/* SPDX-License-Identifier: BSD-3-Clause * Copyright(C) 2021 Marvell. */ #ifndef __CN10K_WORKER_H__ #define __CN10K_WORKER_H__ #include #include "cn10k_cryptodev_ops.h" #include "cnxk_ethdev.h" #include "cnxk_eventdev.h" #include "cnxk_worker.h" #include "cn10k_ethdev.h" #include "cn10k_rx.h" #include "cn10k_tx.h" /* SSO Operations */ static __rte_always_inline uint8_t cn10k_sso_hws_new_event(struct cn10k_sso_hws *ws, const struct rte_event *ev) { const uint32_t tag = (uint32_t)ev->event; const uint8_t new_tt = ev->sched_type; const uint64_t event_ptr = ev->u64; const uint16_t grp = ev->queue_id; rte_atomic_thread_fence(__ATOMIC_ACQ_REL); if (ws->xaq_lmt <= *ws->fc_mem) return 0; cnxk_sso_hws_add_work(event_ptr, tag, new_tt, ws->grp_base + (grp << 12)); return 1; } static __rte_always_inline void cn10k_sso_hws_fwd_swtag(struct cn10k_sso_hws *ws, const struct rte_event *ev) { const uint32_t tag = (uint32_t)ev->event; const uint8_t new_tt = ev->sched_type; const uint8_t cur_tt = CNXK_TT_FROM_TAG(plt_read64(ws->base + SSOW_LF_GWS_WQE0)); /* CNXK model * cur_tt/new_tt SSO_TT_ORDERED SSO_TT_ATOMIC SSO_TT_UNTAGGED * * SSO_TT_ORDERED norm norm untag * SSO_TT_ATOMIC norm norm untag * SSO_TT_UNTAGGED norm norm NOOP */ if (new_tt == SSO_TT_UNTAGGED) { if (cur_tt != SSO_TT_UNTAGGED) cnxk_sso_hws_swtag_untag(ws->base + SSOW_LF_GWS_OP_SWTAG_UNTAG); } else { cnxk_sso_hws_swtag_norm(tag, new_tt, ws->base + SSOW_LF_GWS_OP_SWTAG_NORM); } ws->swtag_req = 1; } static __rte_always_inline void cn10k_sso_hws_fwd_group(struct cn10k_sso_hws *ws, const struct rte_event *ev, const uint16_t grp) { const uint32_t tag = (uint32_t)ev->event; const uint8_t new_tt = ev->sched_type; plt_write64(ev->u64, ws->base + SSOW_LF_GWS_OP_UPD_WQP_GRP1); cnxk_sso_hws_swtag_desched(tag, new_tt, grp, ws->base + SSOW_LF_GWS_OP_SWTAG_DESCHED); } static __rte_always_inline void cn10k_sso_hws_forward_event(struct cn10k_sso_hws *ws, const struct rte_event *ev) { const uint8_t grp = ev->queue_id; /* Group hasn't changed, Use SWTAG to forward the event */ if (CNXK_GRP_FROM_TAG(plt_read64(ws->base + SSOW_LF_GWS_WQE0)) == grp) cn10k_sso_hws_fwd_swtag(ws, ev); else /* * Group has been changed for group based work pipelining, * Use deschedule/add_work operation to transfer the event to * new group/core */ cn10k_sso_hws_fwd_group(ws, ev, grp); } static __rte_always_inline void cn10k_wqe_to_mbuf(uint64_t wqe, const uint64_t mbuf, uint8_t port_id, const uint32_t tag, const uint32_t flags, const void *const lookup_mem) { const uint64_t mbuf_init = 0x100010000ULL | RTE_PKTMBUF_HEADROOM | (flags & NIX_RX_OFFLOAD_TSTAMP_F ? 8 : 0); cn10k_nix_cqe_to_mbuf((struct nix_cqe_hdr_s *)wqe, tag, (struct rte_mbuf *)mbuf, lookup_mem, mbuf_init | ((uint64_t)port_id) << 48, flags); } static __rte_always_inline void cn10k_process_vwqe(uintptr_t vwqe, uint16_t port_id, const uint32_t flags, void *lookup_mem, void *tstamp, uintptr_t lbase) { uint64_t mbuf_init = 0x100010000ULL | RTE_PKTMBUF_HEADROOM | (flags & NIX_RX_OFFLOAD_TSTAMP_F ? 8 : 0); struct rte_event_vector *vec; uint64_t aura_handle, laddr; uint16_t nb_mbufs, non_vec; uint16_t lmt_id, d_off; struct rte_mbuf *mbuf; uint8_t loff = 0; uint64_t sa_base; uint64_t **wqe; mbuf_init |= ((uint64_t)port_id) << 48; vec = (struct rte_event_vector *)vwqe; wqe = vec->u64s; nb_mbufs = RTE_ALIGN_FLOOR(vec->nb_elem, NIX_DESCS_PER_LOOP); nb_mbufs = cn10k_nix_recv_pkts_vector(&mbuf_init, vec->mbufs, nb_mbufs, flags | NIX_RX_VWQE_F, lookup_mem, tstamp, lbase); wqe += nb_mbufs; non_vec = vec->nb_elem - nb_mbufs; if (flags & NIX_RX_OFFLOAD_SECURITY_F && non_vec) { mbuf = (struct rte_mbuf *)((uintptr_t)wqe[0] - sizeof(struct rte_mbuf)); /* Pick first mbuf's aura handle assuming all * mbufs are from a vec and are from same RQ. */ aura_handle = mbuf->pool->pool_id; ROC_LMT_BASE_ID_GET(lbase, lmt_id); laddr = lbase; laddr += 8; d_off = ((uintptr_t)mbuf->buf_addr - (uintptr_t)mbuf); d_off += (mbuf_init & 0xFFFF); sa_base = cnxk_nix_sa_base_get(mbuf_init >> 48, lookup_mem); sa_base &= ~(ROC_NIX_INL_SA_BASE_ALIGN - 1); } while (non_vec) { struct nix_cqe_hdr_s *cqe = (struct nix_cqe_hdr_s *)wqe[0]; uint64_t tstamp_ptr; mbuf = (struct rte_mbuf *)((char *)cqe - sizeof(struct rte_mbuf)); /* Translate meta to mbuf */ if (flags & NIX_RX_OFFLOAD_SECURITY_F) { const uint64_t cq_w1 = *((const uint64_t *)cqe + 1); mbuf = nix_sec_meta_to_mbuf_sc(cq_w1, sa_base, laddr, &loff, mbuf, d_off); } cn10k_nix_cqe_to_mbuf(cqe, cqe->tag, mbuf, lookup_mem, mbuf_init, flags); /* Extracting tstamp, if PTP enabled*/ tstamp_ptr = *(uint64_t *)(((struct nix_wqe_hdr_s *)cqe) + CNXK_SSO_WQE_SG_PTR); cnxk_nix_mbuf_to_tstamp((struct rte_mbuf *)mbuf, tstamp, flags & NIX_RX_OFFLOAD_TSTAMP_F, (uint64_t *)tstamp_ptr); wqe[0] = (uint64_t *)mbuf; non_vec--; wqe++; } /* Free remaining meta buffers if any */ if (flags & NIX_RX_OFFLOAD_SECURITY_F && loff) { nix_sec_flush_meta(laddr, lmt_id, loff, aura_handle); plt_io_wmb(); } } static __rte_always_inline uint16_t cn10k_sso_hws_get_work(struct cn10k_sso_hws *ws, struct rte_event *ev, const uint32_t flags, void *lookup_mem) { union { __uint128_t get_work; uint64_t u64[2]; } gw; uint64_t tstamp_ptr; uint64_t mbuf; gw.get_work = ws->gw_wdata; #if defined(RTE_ARCH_ARM64) && !defined(__clang__) asm volatile( PLT_CPU_FEATURE_PREAMBLE "caspl %[wdata], %H[wdata], %[wdata], %H[wdata], [%[gw_loc]]\n" "sub %[mbuf], %H[wdata], #0x80 \n" : [wdata] "+r"(gw.get_work), [mbuf] "=&r"(mbuf) : [gw_loc] "r"(ws->base + SSOW_LF_GWS_OP_GET_WORK0) : "memory"); #else plt_write64(gw.u64[0], ws->base + SSOW_LF_GWS_OP_GET_WORK0); do { roc_load_pair(gw.u64[0], gw.u64[1], ws->base + SSOW_LF_GWS_WQE0); } while (gw.u64[0] & BIT_ULL(63)); mbuf = (uint64_t)((char *)gw.u64[1] - sizeof(struct rte_mbuf)); #endif gw.u64[0] = (gw.u64[0] & (0x3ull << 32)) << 6 | (gw.u64[0] & (0x3FFull << 36)) << 4 | (gw.u64[0] & 0xffffffff); if (CNXK_TT_FROM_EVENT(gw.u64[0]) != SSO_TT_EMPTY) { if ((flags & CPT_RX_WQE_F) && (CNXK_EVENT_TYPE_FROM_TAG(gw.u64[0]) == RTE_EVENT_TYPE_CRYPTODEV)) { gw.u64[1] = cn10k_cpt_crypto_adapter_dequeue(gw.u64[1]); } else if (CNXK_EVENT_TYPE_FROM_TAG(gw.u64[0]) == RTE_EVENT_TYPE_ETHDEV) { uint8_t port = CNXK_SUB_EVENT_FROM_TAG(gw.u64[0]); if (flags & NIX_RX_OFFLOAD_SECURITY_F) { struct rte_mbuf *m; uintptr_t sa_base; uint64_t iova = 0; uint8_t loff = 0; uint16_t d_off; uint64_t cq_w1; m = (struct rte_mbuf *)mbuf; d_off = (uintptr_t)(m->buf_addr) - (uintptr_t)m; d_off += RTE_PKTMBUF_HEADROOM; cq_w1 = *(uint64_t *)(gw.u64[1] + 8); sa_base = cnxk_nix_sa_base_get(port, lookup_mem); sa_base &= ~(ROC_NIX_INL_SA_BASE_ALIGN - 1); mbuf = (uint64_t)nix_sec_meta_to_mbuf_sc( cq_w1, sa_base, (uintptr_t)&iova, &loff, (struct rte_mbuf *)mbuf, d_off); if (loff) roc_npa_aura_op_free(m->pool->pool_id, 0, iova); } gw.u64[0] = CNXK_CLR_SUB_EVENT(gw.u64[0]); cn10k_wqe_to_mbuf(gw.u64[1], mbuf, port, gw.u64[0] & 0xFFFFF, flags, lookup_mem); /* Extracting tstamp, if PTP enabled*/ tstamp_ptr = *(uint64_t *)(((struct nix_wqe_hdr_s *) gw.u64[1]) + CNXK_SSO_WQE_SG_PTR); cnxk_nix_mbuf_to_tstamp((struct rte_mbuf *)mbuf, ws->tstamp, flags & NIX_RX_OFFLOAD_TSTAMP_F, (uint64_t *)tstamp_ptr); gw.u64[1] = mbuf; } else if (CNXK_EVENT_TYPE_FROM_TAG(gw.u64[0]) == RTE_EVENT_TYPE_ETHDEV_VECTOR) { uint8_t port = CNXK_SUB_EVENT_FROM_TAG(gw.u64[0]); __uint128_t vwqe_hdr = *(__uint128_t *)gw.u64[1]; vwqe_hdr = ((vwqe_hdr >> 64) & 0xFFF) | BIT_ULL(31) | ((vwqe_hdr & 0xFFFF) << 48) | ((uint64_t)port << 32); *(uint64_t *)gw.u64[1] = (uint64_t)vwqe_hdr; cn10k_process_vwqe(gw.u64[1], port, flags, lookup_mem, ws->tstamp, ws->lmt_base); } } ev->event = gw.u64[0]; ev->u64 = gw.u64[1]; return !!gw.u64[1]; } /* Used in cleaning up workslot. */ static __rte_always_inline uint16_t cn10k_sso_hws_get_work_empty(struct cn10k_sso_hws *ws, struct rte_event *ev) { union { __uint128_t get_work; uint64_t u64[2]; } gw; uint64_t mbuf; #ifdef RTE_ARCH_ARM64 asm volatile(PLT_CPU_FEATURE_PREAMBLE " ldp %[tag], %[wqp], [%[tag_loc]] \n" " tbz %[tag], 63, done%= \n" " sevl \n" "rty%=: wfe \n" " ldp %[tag], %[wqp], [%[tag_loc]] \n" " tbnz %[tag], 63, rty%= \n" "done%=: dmb ld \n" " sub %[mbuf], %[wqp], #0x80 \n" : [tag] "=&r"(gw.u64[0]), [wqp] "=&r"(gw.u64[1]), [mbuf] "=&r"(mbuf) : [tag_loc] "r"(ws->base + SSOW_LF_GWS_WQE0) : "memory"); #else do { roc_load_pair(gw.u64[0], gw.u64[1], ws->base + SSOW_LF_GWS_WQE0); } while (gw.u64[0] & BIT_ULL(63)); mbuf = (uint64_t)((char *)gw.u64[1] - sizeof(struct rte_mbuf)); #endif gw.u64[0] = (gw.u64[0] & (0x3ull << 32)) << 6 | (gw.u64[0] & (0x3FFull << 36)) << 4 | (gw.u64[0] & 0xffffffff); if (CNXK_TT_FROM_EVENT(gw.u64[0]) != SSO_TT_EMPTY) { if (CNXK_EVENT_TYPE_FROM_TAG(gw.u64[0]) == RTE_EVENT_TYPE_ETHDEV) { uint8_t port = CNXK_SUB_EVENT_FROM_TAG(gw.u64[0]); gw.u64[0] = CNXK_CLR_SUB_EVENT(gw.u64[0]); cn10k_wqe_to_mbuf(gw.u64[1], mbuf, port, gw.u64[0] & 0xFFFFF, 0, NULL); gw.u64[1] = mbuf; } } ev->event = gw.u64[0]; ev->u64 = gw.u64[1]; return !!gw.u64[1]; } /* CN10K Fastpath functions. */ uint16_t __rte_hot cn10k_sso_hws_enq(void *port, const struct rte_event *ev); uint16_t __rte_hot cn10k_sso_hws_enq_burst(void *port, const struct rte_event ev[], uint16_t nb_events); uint16_t __rte_hot cn10k_sso_hws_enq_new_burst(void *port, const struct rte_event ev[], uint16_t nb_events); uint16_t __rte_hot cn10k_sso_hws_enq_fwd_burst(void *port, const struct rte_event ev[], uint16_t nb_events); uint16_t __rte_hot cn10k_sso_hws_ca_enq(void *port, struct rte_event ev[], uint16_t nb_events); #define R(name, f6, f5, f4, f3, f2, f1, f0, flags) \ uint16_t __rte_hot cn10k_sso_hws_deq_##name( \ void *port, struct rte_event *ev, uint64_t timeout_ticks); \ uint16_t __rte_hot cn10k_sso_hws_deq_burst_##name( \ void *port, struct rte_event ev[], uint16_t nb_events, \ uint64_t timeout_ticks); \ uint16_t __rte_hot cn10k_sso_hws_deq_tmo_##name( \ void *port, struct rte_event *ev, uint64_t timeout_ticks); \ uint16_t __rte_hot cn10k_sso_hws_deq_tmo_burst_##name( \ void *port, struct rte_event ev[], uint16_t nb_events, \ uint64_t timeout_ticks); \ uint16_t __rte_hot cn10k_sso_hws_deq_ca_##name( \ void *port, struct rte_event *ev, uint64_t timeout_ticks); \ uint16_t __rte_hot cn10k_sso_hws_deq_ca_burst_##name( \ void *port, struct rte_event ev[], uint16_t nb_events, \ uint64_t timeout_ticks); \ uint16_t __rte_hot cn10k_sso_hws_deq_seg_##name( \ void *port, struct rte_event *ev, uint64_t timeout_ticks); \ uint16_t __rte_hot cn10k_sso_hws_deq_seg_burst_##name( \ void *port, struct rte_event ev[], uint16_t nb_events, \ uint64_t timeout_ticks); \ uint16_t __rte_hot cn10k_sso_hws_deq_tmo_seg_##name( \ void *port, struct rte_event *ev, uint64_t timeout_ticks); \ uint16_t __rte_hot cn10k_sso_hws_deq_tmo_seg_burst_##name( \ void *port, struct rte_event ev[], uint16_t nb_events, \ uint64_t timeout_ticks); \ uint16_t __rte_hot cn10k_sso_hws_deq_ca_seg_##name( \ void *port, struct rte_event *ev, uint64_t timeout_ticks); \ uint16_t __rte_hot cn10k_sso_hws_deq_ca_seg_burst_##name( \ void *port, struct rte_event ev[], uint16_t nb_events, \ uint64_t timeout_ticks); NIX_RX_FASTPATH_MODES #undef R static __rte_always_inline struct cn10k_eth_txq * cn10k_sso_hws_xtract_meta(struct rte_mbuf *m, const uint64_t txq_data[][RTE_MAX_QUEUES_PER_PORT]) { return (struct cn10k_eth_txq *) txq_data[m->port][rte_event_eth_tx_adapter_txq_get(m)]; } static __rte_always_inline void cn10k_sso_tx_one(struct rte_mbuf *m, uint64_t *cmd, uint16_t lmt_id, uintptr_t lmt_addr, uint8_t sched_type, uintptr_t base, const uint64_t txq_data[][RTE_MAX_QUEUES_PER_PORT], const uint32_t flags) { uint8_t lnum = 0, loff = 0, shft = 0; struct cn10k_eth_txq *txq; uintptr_t laddr; uint16_t segdw; uintptr_t pa; bool sec; txq = cn10k_sso_hws_xtract_meta(m, txq_data); cn10k_nix_tx_skeleton(txq, cmd, flags); /* Perform header writes before barrier * for TSO */ if (flags & NIX_TX_OFFLOAD_TSO_F) cn10k_nix_xmit_prepare_tso(m, flags); cn10k_nix_xmit_prepare(m, cmd, flags, txq->lso_tun_fmt, &sec); laddr = lmt_addr; /* Prepare CPT instruction and get nixtx addr if * it is for CPT on same lmtline. */ if (flags & NIX_TX_OFFLOAD_SECURITY_F && sec) cn10k_nix_prep_sec(m, cmd, &laddr, lmt_addr, &lnum, &loff, &shft, txq->sa_base, flags); /* Move NIX desc to LMT/NIXTX area */ cn10k_nix_xmit_mv_lmt_base(laddr, cmd, flags); if (flags & NIX_TX_MULTI_SEG_F) segdw = cn10k_nix_prepare_mseg(m, (uint64_t *)laddr, flags); else segdw = cn10k_nix_tx_ext_subs(flags) + 2; if (flags & NIX_TX_OFFLOAD_SECURITY_F && sec) pa = txq->cpt_io_addr | 3 << 4; else pa = txq->io_addr | ((segdw - 1) << 4); if (!sched_type) roc_sso_hws_head_wait(base + SSOW_LF_GWS_TAG); roc_lmt_submit_steorl(lmt_id, pa); } static __rte_always_inline void cn10k_sso_vwqe_split_tx(struct rte_mbuf **mbufs, uint16_t nb_mbufs, uint64_t *cmd, uint16_t lmt_id, uintptr_t lmt_addr, uint8_t sched_type, uintptr_t base, const uint64_t txq_data[][RTE_MAX_QUEUES_PER_PORT], const uint32_t flags) { uint16_t port[4], queue[4]; uint16_t i, j, pkts, scalar; struct cn10k_eth_txq *txq; scalar = nb_mbufs & (NIX_DESCS_PER_LOOP - 1); pkts = RTE_ALIGN_FLOOR(nb_mbufs, NIX_DESCS_PER_LOOP); for (i = 0; i < pkts; i += NIX_DESCS_PER_LOOP) { port[0] = mbufs[i]->port; port[1] = mbufs[i + 1]->port; port[2] = mbufs[i + 2]->port; port[3] = mbufs[i + 3]->port; queue[0] = rte_event_eth_tx_adapter_txq_get(mbufs[i]); queue[1] = rte_event_eth_tx_adapter_txq_get(mbufs[i + 1]); queue[2] = rte_event_eth_tx_adapter_txq_get(mbufs[i + 2]); queue[3] = rte_event_eth_tx_adapter_txq_get(mbufs[i + 3]); if (((port[0] ^ port[1]) & (port[2] ^ port[3])) || ((queue[0] ^ queue[1]) & (queue[2] ^ queue[3]))) { for (j = 0; j < 4; j++) cn10k_sso_tx_one(mbufs[i + j], cmd, lmt_id, lmt_addr, sched_type, base, txq_data, flags); } else { txq = (struct cn10k_eth_txq *) txq_data[port[0]][queue[0]]; cn10k_nix_xmit_pkts_vector(txq, &mbufs[i], 4, cmd, base + SSOW_LF_GWS_TAG, flags | NIX_TX_VWQE_F); } } mbufs += i; for (i = 0; i < scalar; i++) { cn10k_sso_tx_one(mbufs[i], cmd, lmt_id, lmt_addr, sched_type, base, txq_data, flags); } } static __rte_always_inline uint16_t cn10k_sso_hws_event_tx(struct cn10k_sso_hws *ws, struct rte_event *ev, uint64_t *cmd, const uint64_t txq_data[][RTE_MAX_QUEUES_PER_PORT], const uint32_t flags) { struct cn10k_eth_txq *txq; struct rte_mbuf *m; uintptr_t lmt_addr; uint16_t ref_cnt; uint16_t lmt_id; lmt_addr = ws->lmt_base; ROC_LMT_BASE_ID_GET(lmt_addr, lmt_id); if (ev->event_type & RTE_EVENT_TYPE_VECTOR) { struct rte_mbuf **mbufs = ev->vec->mbufs; uint64_t meta = *(uint64_t *)ev->vec; if (meta & BIT(31)) { txq = (struct cn10k_eth_txq *) txq_data[meta >> 32][meta >> 48]; cn10k_nix_xmit_pkts_vector( txq, mbufs, meta & 0xFFFF, cmd, ws->tx_base + SSOW_LF_GWS_TAG, flags | NIX_TX_VWQE_F); } else { cn10k_sso_vwqe_split_tx( mbufs, meta & 0xFFFF, cmd, lmt_id, lmt_addr, ev->sched_type, ws->tx_base, txq_data, flags); } rte_mempool_put(rte_mempool_from_obj(ev->vec), ev->vec); return 1; } m = ev->mbuf; ref_cnt = m->refcnt; cn10k_sso_tx_one(m, cmd, lmt_id, lmt_addr, ev->sched_type, ws->tx_base, txq_data, flags); if (flags & NIX_TX_OFFLOAD_MBUF_NOFF_F) { if (ref_cnt > 1) return 1; } cnxk_sso_hws_swtag_flush(ws->tx_base + SSOW_LF_GWS_TAG, ws->tx_base + SSOW_LF_GWS_OP_SWTAG_FLUSH); return 1; } #define T(name, f6, f5, f4, f3, f2, f1, f0, sz, flags) \ uint16_t __rte_hot cn10k_sso_hws_tx_adptr_enq_##name( \ void *port, struct rte_event ev[], uint16_t nb_events); \ uint16_t __rte_hot cn10k_sso_hws_tx_adptr_enq_seg_##name( \ void *port, struct rte_event ev[], uint16_t nb_events); \ uint16_t __rte_hot cn10k_sso_hws_dual_tx_adptr_enq_##name( \ void *port, struct rte_event ev[], uint16_t nb_events); \ uint16_t __rte_hot cn10k_sso_hws_dual_tx_adptr_enq_seg_##name( \ void *port, struct rte_event ev[], uint16_t nb_events); NIX_TX_FASTPATH_MODES #undef T #endif