_ring, bkt); bkt->first_chunk = (uintptr_t)chunk; } *(uint64_t *)(chunk + tim_ring->nb_chunk_slots) = 0; return chunk; } static struct otx2_tim_ent * tim_insert_chunk(struct otx2_tim_bkt * const bkt, struct otx2_tim_bkt * const mirr_bkt, struct otx2_tim_ring * const tim_ring) { struct otx2_tim_ent *chunk; if (unlikely(rte_mempool_get(tim_ring->chunk_pool, (void **)&chunk))) return NULL; *(uint64_t *)(chunk + tim_ring->nb_chunk_slots) = 0; if (bkt->nb_entry) { *(uint64_t *)(((struct otx2_tim_ent *)(uintptr_t) mirr_bkt->current_chunk) + tim_ring->nb_chunk_slots) = (uintptr_t)chunk; } else { bkt->first_chunk = (uintptr_t)chunk; } return chunk; } static __rte_always_inline int tim_add_entry_sp(struct otx2_tim_ring * const tim_ring, const uint32_t rel_bkt, struct rte_event_timer * const tim, const struct otx2_tim_ent * const pent, const uint8_t flags) { struct otx2_tim_bkt *mirr_bkt; struct otx2_tim_ent *chunk; struct otx2_tim_bkt *bkt; uint64_t lock_sema; int16_t rem; __retry: tim_get_target_bucket(tim_ring, rel_bkt, &bkt, &mirr_bkt); /* Get Bucket sema*/ lock_sema = tim_bkt_fetch_sema_lock(bkt); /* Bucket related checks. */ if (unlikely(tim_bkt_get_hbt(lock_sema))) { if (tim_bkt_get_nent(lock_sema) != 0) { uint64_t hbt_state; #ifdef RTE_ARCH_ARM64 asm volatile(" ldxr %[hbt], [%[w1]] \n" " tbz %[hbt], 33, dne%= \n" " sevl \n" "rty%=: wfe \n" " ldxr %[hbt], [%[w1]] \n" " tbnz %[hbt], 33, rty%= \n" "dne%=: \n" : [hbt] "=&r"(hbt_state) : [w1] "r"((&bkt->w1)) : "memory"); #else do { hbt_state = __atomic_load_n(&bkt->w1, __ATOMIC_RELAXED); } while (hbt_state & BIT_ULL(33)); #endif if (!(hbt_state & BIT_ULL(34))) { tim_bkt_dec_lock(bkt); goto __retry; } } } /* Insert the work. */ rem = tim_bkt_fetch_rem(lock_sema); if (!rem) { if (flags & OTX2_TIM_ENA_FB) chunk = tim_refill_chunk(bkt, mirr_bkt, tim_ring); if (flags & OTX2_TIM_ENA_DFB) chunk = tim_insert_chunk(bkt, mirr_bkt, tim_ring); if (unlikely(chunk == NULL)) { bkt->chunk_remainder = 0; tim->impl_opaque[0] = 0; tim->impl_opaque[1] = 0; tim->state = RTE_EVENT_TIMER_ERROR; tim_bkt_dec_lock(bkt); return -ENOMEM; } mirr_bkt->current_chunk = (uintptr_t)chunk; bkt->chunk_remainder = tim_ring->nb_chunk_slots - 1; } else { chunk = (struct otx2_tim_ent *)mirr_bkt->current_chunk; chunk += tim_ring->nb_chunk_slots - rem; } /* Copy work entry. */ *chunk = *pent; tim->impl_opaque[0] = (uintptr_t)chunk; tim->impl_opaque[1] = (uintptr_t)bkt; __atomic_store_n(&tim->state, RTE_EVENT_TIMER_ARMED, __ATOMIC_RELEASE); tim_bkt_inc_nent(bkt); tim_bkt_dec_lock_relaxed(bkt); return 0; } static __rte_always_inline int tim_add_entry_mp(struct otx2_tim_ring * const tim_ring, const uint32_t rel_bkt, struct rte_event_timer * const tim, const struct otx2_tim_ent * const pent, const uint8_t flags) { struct otx2_tim_bkt *mirr_bkt; struct otx2_tim_ent *chunk; struct otx2_tim_bkt *bkt; uint64_t lock_sema; int16_t rem; __retry: tim_get_target_bucket(tim_ring, rel_bkt, &bkt, &mirr_bkt); /* Get Bucket sema*/ lock_sema = tim_bkt_fetch_sema_lock(bkt); /* Bucket related checks. */ if (unlikely(tim_bkt_get_hbt(lock_sema))) { if (tim_bkt_get_nent(lock_sema) != 0) { uint64_t hbt_state; #ifdef RTE_ARCH_ARM64 asm volatile(" ldxr %[hbt], [%[w1]] \n" " tbz %[hbt], 33, dne%= \n" " sevl \n" "rty%=: wfe \n" " ldxr %[hbt], [%[w1]] \n" " tbnz %[hbt], 33, rty%= \n" "dne%=: \n" : [hbt] "=&r"(hbt_state) : [w1] "r"((&bkt->w1)) : "memory"); #else do { hbt_state = __atomic_load_n(&bkt->w1, __ATOMIC_RELAXED); } while (hbt_state & BIT_ULL(33)); #endif if (!(hbt_state & BIT_ULL(34))) { tim_bkt_dec_lock(bkt); goto __retry; } } } rem = tim_bkt_fetch_rem(lock_sema); if (rem < 0) { tim_bkt_dec_lock(bkt); #ifdef RTE_ARCH_ARM64 uint64_t w1; asm volatile(" ldxr %[w1], [%[crem]] \n" " tbz %[w1], 63, dne%= \n" " sevl \n" "rty%=: wfe \n" " ldxr %[w1], [%[crem]] \n" " tbnz %[w1], 63, rty%= \n" "dne%=: \n" : [w1] "=&r"(w1) : [crem] "r"(&bkt->w1) : "memory"); #else while (__atomic_load_n((int64_t *)&bkt->w1, __ATOMIC_RELAXED) < 0) ; #endif goto __retry; } else if (!rem) { /* Only one thread can be here*/ if (flags & OTX2_TIM_ENA_FB) chunk = tim_refill_chunk(bkt, mirr_bkt, tim_ring); if (flags & OTX2_TIM_ENA_DFB) chunk = tim_insert_chunk(bkt, mirr_bkt, tim_ring); if (unlikely(chunk == NULL)) { tim->impl_opaque[0] = 0; tim->impl_opaque[1] = 0; tim->state = RTE_EVENT_TIMER_ERROR; tim_bkt_set_rem(bkt, 0); tim_bkt_dec_lock(bkt); return -ENOMEM; } *chunk = *pent; if (tim_bkt_fetch_lock(lock_sema)) { do { lock_sema = __atomic_load_n(&bkt->w1, __ATOMIC_RELAXED); } while (tim_bkt_fetch_lock(lock_sema) - 1); rte_atomic_thread_fence(__ATOMIC_ACQUIRE); } mirr_bkt->current_chunk = (uintptr_t)chunk; __atomic_store_n(&bkt->chunk_remainder, tim_ring->nb_chunk_slots - 1, __ATOMIC_RELEASE); } else { chunk = (struct otx2_tim_ent *)mirr_bkt->current_chunk; chunk += tim_ring->nb_chunk_slots - rem; *chunk = *pent; } tim->impl_opaque[0] = (uintptr_t)chunk; tim->impl_opaque[1] = (uintptr_t)bkt; __atomic_store_n(&tim->state, RTE_EVENT_TIMER_ARMED, __ATOMIC_RELEASE); tim_bkt_inc_nent(bkt); tim_bkt_dec_lock_relaxed(bkt); return 0; } static inline uint16_t tim_cpy_wrk(uint16_t index, uint16_t cpy_lmt, struct otx2_tim_ent *chunk, struct rte_event_timer ** const tim, const struct otx2_tim_ent * const ents, const struct otx2_tim_bkt * const bkt) { for (; index < cpy_lmt; index++) { *chunk = *(ents + index); tim[index]->impl_opaque[0] = (uintptr_t)chunk++; tim[index]->impl_opaque[1] = (uintptr_t)bkt; tim[index]->state = RTE_EVENT_TIMER_ARMED; } return index; } /* Burst mode functions */ static inline int tim_add_entry_brst(struct otx2_tim_ring * const tim_ring, const uint16_t rel_bkt, struct rte_event_timer ** const tim, const struct otx2_tim_ent *ents, const uint16_t nb_timers, const uint8_t flags) { struct otx2_tim_ent *chunk = NULL; struct otx2_tim_bkt *mirr_bkt; struct otx2_tim_bkt *bkt; uint16_t chunk_remainder; uint16_t index = 0; uint64_t lock_sema; int16_t rem, crem; uint8_t lock_cnt; __retry: tim_get_target_bucket(tim_ring, rel_bkt, &bkt, &mirr_bkt); /* Only one thread beyond this. */ lock_sema = tim_bkt_inc_lock(bkt); lock_cnt = (uint8_t) ((lock_sema >> TIM_BUCKET_W1_S_LOCK) & TIM_BUCKET_W1_M_LOCK); if (lock_cnt) { tim_bkt_dec_lock(bkt); #ifdef RTE_ARCH_ARM64 asm volatile(" ldxrb %w[lock_cnt], [%[lock]] \n" " tst %w[lock_cnt], 255 \n" " beq dne%= \n" " sevl \n" "rty%=: wfe \n" " ldxrb %w[lock_cnt], [%[lock]] \n" " tst %w[lock_cnt], 255 \n" " bne rty%= \n" "dne%=: \n" : [lock_cnt] "=&r"(lock_cnt) : [lock] "r"(&bkt->lock) : "memory"); #else while (__atomic_load_n(&bkt->lock, __ATOMIC_RELAXED)) ; #endif goto __retry; } /* Bucket related checks. */ if (unlikely(tim_bkt_get_hbt(lock_sema))) { if (tim_bkt_get_nent(lock_sema) != 0) { uint64_t hbt_state; #ifdef RTE_ARCH_ARM64 asm volatile(" ldxr %[hbt], [%[w1]] \n" " tbz %[hbt], 33, dne%= \n" " sevl \n" "rty%=: wfe \n" " ldxr %[hbt], [%[w1]] \n" " tbnz %[hbt], 33, rty%= \n" "dne%=: \n" : [hbt] "=&r"(hbt_state) : [w1] "r"((&bkt->w1)) : "memory"); #else do { hbt_state = __atomic_load_n(&bkt->w1, __ATOMIC_RELAXED); } while (hbt_state & BIT_ULL(33)); #endif if (!(hbt_state & BIT_ULL(34))) { tim_bkt_dec_lock(bkt); goto __retry; } } } chunk_remainder = tim_bkt_fetch_rem(lock_sema); rem = chunk_remainder - nb_timers; if (rem < 0) { crem = tim_ring->nb_chunk_slots - chunk_remainder; if (chunk_remainder && crem) { chunk = ((struct otx2_tim_ent *) mirr_bkt->current_chunk) + crem; index = tim_cpy_wrk(index, chunk_remainder, chunk, tim, ents, bkt); tim_bkt_sub_rem(bkt, chunk_remainder); tim_bkt_add_nent(bkt, chunk_remainder); } if (flags & OTX2_TIM_ENA_FB) chunk = tim_refill_chunk(bkt, mirr_bkt, tim_ring); if (flags & OTX2_TIM_ENA_DFB) chunk = tim_insert_chunk(bkt, mirr_bkt, tim_ring); if (unlikely(chunk == NULL)) { tim_bkt_dec_lock(bkt); rte_errno = ENOMEM; tim[index]->state = RTE_EVENT_TIMER_ERROR; return crem; } *(uint64_t *)(chunk + tim_ring->nb_chunk_slots) = 0; mirr_bkt->current_chunk = (uintptr_t)chunk; tim_cpy_wrk(index, nb_timers, chunk, tim, ents, bkt); rem = nb_timers - chunk_remainder; tim_bkt_set_rem(bkt, tim_ring->nb_chunk_slots - rem); tim_bkt_add_nent(bkt, rem); } else { chunk = (struct otx2_tim_ent *)mirr_bkt->current_chunk; chunk += (tim_ring->nb_chunk_slots - chunk_remainder); tim_cpy_wrk(index, nb_timers, chunk, tim, ents, bkt); tim_bkt_sub_rem(bkt, nb_timers); tim_bkt_add_nent(bkt, nb_timers); } tim_bkt_dec_lock(bkt); return nb_timers; } static int tim_rm_entry(struct rte_event_timer *tim) { struct otx2_tim_ent *entry; struct otx2_tim_bkt *bkt; uint64_t lock_sema; if (tim->impl_opaque[1] == 0 || tim->impl_opaque[0] == 0) return -ENOENT; entry = (struct otx2_tim_ent *)(uintptr_t)tim->impl_opaque[0]; if (entry->wqe != tim->ev.u64) { tim->impl_opaque[0] = 0; tim->impl_opaque[1] = 0; return -ENOENT; } bkt = (struct otx2_tim_bkt *)(uintptr_t)tim->impl_opaque[1]; lock_sema = tim_bkt_inc_lock(bkt); if (tim_bkt_get_hbt(lock_sema) || !tim_bkt_get_nent(lock_sema)) { tim->impl_opaque[0] = 0; tim->impl_opaque[1] = 0; tim_bkt_dec_lock(bkt); return -ENOENT; } entry->w0 = 0; entry->wqe = 0; tim->state = RTE_EVENT_TIMER_CANCELED; tim->impl_opaque[0] = 0; tim->impl_opaque[1] = 0; tim_bkt_dec_lock(bkt); return 0; } #endif /* __OTX2_TIM_WORKER_H__ */