/* SPDX-License-Identifier: BSD-3-Clause * * Copyright(c) 2019-2021 Xilinx, Inc. * Copyright(c) 2012-2019 Solarflare Communications Inc. */ #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_MON_MCDI #include "mcdi_mon.h" #endif #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() #include "ef10_tlv_layout.h" __checkReturn efx_rc_t efx_mcdi_get_port_assignment( __in efx_nic_t *enp, __out uint32_t *portp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN, MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN); efx_rc_t rc; EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp)); req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_port_modes( __in efx_nic_t *enp, __out uint32_t *modesp, __out_opt uint32_t *current_modep, __out_opt uint32_t *default_modep) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_MODES_IN_LEN, MC_CMD_GET_PORT_MODES_OUT_LEN); efx_rc_t rc; EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp)); req.emr_cmd = MC_CMD_GET_PORT_MODES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } /* * Require only Modes and DefaultMode fields, unless the current mode * was requested (CurrentMode field was added for Medford). */ if (req.emr_out_length_used < MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) { rc = EMSGSIZE; goto fail2; } if ((current_modep != NULL) && (req.emr_out_length_used < MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) { rc = EMSGSIZE; goto fail3; } *modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES); if (current_modep != NULL) { *current_modep = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_CURRENT_MODE); } if (default_modep != NULL) { *default_modep = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_DEFAULT_MODE); } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_get_port_mode_bandwidth( __in efx_nic_t *enp, __out uint32_t *bandwidth_mbpsp) { uint32_t port_modes; uint32_t current_mode; efx_port_t *epp = &(enp->en_port); uint32_t single_lane; uint32_t dual_lane; uint32_t quad_lane; uint32_t bandwidth; efx_rc_t rc; if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, ¤t_mode, NULL)) != 0) { /* No port mode info available. */ goto fail1; } if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_25000FDX)) single_lane = 25000; else single_lane = 10000; if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_50000FDX)) dual_lane = 50000; else dual_lane = 20000; if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_100000FDX)) quad_lane = 100000; else quad_lane = 40000; switch (current_mode) { case TLV_PORT_MODE_1x1_NA: /* mode 0 */ bandwidth = single_lane; break; case TLV_PORT_MODE_1x2_NA: /* mode 10 */ case TLV_PORT_MODE_NA_1x2: /* mode 11 */ bandwidth = dual_lane; break; case TLV_PORT_MODE_1x1_1x1: /* mode 2 */ bandwidth = single_lane + single_lane; break; case TLV_PORT_MODE_4x1_NA: /* mode 4 */ case TLV_PORT_MODE_NA_4x1: /* mode 8 */ bandwidth = 4 * single_lane; break; case TLV_PORT_MODE_2x1_2x1: /* mode 5 */ bandwidth = (2 * single_lane) + (2 * single_lane); break; case TLV_PORT_MODE_1x2_1x2: /* mode 12 */ bandwidth = dual_lane + dual_lane; break; case TLV_PORT_MODE_1x2_2x1: /* mode 17 */ case TLV_PORT_MODE_2x1_1x2: /* mode 18 */ bandwidth = dual_lane + (2 * single_lane); break; /* Legacy Medford-only mode. Do not use (see bug63270) */ case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2: /* mode 9 */ bandwidth = 4 * single_lane; break; case TLV_PORT_MODE_1x4_NA: /* mode 1 */ case TLV_PORT_MODE_NA_1x4: /* mode 22 */ bandwidth = quad_lane; break; case TLV_PORT_MODE_2x2_NA: /* mode 13 */ case TLV_PORT_MODE_NA_2x2: /* mode 14 */ bandwidth = 2 * dual_lane; break; case TLV_PORT_MODE_1x4_2x1: /* mode 6 */ case TLV_PORT_MODE_2x1_1x4: /* mode 7 */ bandwidth = quad_lane + (2 * single_lane); break; case TLV_PORT_MODE_1x4_1x2: /* mode 15 */ case TLV_PORT_MODE_1x2_1x4: /* mode 16 */ bandwidth = quad_lane + dual_lane; break; case TLV_PORT_MODE_1x4_1x4: /* mode 3 */ bandwidth = quad_lane + quad_lane; break; default: rc = EINVAL; goto fail2; } *bandwidth_mbpsp = bandwidth; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */ #if EFX_OPTS_EF10() __checkReturn efx_rc_t efx_mcdi_vadaptor_alloc( __in efx_nic_t *enp, __in uint32_t port_id) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_ALLOC_IN_LEN, MC_CMD_VADAPTOR_ALLOC_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_VADAPTOR_ALLOC; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN; MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id); MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS, VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED, enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_vadaptor_free( __in efx_nic_t *enp, __in uint32_t port_id) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_FREE_IN_LEN, MC_CMD_VADAPTOR_FREE_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_VADAPTOR_FREE; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN; MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFX_OPTS_EF10() */ #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() __checkReturn efx_rc_t efx_mcdi_get_mac_address_pf( __in efx_nic_t *enp, __out_ecount_opt(6) uint8_t mac_addrp[6]) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_MAC_ADDRESSES_IN_LEN, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN); efx_rc_t rc; EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp)); req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) { rc = ENOENT; goto fail3; } if (mac_addrp != NULL) { uint8_t *addrp; addrp = MCDI_OUT2(req, uint8_t, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE); EFX_MAC_ADDR_COPY(mac_addrp, addrp); } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_mac_address_vf( __in efx_nic_t *enp, __out_ecount_opt(6) uint8_t mac_addrp[6]) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX); efx_rc_t rc; EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp)); req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX; MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID, EVB_PORT_ID_ASSIGNED); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) { rc = EMSGSIZE; goto fail2; } if (MCDI_OUT_DWORD(req, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) { rc = ENOENT; goto fail3; } if (mac_addrp != NULL) { uint8_t *addrp; addrp = MCDI_OUT2(req, uint8_t, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR); EFX_MAC_ADDR_COPY(mac_addrp, addrp); } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_clock( __in efx_nic_t *enp, __out uint32_t *sys_freqp, __out uint32_t *dpcpu_freqp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CLOCK_IN_LEN, MC_CMD_GET_CLOCK_OUT_LEN); efx_rc_t rc; EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp)); req.emr_cmd = MC_CMD_GET_CLOCK; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ); if (*sys_freqp == 0) { rc = EINVAL; goto fail3; } *dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ); if (*dpcpu_freqp == 0) { rc = EINVAL; goto fail4; } return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_rxdp_config( __in efx_nic_t *enp, __out uint32_t *end_paddingp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RXDP_CONFIG_IN_LEN, MC_CMD_GET_RXDP_CONFIG_OUT_LEN); uint32_t end_padding; efx_rc_t rc; req.emr_cmd = MC_CMD_GET_RXDP_CONFIG; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_RXDP_CONFIG_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_RXDP_CONFIG_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_RXDP_CONFIG_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA, GET_RXDP_CONFIG_OUT_PAD_HOST_DMA) == 0) { /* RX DMA end padding is disabled */ end_padding = 0; } else { switch (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA, GET_RXDP_CONFIG_OUT_PAD_HOST_LEN)) { case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_64: end_padding = 64; break; case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_128: end_padding = 128; break; case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_256: end_padding = 256; break; default: rc = ENOTSUP; goto fail3; } } *end_paddingp = end_padding; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_vector_cfg( __in efx_nic_t *enp, __out_opt uint32_t *vec_basep, __out_opt uint32_t *pf_nvecp, __out_opt uint32_t *vf_nvecp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_VECTOR_CFG_IN_LEN, MC_CMD_GET_VECTOR_CFG_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_GET_VECTOR_CFG; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (vec_basep != NULL) *vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE); if (pf_nvecp != NULL) *pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF); if (vf_nvecp != NULL) *vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_alloc_vis( __in efx_nic_t *enp, __in uint32_t min_vi_count, __in uint32_t max_vi_count, __out uint32_t *vi_basep, __out uint32_t *vi_countp, __out uint32_t *vi_shiftp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_VIS_IN_LEN, MC_CMD_ALLOC_VIS_EXT_OUT_LEN); efx_rc_t rc; if (vi_countp == NULL) { rc = EINVAL; goto fail1; } req.emr_cmd = MC_CMD_ALLOC_VIS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_ALLOC_VIS_EXT_OUT_LEN; MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count); MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) { rc = EMSGSIZE; goto fail3; } *vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE); *vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT); /* Report VI_SHIFT if available (always zero for Huntington) */ if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN) *vi_shiftp = 0; else *vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_free_vis( __in efx_nic_t *enp) { efx_mcdi_req_t req; efx_rc_t rc; EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0); EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0); req.emr_cmd = MC_CMD_FREE_VIS; req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = NULL; req.emr_out_length = 0; efx_mcdi_execute_quiet(enp, &req); /* Ignore ELREADY (no allocated VIs, so nothing to free) */ if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */ #if EFX_OPTS_EF10() static __checkReturn efx_rc_t efx_mcdi_alloc_piobuf( __in efx_nic_t *enp, __out efx_piobuf_handle_t *handlep) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_PIOBUF_IN_LEN, MC_CMD_ALLOC_PIOBUF_OUT_LEN); efx_rc_t rc; if (handlep == NULL) { rc = EINVAL; goto fail1; } req.emr_cmd = MC_CMD_ALLOC_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN; efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) { rc = EMSGSIZE; goto fail3; } *handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_free_piobuf( __in efx_nic_t *enp, __in efx_piobuf_handle_t handle) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FREE_PIOBUF_IN_LEN, MC_CMD_FREE_PIOBUF_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_FREE_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN; MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_link_piobuf( __in efx_nic_t *enp, __in uint32_t vi_index, __in efx_piobuf_handle_t handle) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LINK_PIOBUF_IN_LEN, MC_CMD_LINK_PIOBUF_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_LINK_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN; MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle); MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_unlink_piobuf( __in efx_nic_t *enp, __in uint32_t vi_index) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_UNLINK_PIOBUF_IN_LEN, MC_CMD_UNLINK_PIOBUF_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_UNLINK_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN; MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static void ef10_nic_alloc_piobufs( __in efx_nic_t *enp, __in uint32_t max_piobuf_count) { efx_piobuf_handle_t *handlep; unsigned int i; EFSYS_ASSERT3U(max_piobuf_count, <=, EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle)); enp->en_arch.ef10.ena_piobuf_count = 0; for (i = 0; i < max_piobuf_count; i++) { handlep = &enp->en_arch.ef10.ena_piobuf_handle[i]; if (efx_mcdi_alloc_piobuf(enp, handlep) != 0) goto fail1; enp->en_arch.ef10.ena_pio_alloc_map[i] = 0; enp->en_arch.ef10.ena_piobuf_count++; } return; fail1: for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) { handlep = &enp->en_arch.ef10.ena_piobuf_handle[i]; (void) efx_mcdi_free_piobuf(enp, *handlep); *handlep = EFX_PIOBUF_HANDLE_INVALID; } enp->en_arch.ef10.ena_piobuf_count = 0; } static void ef10_nic_free_piobufs( __in efx_nic_t *enp) { efx_piobuf_handle_t *handlep; unsigned int i; for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) { handlep = &enp->en_arch.ef10.ena_piobuf_handle[i]; (void) efx_mcdi_free_piobuf(enp, *handlep); *handlep = EFX_PIOBUF_HANDLE_INVALID; } enp->en_arch.ef10.ena_piobuf_count = 0; } /* Sub-allocate a block from a piobuf */ __checkReturn efx_rc_t ef10_nic_pio_alloc( __inout efx_nic_t *enp, __out uint32_t *bufnump, __out efx_piobuf_handle_t *handlep, __out uint32_t *blknump, __out uint32_t *offsetp, __out size_t *sizep) { efx_nic_cfg_t *encp = &enp->en_nic_cfg; efx_drv_cfg_t *edcp = &enp->en_drv_cfg; uint32_t blk_per_buf; uint32_t buf, blk; efx_rc_t rc; EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp)); EFSYS_ASSERT(bufnump); EFSYS_ASSERT(handlep); EFSYS_ASSERT(blknump); EFSYS_ASSERT(offsetp); EFSYS_ASSERT(sizep); if ((edcp->edc_pio_alloc_size == 0) || (enp->en_arch.ef10.ena_piobuf_count == 0)) { rc = ENOMEM; goto fail1; } blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size; for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) { uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf]; if (~(*map) == 0) continue; EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map))); for (blk = 0; blk < blk_per_buf; blk++) { if ((*map & (1u << blk)) == 0) { *map |= (1u << blk); goto done; } } } rc = ENOMEM; goto fail2; done: *handlep = enp->en_arch.ef10.ena_piobuf_handle[buf]; *bufnump = buf; *blknump = blk; *sizep = edcp->edc_pio_alloc_size; *offsetp = blk * (*sizep); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* Free a piobuf sub-allocated block */ __checkReturn efx_rc_t ef10_nic_pio_free( __inout efx_nic_t *enp, __in uint32_t bufnum, __in uint32_t blknum) { uint32_t *map; efx_rc_t rc; if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) || (blknum >= (8 * sizeof (*map)))) { rc = EINVAL; goto fail1; } map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum]; if ((*map & (1u << blknum)) == 0) { rc = ENOENT; goto fail2; } *map &= ~(1u << blknum); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_pio_link( __inout efx_nic_t *enp, __in uint32_t vi_index, __in efx_piobuf_handle_t handle) { return (efx_mcdi_link_piobuf(enp, vi_index, handle)); } __checkReturn efx_rc_t ef10_nic_pio_unlink( __inout efx_nic_t *enp, __in uint32_t vi_index) { return (efx_mcdi_unlink_piobuf(enp, vi_index)); } #endif /* EFX_OPTS_EF10() */ #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() static __checkReturn efx_rc_t ef10_mcdi_get_pf_count( __in efx_nic_t *enp, __out uint32_t *pf_countp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PF_COUNT_IN_LEN, MC_CMD_GET_PF_COUNT_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_GET_PF_COUNT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *pf_countp = *MCDI_OUT(req, uint8_t, MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST); EFSYS_ASSERT(*pf_countp != 0); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t ef10_get_datapath_caps( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_GET_CAPABILITIES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_CAPABILITIES_V7_OUT_LEN; efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) { rc = EMSGSIZE; goto fail2; } #define CAP_FLAGS1(_req, _flag) \ (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_OUT_FLAGS1) & \ (1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN))) #define CAP_FLAGS2(_req, _flag) \ (((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) && \ (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V2_OUT_FLAGS2) & \ (1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN)))) #define CAP_FLAGS3(_req, _flag) \ (((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V7_OUT_LEN) && \ (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V7_OUT_FLAGS3) & \ (1u << (MC_CMD_GET_CAPABILITIES_V7_OUT_ ## _flag ## _LBN)))) /* Check if RXDP firmware inserts 14 byte prefix */ if (CAP_FLAGS1(req, RX_PREFIX_LEN_14)) encp->enc_rx_prefix_size = 14; else encp->enc_rx_prefix_size = 0; #if EFSYS_OPT_RX_SCALE /* Check if the firmware supports additional RSS modes */ if (CAP_FLAGS1(req, ADDITIONAL_RSS_MODES)) encp->enc_rx_scale_additional_modes_supported = B_TRUE; else encp->enc_rx_scale_additional_modes_supported = B_FALSE; #endif /* EFSYS_OPT_RX_SCALE */ /* Check if the firmware supports TSO */ if (CAP_FLAGS1(req, TX_TSO)) encp->enc_fw_assisted_tso_enabled = B_TRUE; else encp->enc_fw_assisted_tso_enabled = B_FALSE; /* Check if the firmware supports FATSOv2 */ if (CAP_FLAGS2(req, TX_TSO_V2)) { encp->enc_fw_assisted_tso_v2_enabled = B_TRUE; encp->enc_fw_assisted_tso_v2_n_contexts = MCDI_OUT_WORD(req, GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS); } else { encp->enc_fw_assisted_tso_v2_enabled = B_FALSE; encp->enc_fw_assisted_tso_v2_n_contexts = 0; } /* Check if the firmware supports FATSOv2 encap */ if (CAP_FLAGS2(req, TX_TSO_V2_ENCAP)) encp->enc_fw_assisted_tso_v2_encap_enabled = B_TRUE; else encp->enc_fw_assisted_tso_v2_encap_enabled = B_FALSE; /* Check if TSOv3 is supported */ if (CAP_FLAGS2(req, TX_TSO_V3)) encp->enc_tso_v3_enabled = B_TRUE; else encp->enc_tso_v3_enabled = B_FALSE; /* Check if the firmware has vadapter/vport/vswitch support */ if (CAP_FLAGS1(req, EVB)) encp->enc_datapath_cap_evb = B_TRUE; else encp->enc_datapath_cap_evb = B_FALSE; /* Check if the firmware supports vport reconfiguration */ if (CAP_FLAGS1(req, VPORT_RECONFIGURE)) encp->enc_vport_reconfigure_supported = B_TRUE; else encp->enc_vport_reconfigure_supported = B_FALSE; /* Check if the firmware supports VLAN insertion */ if (CAP_FLAGS1(req, TX_VLAN_INSERTION)) encp->enc_hw_tx_insert_vlan_enabled = B_TRUE; else encp->enc_hw_tx_insert_vlan_enabled = B_FALSE; /* Check if the firmware supports RX event batching */ if (CAP_FLAGS1(req, RX_BATCHING)) encp->enc_rx_batching_enabled = B_TRUE; else encp->enc_rx_batching_enabled = B_FALSE; /* * Even if batching isn't reported as supported, we may still get * batched events (see bug61153). */ encp->enc_rx_batch_max = 16; /* Check if the firmware supports disabling scatter on RXQs */ if (CAP_FLAGS1(req, RX_DISABLE_SCATTER)) encp->enc_rx_disable_scatter_supported = B_TRUE; else encp->enc_rx_disable_scatter_supported = B_FALSE; /* No limit on maximum number of Rx scatter elements per packet. */ encp->enc_rx_scatter_max = -1; /* Check if the firmware supports packed stream mode */ if (CAP_FLAGS1(req, RX_PACKED_STREAM)) encp->enc_rx_packed_stream_supported = B_TRUE; else encp->enc_rx_packed_stream_supported = B_FALSE; /* * Check if the firmware supports configurable buffer sizes * for packed stream mode (otherwise buffer size is 1Mbyte) */ if (CAP_FLAGS1(req, RX_PACKED_STREAM_VAR_BUFFERS)) encp->enc_rx_var_packed_stream_supported = B_TRUE; else encp->enc_rx_var_packed_stream_supported = B_FALSE; /* Check if the firmware supports equal stride super-buffer mode */ if (CAP_FLAGS2(req, EQUAL_STRIDE_SUPER_BUFFER)) encp->enc_rx_es_super_buffer_supported = B_TRUE; else encp->enc_rx_es_super_buffer_supported = B_FALSE; /* Check if the firmware supports FW subvariant w/o Tx checksumming */ if (CAP_FLAGS2(req, FW_SUBVARIANT_NO_TX_CSUM)) encp->enc_fw_subvariant_no_tx_csum_supported = B_TRUE; else encp->enc_fw_subvariant_no_tx_csum_supported = B_FALSE; /* Check if the firmware supports set mac with running filters */ if (CAP_FLAGS1(req, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED)) encp->enc_allow_set_mac_with_installed_filters = B_TRUE; else encp->enc_allow_set_mac_with_installed_filters = B_FALSE; /* * Check if firmware supports the extended MC_CMD_SET_MAC, which allows * specifying which parameters to configure. */ if (CAP_FLAGS1(req, SET_MAC_ENHANCED)) encp->enc_enhanced_set_mac_supported = B_TRUE; else encp->enc_enhanced_set_mac_supported = B_FALSE; /* * Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows * us to let the firmware choose the settings to use on an EVQ. */ if (CAP_FLAGS2(req, INIT_EVQ_V2)) encp->enc_init_evq_v2_supported = B_TRUE; else encp->enc_init_evq_v2_supported = B_FALSE; /* * Check if firmware supports extended width event queues, which have * a different event descriptor layout. */ if (CAP_FLAGS3(req, EXTENDED_WIDTH_EVQS_SUPPORTED)) encp->enc_init_evq_extended_width_supported = B_TRUE; else encp->enc_init_evq_extended_width_supported = B_FALSE; /* * Check if the NO_CONT_EV mode for RX events is supported. */ if (CAP_FLAGS2(req, INIT_RXQ_NO_CONT_EV)) encp->enc_no_cont_ev_mode_supported = B_TRUE; else encp->enc_no_cont_ev_mode_supported = B_FALSE; /* * Check if buffer size may and must be specified on INIT_RXQ. * It may be always specified to efx_rx_qcreate(), but will be * just kept libefx internal if MCDI does not support it. */ if (CAP_FLAGS2(req, INIT_RXQ_WITH_BUFFER_SIZE)) encp->enc_init_rxq_with_buffer_size = B_TRUE; else encp->enc_init_rxq_with_buffer_size = B_FALSE; /* * Check if firmware-verified NVRAM updates must be used. * * The firmware trusted installer requires all NVRAM updates to use * version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update) * and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated * partition and report the result). */ if (CAP_FLAGS2(req, NVRAM_UPDATE_REPORT_VERIFY_RESULT)) encp->enc_nvram_update_verify_result_supported = B_TRUE; else encp->enc_nvram_update_verify_result_supported = B_FALSE; if (CAP_FLAGS2(req, NVRAM_UPDATE_POLL_VERIFY_RESULT)) encp->enc_nvram_update_poll_verify_result_supported = B_TRUE; else encp->enc_nvram_update_poll_verify_result_supported = B_FALSE; /* * Check if firmware update via the BUNDLE partition is supported */ if (CAP_FLAGS2(req, BUNDLE_UPDATE)) encp->enc_nvram_bundle_update_supported = B_TRUE; else encp->enc_nvram_bundle_update_supported = B_FALSE; /* * Check if firmware provides packet memory and Rx datapath * counters. */ if (CAP_FLAGS1(req, PM_AND_RXDP_COUNTERS)) encp->enc_pm_and_rxdp_counters = B_TRUE; else encp->enc_pm_and_rxdp_counters = B_FALSE; /* * Check if the 40G MAC hardware is capable of reporting * statistics for Tx size bins. */ if (CAP_FLAGS2(req, MAC_STATS_40G_TX_SIZE_BINS)) encp->enc_mac_stats_40g_tx_size_bins = B_TRUE; else encp->enc_mac_stats_40g_tx_size_bins = B_FALSE; /* * Check if firmware supports VXLAN and NVGRE tunnels. * The capability indicates Geneve protocol support as well. */ if (CAP_FLAGS1(req, VXLAN_NVGRE)) { encp->enc_tunnel_encapsulations_supported = (1u << EFX_TUNNEL_PROTOCOL_VXLAN) | (1u << EFX_TUNNEL_PROTOCOL_GENEVE) | (1u << EFX_TUNNEL_PROTOCOL_NVGRE); EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES == MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM); encp->enc_tunnel_config_udp_entries_max = EFX_TUNNEL_MAXNENTRIES; } else { encp->enc_tunnel_config_udp_entries_max = 0; } /* * Check if firmware reports the VI window mode. * Medford2 has a variable VI window size (8K, 16K or 64K). * Medford and Huntington have a fixed 8K VI window size. */ if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) { uint8_t mode = MCDI_OUT_BYTE(req, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE); switch (mode) { case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K: encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K; break; case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K: encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_16K; break; case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K: encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_64K; break; default: encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID; break; } } else if ((enp->en_family == EFX_FAMILY_HUNTINGTON) || (enp->en_family == EFX_FAMILY_MEDFORD)) { /* Huntington and Medford have fixed 8K window size */ encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K; } else { encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID; } /* Check if firmware supports extended MAC stats. */ if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) { /* Extended stats buffer supported */ encp->enc_mac_stats_nstats = MCDI_OUT_WORD(req, GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS); } else { /* Use Siena-compatible legacy MAC stats */ encp->enc_mac_stats_nstats = MC_CMD_MAC_NSTATS; } if (encp->enc_mac_stats_nstats >= MC_CMD_MAC_NSTATS_V2) encp->enc_fec_counters = B_TRUE; else encp->enc_fec_counters = B_FALSE; /* Check if the firmware provides head-of-line blocking counters */ if (CAP_FLAGS2(req, RXDP_HLB_IDLE)) encp->enc_hlb_counters = B_TRUE; else encp->enc_hlb_counters = B_FALSE; #if EFSYS_OPT_RX_SCALE if (CAP_FLAGS1(req, RX_RSS_LIMITED)) { /* Only one exclusive RSS context is available per port. */ encp->enc_rx_scale_max_exclusive_contexts = 1; switch (enp->en_family) { case EFX_FAMILY_MEDFORD2: encp->enc_rx_scale_hash_alg_mask = (1U << EFX_RX_HASHALG_TOEPLITZ); break; case EFX_FAMILY_MEDFORD: case EFX_FAMILY_HUNTINGTON: /* * Packed stream firmware variant maintains a * non-standard algorithm for hash computation. * It implies explicit XORing together * source + destination IP addresses (or last * four bytes in the case of IPv6) and using the * resulting value as the input to a Toeplitz hash. */ encp->enc_rx_scale_hash_alg_mask = (1U << EFX_RX_HASHALG_PACKED_STREAM); break; default: rc = EINVAL; goto fail3; } /* Port numbers cannot contribute to the hash value */ encp->enc_rx_scale_l4_hash_supported = B_FALSE; } else { /* * Maximum number of exclusive RSS contexts. * EF10 hardware supports 64 in total, but 6 are reserved * for shared contexts. They are a global resource so * not all may be available. */ encp->enc_rx_scale_max_exclusive_contexts = 64 - 6; encp->enc_rx_scale_hash_alg_mask = (1U << EFX_RX_HASHALG_TOEPLITZ); /* * It is possible to use port numbers as * the input data for hash computation. */ encp->enc_rx_scale_l4_hash_supported = B_TRUE; } #endif /* EFSYS_OPT_RX_SCALE */ /* Check if the firmware supports "FLAG" and "MARK" filter actions */ if (CAP_FLAGS2(req, FILTER_ACTION_FLAG)) encp->enc_filter_action_flag_supported = B_TRUE; else encp->enc_filter_action_flag_supported = B_FALSE; if (CAP_FLAGS2(req, FILTER_ACTION_MARK)) encp->enc_filter_action_mark_supported = B_TRUE; else encp->enc_filter_action_mark_supported = B_FALSE; /* Get maximum supported value for "MARK" filter action */ if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V5_OUT_LEN) encp->enc_filter_action_mark_max = MCDI_OUT_DWORD(req, GET_CAPABILITIES_V5_OUT_FILTER_ACTION_MARK_MAX); else encp->enc_filter_action_mark_max = 0; #if EFSYS_OPT_MAE /* * Check support for EF100 Match Action Engine (MAE). * MAE hardware is present on Riverhead boards (from R2), * and on Keystone, and requires support in firmware. * * MAE control operations require MAE control privilege, * which is not available for VFs. * * Privileges can change dynamically at runtime: we assume * MAE support requires the privilege is granted initially, * and ignore later dynamic changes. */ if (CAP_FLAGS3(req, MAE_SUPPORTED)) { encp->enc_mae_supported = B_TRUE; if (EFX_MCDI_HAVE_PRIVILEGE(encp->enc_privilege_mask, MAE)) encp->enc_mae_admin = B_TRUE; else encp->enc_mae_admin = B_FALSE; } else { encp->enc_mae_supported = B_FALSE; encp->enc_mae_admin = B_FALSE; } /* * Check support for MAE action set v2 features. * These provide support for packet edits. */ if (CAP_FLAGS3(req, MAE_ACTION_SET_ALLOC_V2_SUPPORTED)) encp->enc_mae_aset_v2_supported = B_TRUE; else encp->enc_mae_aset_v2_supported = B_FALSE; #else encp->enc_mae_supported = B_FALSE; encp->enc_mae_admin = B_FALSE; #endif /* EFSYS_OPT_MAE */ #undef CAP_FLAGS1 #undef CAP_FLAGS2 #undef CAP_FLAGS3 return (0); #if EFSYS_OPT_RX_SCALE fail3: EFSYS_PROBE(fail3); #endif /* EFSYS_OPT_RX_SCALE */ fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #define EF10_LEGACY_PF_PRIVILEGE_MASK \ (MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS) #define EF10_LEGACY_VF_PRIVILEGE_MASK 0 __checkReturn efx_rc_t ef10_get_privilege_mask( __in efx_nic_t *enp, __out uint32_t *maskp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t mask; efx_rc_t rc; if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf, &mask)) != 0) { if (rc != ENOTSUP) goto fail1; /* Fallback for old firmware without privilege mask support */ if (EFX_PCI_FUNCTION_IS_PF(encp)) { /* Assume PF has admin privilege */ mask = EF10_LEGACY_PF_PRIVILEGE_MASK; } else { /* VF is always unprivileged by default */ mask = EF10_LEGACY_VF_PRIVILEGE_MASK; } } *maskp = mask; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #define EFX_EXT_PORT_MAX 4 #define EFX_EXT_PORT_NA 0xFF /* * Table of mapping schemes from port number to external number. * * Each port number ultimately corresponds to a connector: either as part of * a cable assembly attached to a module inserted in an SFP+/QSFP+ cage on * the board, or fixed to the board (e.g. 10GBASE-T magjack on SFN5121T * "Salina"). In general: * * Port number (0-based) * | * port mapping (n:1) * | * v * External port number (1-based) * | * fixed (1:1) or cable assembly (1:m) * | * v * Connector * * The external numbering refers to the cages or magjacks on the board, * as visibly annotated on the board or back panel. This table describes * how to determine which external cage/magjack corresponds to the port * numbers used by the driver. * * The count of consecutive port numbers that map to each external number, * is determined by the chip family and the current port mode. * * For the Huntington family, the current port mode cannot be discovered, * but a single mapping is used by all modes for a given chip variant, * so the mapping used is instead the last match in the table to the full * set of port modes to which the NIC can be configured. Therefore the * ordering of entries in the mapping table is significant. */ static struct ef10_external_port_map_s { efx_family_t family; uint32_t modes_mask; uint8_t base_port[EFX_EXT_PORT_MAX]; } __ef10_external_port_mappings[] = { /* * Modes used by Huntington family controllers where each port * number maps to a separate cage. * SFN7x22F (Torino): * port 0 -> cage 1 * port 1 -> cage 2 * SFN7xx4F (Pavia): * port 0 -> cage 1 * port 1 -> cage 2 * port 2 -> cage 3 * port 3 -> cage 4 */ { EFX_FAMILY_HUNTINGTON, (1U << TLV_PORT_MODE_10G) | /* mode 0 */ (1U << TLV_PORT_MODE_10G_10G) | /* mode 2 */ (1U << TLV_PORT_MODE_10G_10G_10G_10G), /* mode 4 */ { 0, 1, 2, 3 } }, /* * Modes which for Huntington identify a chip variant where 2 * adjacent port numbers map to each cage. * SFN7x42Q (Monza): * port 0 -> cage 1 * port 1 -> cage 1 * port 2 -> cage 2 * port 3 -> cage 2 */ { EFX_FAMILY_HUNTINGTON, (1U << TLV_PORT_MODE_40G) | /* mode 1 */ (1U << TLV_PORT_MODE_40G_40G) | /* mode 3 */ (1U << TLV_PORT_MODE_40G_10G_10G) | /* mode 6 */ (1U << TLV_PORT_MODE_10G_10G_40G), /* mode 7 */ { 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA } }, /* * Modes that on Medford allocate each port number to a separate * cage. * port 0 -> cage 1 * port 1 -> cage 2 * port 2 -> cage 3 * port 3 -> cage 4 */ { EFX_FAMILY_MEDFORD, (1U << TLV_PORT_MODE_1x1_NA) | /* mode 0 */ (1U << TLV_PORT_MODE_1x4_NA) | /* mode 1 */ (1U << TLV_PORT_MODE_1x1_1x1), /* mode 2 */ { 0, 1, 2, 3 } }, /* * Modes that on Medford allocate 2 adjacent port numbers to each * cage. * port 0 -> cage 1 * port 1 -> cage 1 * port 2 -> cage 2 * port 3 -> cage 2 */ { EFX_FAMILY_MEDFORD, (1U << TLV_PORT_MODE_1x4_1x4) | /* mode 3 */ (1U << TLV_PORT_MODE_2x1_2x1) | /* mode 5 */ (1U << TLV_PORT_MODE_1x4_2x1) | /* mode 6 */ (1U << TLV_PORT_MODE_2x1_1x4) | /* mode 7 */ /* Do not use 10G_10G_10G_10G_Q1_Q2 (see bug63270) */ (1U << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2), /* mode 9 */ { 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA } }, /* * Modes that on Medford allocate 4 adjacent port numbers to * cage 1. * port 0 -> cage 1 * port 1 -> cage 1 * port 2 -> cage 1 * port 3 -> cage 1 */ { EFX_FAMILY_MEDFORD, /* Do not use 10G_10G_10G_10G_Q1 (see bug63270) */ (1U << TLV_PORT_MODE_4x1_NA), /* mode 4 */ { 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA } }, /* * Modes that on Medford allocate 4 adjacent port numbers to * cage 2. * port 0 -> cage 2 * port 1 -> cage 2 * port 2 -> cage 2 * port 3 -> cage 2 */ { EFX_FAMILY_MEDFORD, (1U << TLV_PORT_MODE_NA_4x1), /* mode 8 */ { EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA } }, /* * Modes that on Medford2 allocate each port number to a separate * cage. * port 0 -> cage 1 * port 1 -> cage 2 * port 2 -> cage 3 * port 3 -> cage 4 */ { EFX_FAMILY_MEDFORD2, (1U << TLV_PORT_MODE_1x1_NA) | /* mode 0 */ (1U << TLV_PORT_MODE_1x4_NA) | /* mode 1 */ (1U << TLV_PORT_MODE_1x1_1x1) | /* mode 2 */ (1U << TLV_PORT_MODE_1x4_1x4) | /* mode 3 */ (1U << TLV_PORT_MODE_1x2_NA) | /* mode 10 */ (1U << TLV_PORT_MODE_1x2_1x2) | /* mode 12 */ (1U << TLV_PORT_MODE_1x4_1x2) | /* mode 15 */ (1U << TLV_PORT_MODE_1x2_1x4), /* mode 16 */ { 0, 1, 2, 3 } }, /* * Modes that on Medford2 allocate 1 port to cage 1 and the rest * to cage 2. * port 0 -> cage 1 * port 1 -> cage 2 * port 2 -> cage 2 */ { EFX_FAMILY_MEDFORD2, (1U << TLV_PORT_MODE_1x2_2x1) | /* mode 17 */ (1U << TLV_PORT_MODE_1x4_2x1), /* mode 6 */ { 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA } }, /* * Modes that on Medford2 allocate 2 adjacent port numbers to cage 1 * and the rest to cage 2. * port 0 -> cage 1 * port 1 -> cage 1 * port 2 -> cage 2 * port 3 -> cage 2 */ { EFX_FAMILY_MEDFORD2, (1U << TLV_PORT_MODE_2x1_2x1) | /* mode 4 */ (1U << TLV_PORT_MODE_2x1_1x4) | /* mode 7 */ (1U << TLV_PORT_MODE_2x2_NA) | /* mode 13 */ (1U << TLV_PORT_MODE_2x1_1x2), /* mode 18 */ { 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA } }, /* * Modes that on Medford2 allocate up to 4 adjacent port numbers * to cage 1. * port 0 -> cage 1 * port 1 -> cage 1 * port 2 -> cage 1 * port 3 -> cage 1 */ { EFX_FAMILY_MEDFORD2, (1U << TLV_PORT_MODE_4x1_NA), /* mode 5 */ { 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA } }, /* * Modes that on Medford2 allocate up to 4 adjacent port numbers * to cage 2. * port 0 -> cage 2 * port 1 -> cage 2 * port 2 -> cage 2 * port 3 -> cage 2 */ { EFX_FAMILY_MEDFORD2, (1U << TLV_PORT_MODE_NA_4x1) | /* mode 8 */ (1U << TLV_PORT_MODE_NA_1x2) | /* mode 11 */ (1U << TLV_PORT_MODE_NA_2x2), /* mode 14 */ { EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA } }, /* * Modes that on Riverhead allocate each port number to a separate * cage. * port 0 -> cage 1 * port 1 -> cage 2 */ { EFX_FAMILY_RIVERHEAD, (1U << TLV_PORT_MODE_1x1_NA) | /* mode 0 */ (1U << TLV_PORT_MODE_1x4_NA) | /* mode 1 */ (1U << TLV_PORT_MODE_1x1_1x1), /* mode 2 */ { 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA } }, }; static __checkReturn efx_rc_t ef10_external_port_mapping( __in efx_nic_t *enp, __in uint32_t port, __out uint8_t *external_portp) { efx_rc_t rc; int i; uint32_t port_modes; uint32_t matches; uint32_t current; struct ef10_external_port_map_s *mapp = NULL; int ext_index = port; /* Default 1-1 mapping */ if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, ¤t, NULL)) != 0) { /* * No current port mode information (i.e. Huntington) * - infer mapping from available modes */ if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, NULL, NULL)) != 0) { /* * No port mode information available * - use default mapping */ goto out; } } else { /* Only need to scan the current mode */ port_modes = 1 << current; } /* * Infer the internal port -> external number mapping from * the possible port modes for this NIC. */ for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) { struct ef10_external_port_map_s *eepmp = &__ef10_external_port_mappings[i]; if (eepmp->family != enp->en_family) continue; matches = (eepmp->modes_mask & port_modes); if (matches != 0) { /* * Some modes match. For some Huntington boards * there will be multiple matches. The mapping on the * last match is used. */ mapp = eepmp; port_modes &= ~matches; } } if (port_modes != 0) { /* Some advertised modes are not supported */ rc = ENOTSUP; goto fail1; } out: if (mapp != NULL) { /* * External ports are assigned a sequence of consecutive * port numbers, so find the one with the closest base_port. */ uint32_t delta = EFX_EXT_PORT_NA; for (i = 0; i < EFX_EXT_PORT_MAX; i++) { uint32_t base = mapp->base_port[i]; if ((base != EFX_EXT_PORT_NA) && (base <= port)) { if ((port - base) < delta) { delta = (port - base); ext_index = i; } } } } *external_portp = (uint8_t)(ext_index + 1); return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_get_nic_addr_caps( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t mapping_type; efx_rc_t rc; rc = efx_mcdi_get_nic_addr_info(enp, &mapping_type); if (rc != 0) { if (rc == ENOTSUP) { encp->enc_dma_mapping = EFX_NIC_DMA_MAPPING_FLAT; goto out; } goto fail1; } switch (mapping_type) { case MC_CMD_GET_DESC_ADDR_INFO_OUT_MAPPING_FLAT: encp->enc_dma_mapping = EFX_NIC_DMA_MAPPING_FLAT; break; case MC_CMD_GET_DESC_ADDR_INFO_OUT_MAPPING_REGIONED: encp->enc_dma_mapping = EFX_NIC_DMA_MAPPING_REGIONED; rc = efx_mcdi_get_nic_addr_regions(enp, &enp->en_dma.end_u.endu_region_info); if (rc != 0) goto fail2; break; default: goto fail3; } out: return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_nic_board_cfg( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_nic_cfg_t *encp = &(enp->en_nic_cfg); ef10_link_state_t els; efx_port_t *epp = &(enp->en_port); efx_pcie_interface_t intf; uint32_t board_type = 0; uint32_t base, nvec; uint32_t port; uint32_t mask; uint32_t pf; uint32_t vf; uint8_t mac_addr[6] = { 0 }; efx_rc_t rc; /* Get the (zero-based) MCDI port number */ if ((rc = efx_mcdi_get_port_assignment(enp, &port)) != 0) goto fail1; /* EFX MCDI interface uses one-based port numbers */ emip->emi_port = port + 1; encp->enc_assigned_port = port; if ((rc = ef10_external_port_mapping(enp, port, &encp->enc_external_port)) != 0) goto fail2; /* * Get PCIe function number from firmware (used for * per-function privilege and dynamic config info). * - PCIe PF: pf = PF number, vf = 0xffff. * - PCIe VF: pf = parent PF, vf = VF number. */ if ((rc = efx_mcdi_get_function_info(enp, &pf, &vf, &intf)) != 0) goto fail3; encp->enc_pf = pf; encp->enc_vf = vf; encp->enc_intf = intf; if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0) goto fail4; /* MAC address for this function */ if (EFX_PCI_FUNCTION_IS_PF(encp)) { rc = efx_mcdi_get_mac_address_pf(enp, mac_addr); #if EFSYS_OPT_ALLOW_UNCONFIGURED_NIC /* * Disable static config checking, ONLY for manufacturing test * and setup at the factory, to allow the static config to be * installed. */ #else /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */ if ((rc == 0) && (mac_addr[0] & 0x02)) { /* * If the static config does not include a global MAC * address pool then the board may return a locally * administered MAC address (this should only happen on * incorrectly programmed boards). */ rc = EINVAL; } #endif /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */ } else { rc = efx_mcdi_get_mac_address_vf(enp, mac_addr); } if (rc != 0) goto fail5; EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr); /* * Get the current privilege mask. Note that this may be modified * dynamically, so for most cases the value is informational only. * If the privilege being discovered can't be granted dynamically, * it's fine to rely on the value. In all other cases, DO NOT use * the privilege mask to check for sufficient privileges, as that * can result in time-of-check/time-of-use bugs. */ if ((rc = ef10_get_privilege_mask(enp, &mask)) != 0) goto fail6; encp->enc_privilege_mask = mask; /* Board configuration (legacy) */ rc = efx_mcdi_get_board_cfg(enp, &board_type, NULL, NULL); if (rc != 0) { /* Unprivileged functions may not be able to read board cfg */ if (rc == EACCES) board_type = 0; else goto fail7; } encp->enc_board_type = board_type; /* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */ if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0) goto fail8; /* * Firmware with support for *_FEC capability bits does not * report that the corresponding *_FEC_REQUESTED bits are supported. * Add them here so that drivers understand that they are supported. */ if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_BASER_FEC)) epp->ep_phy_cap_mask |= (1u << EFX_PHY_CAP_BASER_FEC_REQUESTED); if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_RS_FEC)) epp->ep_phy_cap_mask |= (1u << EFX_PHY_CAP_RS_FEC_REQUESTED); if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_25G_BASER_FEC)) epp->ep_phy_cap_mask |= (1u << EFX_PHY_CAP_25G_BASER_FEC_REQUESTED); /* Obtain the default PHY advertised capabilities */ if ((rc = ef10_phy_get_link(enp, &els)) != 0) goto fail9; epp->ep_default_adv_cap_mask = els.epls.epls_adv_cap_mask; epp->ep_adv_cap_mask = els.epls.epls_adv_cap_mask; /* Check capabilities of running datapath firmware */ if ((rc = ef10_get_datapath_caps(enp)) != 0) goto fail10; /* Get interrupt vector limits */ if ((rc = efx_mcdi_get_vector_cfg(enp, &base, &nvec, NULL)) != 0) { if (EFX_PCI_FUNCTION_IS_PF(encp)) goto fail11; /* Ignore error (cannot query vector limits from a VF). */ base = 0; nvec = 1024; } encp->enc_intr_vec_base = base; encp->enc_intr_limit = nvec; rc = efx_mcdi_get_nic_addr_caps(enp); if (rc != 0) goto fail12; return (0); fail12: EFSYS_PROBE(fail12); fail11: EFSYS_PROBE(fail11); fail10: EFSYS_PROBE(fail10); fail9: EFSYS_PROBE(fail9); fail8: EFSYS_PROBE(fail8); fail7: EFSYS_PROBE(fail7); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_entity_reset( __in efx_nic_t *enp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ENTITY_RESET_IN_LEN, MC_CMD_ENTITY_RESET_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_ENTITY_RESET; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN; MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG, ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */ #if EFX_OPTS_EF10() static __checkReturn efx_rc_t ef10_set_workaround_bug26807( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t flags; efx_rc_t rc; /* * If the bug26807 workaround is enabled, then firmware has enabled * support for chained multicast filters. Firmware will reset (FLR) * functions which have filters in the hardware filter table when the * workaround is enabled/disabled. * * We must recheck if the workaround is enabled after inserting the * first hardware filter, in case it has been changed since this check. */ rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG26807, B_TRUE, &flags); if (rc == 0) { encp->enc_bug26807_workaround = B_TRUE; if (flags & (1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN)) { /* * Other functions had installed filters before the * workaround was enabled, and they have been reset * by firmware. */ EFSYS_PROBE(bug26807_workaround_flr_done); /* FIXME: bump MC warm boot count ? */ } } else if (rc == EACCES) { /* * Unprivileged functions cannot enable the workaround in older * firmware. */ encp->enc_bug26807_workaround = B_FALSE; } else if ((rc == ENOTSUP) || (rc == ENOENT)) { encp->enc_bug26807_workaround = B_FALSE; } else { goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t ef10_nic_board_cfg( __in efx_nic_t *enp) { const efx_nic_ops_t *enop = enp->en_enop; efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_rc_t rc; if ((rc = efx_mcdi_nic_board_cfg(enp)) != 0) goto fail1; /* * Huntington RXDP firmware inserts a 0 or 14 byte prefix. * We only support the 14 byte prefix here. */ if (encp->enc_rx_prefix_size != 14) { rc = ENOTSUP; goto fail2; } encp->enc_clk_mult = 1; /* not used for EF10 */ /* Alignment for WPTR updates */ encp->enc_rx_push_align = EF10_RX_WPTR_ALIGN; encp->enc_tx_dma_desc_size_max = EFX_MASK32(ESF_DZ_RX_KER_BYTE_CNT); /* No boundary crossing limits */ encp->enc_tx_dma_desc_boundary = 0; /* * Maximum number of bytes into the frame the TCP header can start for * firmware assisted TSO to work. */ encp->enc_tx_tso_tcp_header_offset_limit = EF10_TCP_HEADER_OFFSET_LIMIT; /* EF10 TSO engine demands that packet header be contiguous. */ encp->enc_tx_tso_max_header_ndescs = 1; /* The overall TSO header length is not limited. */ encp->enc_tx_tso_max_header_length = UINT32_MAX; /* * There are no specific limitations on the number of * TSO payload descriptors. */ encp->enc_tx_tso_max_payload_ndescs = UINT32_MAX; /* TSO superframe payload length is not limited. */ encp->enc_tx_tso_max_payload_length = UINT32_MAX; /* * Limitation on the maximum number of outgoing packets per * TSO transaction described in SF-108452-SW. */ encp->enc_tx_tso_max_nframes = 32767; /* * Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use * MC_CMD_GET_RESOURCE_LIMITS here as that reports the available * resources (allocated to this PCIe function), which is zero until * after we have allocated VIs. */ encp->enc_evq_limit = 1024; encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET; encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET; encp->enc_buftbl_limit = UINT32_MAX; if ((rc = ef10_set_workaround_bug26807(enp)) != 0) goto fail3; /* Get remaining controller-specific board config */ if ((rc = enop->eno_board_cfg(enp)) != 0) if (rc != EACCES) goto fail4; return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_probe( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_drv_cfg_t *edcp = &(enp->en_drv_cfg); efx_rc_t rc; EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp)); /* Read and clear any assertion state */ if ((rc = efx_mcdi_read_assertion(enp)) != 0) goto fail1; /* Exit the assertion handler */ if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0) if (rc != EACCES) goto fail2; if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0) goto fail3; if ((rc = ef10_nic_board_cfg(enp)) != 0) goto fail4; /* * Set default driver config limits (based on board config). * * FIXME: For now allocate a fixed number of VIs which is likely to be * sufficient and small enough to allow multiple functions on the same * port. */ edcp->edc_min_vi_count = edcp->edc_max_vi_count = MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit)); /* The client driver must configure and enable PIO buffer support */ edcp->edc_max_piobuf_count = 0; edcp->edc_pio_alloc_size = 0; #if EFSYS_OPT_MAC_STATS /* Wipe the MAC statistics */ if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0) goto fail5; #endif #if EFSYS_OPT_LOOPBACK if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0) goto fail6; #endif #if EFSYS_OPT_MON_STATS if ((rc = mcdi_mon_cfg_build(enp)) != 0) { /* Unprivileged functions do not have access to sensors */ if (rc != EACCES) goto fail7; } #endif return (0); #if EFSYS_OPT_MON_STATS fail7: EFSYS_PROBE(fail7); #endif #if EFSYS_OPT_LOOPBACK fail6: EFSYS_PROBE(fail6); #endif #if EFSYS_OPT_MAC_STATS fail5: EFSYS_PROBE(fail5); #endif fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_set_drv_limits( __inout efx_nic_t *enp, __in efx_drv_limits_t *edlp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_drv_cfg_t *edcp = &(enp->en_drv_cfg); uint32_t min_evq_count, max_evq_count; uint32_t min_rxq_count, max_rxq_count; uint32_t min_txq_count, max_txq_count; efx_rc_t rc; if (edlp == NULL) { rc = EINVAL; goto fail1; } /* Get minimum required and maximum usable VI limits */ min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit); min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit); min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit); edcp->edc_min_vi_count = MAX(min_evq_count, MAX(min_rxq_count, min_txq_count)); max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit); max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit); max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit); edcp->edc_max_vi_count = MAX(max_evq_count, MAX(max_rxq_count, max_txq_count)); /* * Check limits for sub-allocated piobuf blocks. * PIO is optional, so don't fail if the limits are incorrect. */ if ((encp->enc_piobuf_size == 0) || (encp->enc_piobuf_limit == 0) || (edlp->edl_min_pio_alloc_size == 0) || (edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) { /* Disable PIO */ edcp->edc_max_piobuf_count = 0; edcp->edc_pio_alloc_size = 0; } else { uint32_t blk_size, blk_count, blks_per_piobuf; blk_size = MAX(edlp->edl_min_pio_alloc_size, encp->enc_piobuf_min_alloc_size); blks_per_piobuf = encp->enc_piobuf_size / blk_size; EFSYS_ASSERT3U(blks_per_piobuf, <=, 32); blk_count = (encp->enc_piobuf_limit * blks_per_piobuf); /* A zero max pio alloc count means unlimited */ if ((edlp->edl_max_pio_alloc_count > 0) && (edlp->edl_max_pio_alloc_count < blk_count)) { blk_count = edlp->edl_max_pio_alloc_count; } edcp->edc_pio_alloc_size = blk_size; edcp->edc_max_piobuf_count = (blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_reset( __in efx_nic_t *enp) { efx_rc_t rc; /* ef10_nic_reset() is called to recover from BADASSERT failures. */ if ((rc = efx_mcdi_read_assertion(enp)) != 0) goto fail1; if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0) goto fail2; if ((rc = efx_mcdi_entity_reset(enp)) != 0) goto fail3; /* Clear RX/TX DMA queue errors */ enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFX_OPTS_EF10() */ #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() __checkReturn efx_rc_t ef10_upstream_port_vadaptor_alloc( __in efx_nic_t *enp) { uint32_t retry; uint32_t delay_us; efx_rc_t rc; /* * On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF * driver has yet to bring up the EVB port. See bug 56147. In this case, * retry the request several times after waiting a while. The wait time * between retries starts small (10ms) and exponentially increases. * Total wait time is a little over two seconds. Retry logic in the * client driver may mean this whole loop is repeated if it continues to * fail. */ retry = 0; delay_us = 10000; while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) { if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) || (rc != ENOENT)) { /* * Do not retry alloc for PF, or for other errors on * a VF. */ goto fail1; } /* VF startup before PF is ready. Retry allocation. */ if (retry > 5) { /* Too many attempts */ rc = EINVAL; goto fail2; } EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry); EFSYS_SLEEP(delay_us); retry++; if (delay_us < 500000) delay_us <<= 2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */ #if EFX_OPTS_EF10() __checkReturn efx_rc_t ef10_nic_init( __in efx_nic_t *enp) { efx_drv_cfg_t *edcp = &(enp->en_drv_cfg); uint32_t min_vi_count, max_vi_count; uint32_t vi_count, vi_base, vi_shift; uint32_t i; uint32_t vi_window_size; efx_rc_t rc; boolean_t alloc_vadaptor = B_TRUE; EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp)); /* Enable reporting of some events (e.g. link change) */ if ((rc = efx_mcdi_log_ctrl(enp)) != 0) goto fail1; /* Allocate (optional) on-chip PIO buffers */ ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count); /* * For best performance, PIO writes should use a write-combined * (WC) memory mapping. Using a separate WC mapping for the PIO * aperture of each VI would be a burden to drivers (and not * possible if the host page size is >4Kbyte). * * To avoid this we use a single uncached (UC) mapping for VI * register access, and a single WC mapping for extra VIs used * for PIO writes. * * Each piobuf must be linked to a VI in the WC mapping, and to * each VI that is using a sub-allocated block from the piobuf. */ min_vi_count = edcp->edc_min_vi_count; max_vi_count = edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count; /* Ensure that the previously attached driver's VIs are freed */ if ((rc = efx_mcdi_free_vis(enp)) != 0) goto fail2; /* * Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this * fails then retrying the request for fewer VI resources may succeed. */ vi_count = 0; if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count, &vi_base, &vi_count, &vi_shift)) != 0) goto fail3; EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count); if (vi_count < min_vi_count) { rc = ENOMEM; goto fail4; } enp->en_arch.ef10.ena_vi_base = vi_base; enp->en_arch.ef10.ena_vi_count = vi_count; enp->en_arch.ef10.ena_vi_shift = vi_shift; if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) { /* Not enough extra VIs to map piobufs */ ef10_nic_free_piobufs(enp); } enp->en_arch.ef10.ena_pio_write_vi_base = vi_count - enp->en_arch.ef10.ena_piobuf_count; EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, !=, EFX_VI_WINDOW_SHIFT_INVALID); EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, <=, EFX_VI_WINDOW_SHIFT_64K); vi_window_size = 1U << enp->en_nic_cfg.enc_vi_window_shift; /* Save UC memory mapping details */ enp->en_arch.ef10.ena_uc_mem_map_offset = 0; if (enp->en_arch.ef10.ena_piobuf_count > 0) { enp->en_arch.ef10.ena_uc_mem_map_size = (vi_window_size * enp->en_arch.ef10.ena_pio_write_vi_base); } else { enp->en_arch.ef10.ena_uc_mem_map_size = (vi_window_size * enp->en_arch.ef10.ena_vi_count); } /* Save WC memory mapping details */ enp->en_arch.ef10.ena_wc_mem_map_offset = enp->en_arch.ef10.ena_uc_mem_map_offset + enp->en_arch.ef10.ena_uc_mem_map_size; enp->en_arch.ef10.ena_wc_mem_map_size = (vi_window_size * enp->en_arch.ef10.ena_piobuf_count); /* Link piobufs to extra VIs in WC mapping */ if (enp->en_arch.ef10.ena_piobuf_count > 0) { for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) { rc = efx_mcdi_link_piobuf(enp, enp->en_arch.ef10.ena_pio_write_vi_base + i, enp->en_arch.ef10.ena_piobuf_handle[i]); if (rc != 0) break; } } /* * For SR-IOV use case, vAdaptor is allocated for PF and associated VFs * during NIC initialization when vSwitch is created and vports are * allocated. Hence, skip vAdaptor allocation for EVB and update vport * id in NIC structure with the one allocated for PF. */ enp->en_vport_id = EVB_PORT_ID_ASSIGNED; #if EFSYS_OPT_EVB if ((enp->en_vswitchp != NULL) && (enp->en_vswitchp->ev_evcp != NULL)) { /* For EVB use vport allocated on vswitch */ enp->en_vport_id = enp->en_vswitchp->ev_evcp->evc_vport_id; alloc_vadaptor = B_FALSE; } #endif if (alloc_vadaptor != B_FALSE) { /* Allocate a vAdaptor attached to our upstream vPort/pPort */ if ((rc = ef10_upstream_port_vadaptor_alloc(enp)) != 0) goto fail5; } enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2; return (0); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); ef10_nic_free_piobufs(enp); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_get_vi_pool( __in efx_nic_t *enp, __out uint32_t *vi_countp) { EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp)); /* * Report VIs that the client driver can use. * Do not include VIs used for PIO buffer writes. */ *vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base; return (0); } __checkReturn efx_rc_t ef10_nic_get_bar_region( __in efx_nic_t *enp, __in efx_nic_region_t region, __out uint32_t *offsetp, __out size_t *sizep) { efx_rc_t rc; EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp)); /* * TODO: Specify host memory mapping alignment and granularity * in efx_drv_limits_t so that they can be taken into account * when allocating extra VIs for PIO writes. */ switch (region) { case EFX_REGION_VI: /* UC mapped memory BAR region for VI registers */ *offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset; *sizep = enp->en_arch.ef10.ena_uc_mem_map_size; break; case EFX_REGION_PIO_WRITE_VI: /* WC mapped memory BAR region for piobuf writes */ *offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset; *sizep = enp->en_arch.ef10.ena_wc_mem_map_size; break; default: rc = EINVAL; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn boolean_t ef10_nic_hw_unavailable( __in efx_nic_t *enp) { efx_dword_t dword; if (enp->en_reset_flags & EFX_RESET_HW_UNAVAIL) return (B_TRUE); EFX_BAR_READD(enp, ER_DZ_BIU_MC_SFT_STATUS_REG, &dword, B_FALSE); if (EFX_DWORD_FIELD(dword, EFX_DWORD_0) == 0xffffffff) goto unavail; return (B_FALSE); unavail: ef10_nic_set_hw_unavailable(enp); return (B_TRUE); } void ef10_nic_set_hw_unavailable( __in efx_nic_t *enp) { EFSYS_PROBE(hw_unavail); enp->en_reset_flags |= EFX_RESET_HW_UNAVAIL; } void ef10_nic_fini( __in efx_nic_t *enp) { uint32_t i; efx_rc_t rc; boolean_t do_vadaptor_free = B_TRUE; #if EFSYS_OPT_EVB if (enp->en_vswitchp != NULL) { /* * For SR-IOV the vAdaptor is freed with the vswitch, * so do not free it here. */ do_vadaptor_free = B_FALSE; } #endif if (do_vadaptor_free != B_FALSE) { (void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id); enp->en_vport_id = EVB_PORT_ID_NULL; } /* Unlink piobufs from extra VIs in WC mapping */ if (enp->en_arch.ef10.ena_piobuf_count > 0) { for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) { rc = efx_mcdi_unlink_piobuf(enp, enp->en_arch.ef10.ena_pio_write_vi_base + i); if (rc != 0) break; } } ef10_nic_free_piobufs(enp); (void) efx_mcdi_free_vis(enp); enp->en_arch.ef10.ena_vi_count = 0; } void ef10_nic_unprobe( __in efx_nic_t *enp) { #if EFSYS_OPT_MON_STATS mcdi_mon_cfg_free(enp); #endif /* EFSYS_OPT_MON_STATS */ (void) efx_mcdi_drv_attach(enp, B_FALSE); } #if EFSYS_OPT_DIAG __checkReturn efx_rc_t ef10_nic_register_test( __in efx_nic_t *enp) { efx_rc_t rc; /* FIXME */ _NOTE(ARGUNUSED(enp)) _NOTE(CONSTANTCONDITION) if (B_FALSE) { rc = ENOTSUP; goto fail1; } /* FIXME */ return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_DIAG */ #if EFSYS_OPT_FW_SUBVARIANT_AWARE __checkReturn efx_rc_t efx_mcdi_get_nic_global( __in efx_nic_t *enp, __in uint32_t key, __out uint32_t *valuep) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_NIC_GLOBAL_IN_LEN, MC_CMD_GET_NIC_GLOBAL_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_GET_NIC_GLOBAL; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_NIC_GLOBAL_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_NIC_GLOBAL_OUT_LEN; MCDI_IN_SET_DWORD(req, GET_NIC_GLOBAL_IN_KEY, key); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used != MC_CMD_GET_NIC_GLOBAL_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *valuep = MCDI_OUT_DWORD(req, GET_NIC_GLOBAL_OUT_VALUE); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_set_nic_global( __in efx_nic_t *enp, __in uint32_t key, __in uint32_t value) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SET_NIC_GLOBAL_IN_LEN, 0); efx_rc_t rc; req.emr_cmd = MC_CMD_SET_NIC_GLOBAL; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_SET_NIC_GLOBAL_IN_LEN; req.emr_out_buf = NULL; req.emr_out_length = 0; MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_KEY, key); MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_VALUE, value); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_FW_SUBVARIANT_AWARE */ #endif /* EFX_OPTS_EF10() */