/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2016 6WIND S.A. * Copyright 2020 Mellanox Technologies, Ltd */ #include #include #include #include #include #include #include #include "mlx5_glue.h" #include "mlx5_common.h" #include "mlx5_common_mp.h" #include "mlx5_common_mr.h" #include "mlx5_common_os.h" #include "mlx5_common_log.h" #include "mlx5_malloc.h" struct mr_find_contig_memsegs_data { uintptr_t addr; uintptr_t start; uintptr_t end; const struct rte_memseg_list *msl; }; /* Virtual memory range. */ struct mlx5_range { uintptr_t start; uintptr_t end; }; /** Memory region for a mempool. */ struct mlx5_mempool_mr { struct mlx5_pmd_mr pmd_mr; uint32_t refcnt; /**< Number of mempools sharing this MR. */ }; /* Mempool registration. */ struct mlx5_mempool_reg { LIST_ENTRY(mlx5_mempool_reg) next; /** Registered mempool, used to designate registrations. */ struct rte_mempool *mp; /** Memory regions for the address ranges of the mempool. */ struct mlx5_mempool_mr *mrs; /** Number of memory regions. */ unsigned int mrs_n; /** Whether the MR were created for external pinned memory. */ bool is_extmem; }; void mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque) { struct mlx5_mprq_buf *buf = opaque; if (__atomic_load_n(&buf->refcnt, __ATOMIC_RELAXED) == 1) { rte_mempool_put(buf->mp, buf); } else if (unlikely(__atomic_sub_fetch(&buf->refcnt, 1, __ATOMIC_RELAXED) == 0)) { __atomic_store_n(&buf->refcnt, 1, __ATOMIC_RELAXED); rte_mempool_put(buf->mp, buf); } } /** * Expand B-tree table to a given size. Can't be called with holding * memory_hotplug_lock or share_cache.rwlock due to rte_realloc(). * * @param bt * Pointer to B-tree structure. * @param n * Number of entries for expansion. * * @return * 0 on success, -1 on failure. */ static int mr_btree_expand(struct mlx5_mr_btree *bt, uint32_t n) { void *mem; int ret = 0; if (n <= bt->size) return ret; /* * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is * used inside if there's no room to expand. Because this is a quite * rare case and a part of very slow path, it is very acceptable. * Initially cache_bh[] will be given practically enough space and once * it is expanded, expansion wouldn't be needed again ever. */ mem = mlx5_realloc(bt->table, MLX5_MEM_RTE | MLX5_MEM_ZERO, n * sizeof(struct mr_cache_entry), 0, SOCKET_ID_ANY); if (mem == NULL) { /* Not an error, B-tree search will be skipped. */ DRV_LOG(WARNING, "failed to expand MR B-tree (%p) table", (void *)bt); ret = -1; } else { DRV_LOG(DEBUG, "expanded MR B-tree table (size=%u)", n); bt->table = mem; bt->size = n; } return ret; } /** * Look up LKey from given B-tree lookup table, store the last index and return * searched LKey. * * @param bt * Pointer to B-tree structure. * @param[out] idx * Pointer to index. Even on search failure, returns index where it stops * searching so that index can be used when inserting a new entry. * @param addr * Search key. * * @return * Searched LKey on success, UINT32_MAX on no match. */ static uint32_t mr_btree_lookup(struct mlx5_mr_btree *bt, uint32_t *idx, uintptr_t addr) { struct mr_cache_entry *lkp_tbl; uint32_t n; uint32_t base = 0; MLX5_ASSERT(bt != NULL); lkp_tbl = *bt->table; n = bt->len; /* First entry must be NULL for comparison. */ MLX5_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 && lkp_tbl[0].lkey == UINT32_MAX)); /* Binary search. */ do { register uint32_t delta = n >> 1; if (addr < lkp_tbl[base + delta].start) { n = delta; } else { base += delta; n -= delta; } } while (n > 1); MLX5_ASSERT(addr >= lkp_tbl[base].start); *idx = base; if (addr < lkp_tbl[base].end) return lkp_tbl[base].lkey; /* Not found. */ return UINT32_MAX; } /** * Insert an entry to B-tree lookup table. * * @param bt * Pointer to B-tree structure. * @param entry * Pointer to new entry to insert. * * @return * 0 on success, -1 on failure. */ static int mr_btree_insert(struct mlx5_mr_btree *bt, struct mr_cache_entry *entry) { struct mr_cache_entry *lkp_tbl; uint32_t idx = 0; size_t shift; MLX5_ASSERT(bt != NULL); MLX5_ASSERT(bt->len <= bt->size); MLX5_ASSERT(bt->len > 0); lkp_tbl = *bt->table; /* Find out the slot for insertion. */ if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) { DRV_LOG(DEBUG, "abort insertion to B-tree(%p): already exist at" " idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", (void *)bt, idx, entry->start, entry->end, entry->lkey); /* Already exist, return. */ return 0; } /* Caller must ensure that there is enough place for a new entry. */ MLX5_ASSERT(bt->len < bt->size); /* Insert entry. */ ++idx; shift = (bt->len - idx) * sizeof(struct mr_cache_entry); if (shift) memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift); lkp_tbl[idx] = *entry; bt->len++; DRV_LOG(DEBUG, "inserted B-tree(%p)[%u]," " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", (void *)bt, idx, entry->start, entry->end, entry->lkey); return 0; } /** * Initialize B-tree and allocate memory for lookup table. * * @param bt * Pointer to B-tree structure. * @param n * Number of entries to allocate. * @param socket * NUMA socket on which memory must be allocated. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_mr_btree_init(struct mlx5_mr_btree *bt, int n, int socket) { if (bt == NULL) { rte_errno = EINVAL; return -rte_errno; } MLX5_ASSERT(!bt->table && !bt->size); memset(bt, 0, sizeof(*bt)); bt->table = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(struct mr_cache_entry) * n, 0, socket); if (bt->table == NULL) { rte_errno = ENOMEM; DRV_LOG(DEBUG, "failed to allocate memory for btree cache on socket " "%d", socket); return -rte_errno; } bt->size = n; /* First entry must be NULL for binary search. */ (*bt->table)[bt->len++] = (struct mr_cache_entry) { .lkey = UINT32_MAX, }; DRV_LOG(DEBUG, "initialized B-tree %p with table %p", (void *)bt, (void *)bt->table); return 0; } /** * Free B-tree resources. * * @param bt * Pointer to B-tree structure. */ void mlx5_mr_btree_free(struct mlx5_mr_btree *bt) { if (bt == NULL) return; DRV_LOG(DEBUG, "freeing B-tree %p with table %p", (void *)bt, (void *)bt->table); mlx5_free(bt->table); memset(bt, 0, sizeof(*bt)); } /** * Dump all the entries in a B-tree * * @param bt * Pointer to B-tree structure. */ void mlx5_mr_btree_dump(struct mlx5_mr_btree *bt __rte_unused) { #ifdef RTE_LIBRTE_MLX5_DEBUG uint32_t idx; struct mr_cache_entry *lkp_tbl; if (bt == NULL) return; lkp_tbl = *bt->table; for (idx = 0; idx < bt->len; ++idx) { struct mr_cache_entry *entry = &lkp_tbl[idx]; DRV_LOG(DEBUG, "B-tree(%p)[%u]," " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", (void *)bt, idx, entry->start, entry->end, entry->lkey); } #endif } /** * Initialize per-queue MR control descriptor. * * @param mr_ctrl * Pointer to MR control structure. * @param dev_gen_ptr * Pointer to generation number of global cache. * @param socket * NUMA socket on which memory must be allocated. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_mr_ctrl_init(struct mlx5_mr_ctrl *mr_ctrl, uint32_t *dev_gen_ptr, int socket) { if (mr_ctrl == NULL) { rte_errno = EINVAL; return -rte_errno; } /* Save pointer of global generation number to check memory event. */ mr_ctrl->dev_gen_ptr = dev_gen_ptr; /* Initialize B-tree and allocate memory for bottom-half cache table. */ return mlx5_mr_btree_init(&mr_ctrl->cache_bh, MLX5_MR_BTREE_CACHE_N, socket); } /** * Find virtually contiguous memory chunk in a given MR. * * @param dev * Pointer to MR structure. * @param[out] entry * Pointer to returning MR cache entry. If not found, this will not be * updated. * @param start_idx * Start index of the memseg bitmap. * * @return * Next index to go on lookup. */ static int mr_find_next_chunk(struct mlx5_mr *mr, struct mr_cache_entry *entry, int base_idx) { uintptr_t start = 0; uintptr_t end = 0; uint32_t idx = 0; /* MR for external memory doesn't have memseg list. */ if (mr->msl == NULL) { MLX5_ASSERT(mr->ms_bmp_n == 1); MLX5_ASSERT(mr->ms_n == 1); MLX5_ASSERT(base_idx == 0); /* * Can't search it from memseg list but get it directly from * pmd_mr as there's only one chunk. */ entry->start = (uintptr_t)mr->pmd_mr.addr; entry->end = (uintptr_t)mr->pmd_mr.addr + mr->pmd_mr.len; entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey); /* Returning 1 ends iteration. */ return 1; } for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) { if (rte_bitmap_get(mr->ms_bmp, idx)) { const struct rte_memseg_list *msl; const struct rte_memseg *ms; msl = mr->msl; ms = rte_fbarray_get(&msl->memseg_arr, mr->ms_base_idx + idx); MLX5_ASSERT(msl->page_sz == ms->hugepage_sz); if (!start) start = ms->addr_64; end = ms->addr_64 + ms->hugepage_sz; } else if (start) { /* Passed the end of a fragment. */ break; } } if (start) { /* Found one chunk. */ entry->start = start; entry->end = end; entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey); } return idx; } /** * Insert a MR to the global B-tree cache. It may fail due to low-on-memory. * Then, this entry will have to be searched by mr_lookup_list() in * mlx5_mr_create() on miss. * * @param share_cache * Pointer to a global shared MR cache. * @param mr * Pointer to MR to insert. * * @return * 0 on success, -1 on failure. */ int mlx5_mr_insert_cache(struct mlx5_mr_share_cache *share_cache, struct mlx5_mr *mr) { unsigned int n; DRV_LOG(DEBUG, "Inserting MR(%p) to global cache(%p)", (void *)mr, (void *)share_cache); for (n = 0; n < mr->ms_bmp_n; ) { struct mr_cache_entry entry; memset(&entry, 0, sizeof(entry)); /* Find a contiguous chunk and advance the index. */ n = mr_find_next_chunk(mr, &entry, n); if (!entry.end) break; if (mr_btree_insert(&share_cache->cache, &entry) < 0) return -1; } return 0; } /** * Look up address in the original global MR list. * * @param share_cache * Pointer to a global shared MR cache. * @param[out] entry * Pointer to returning MR cache entry. If no match, this will not be updated. * @param addr * Search key. * * @return * Found MR on match, NULL otherwise. */ struct mlx5_mr * mlx5_mr_lookup_list(struct mlx5_mr_share_cache *share_cache, struct mr_cache_entry *entry, uintptr_t addr) { struct mlx5_mr *mr; /* Iterate all the existing MRs. */ LIST_FOREACH(mr, &share_cache->mr_list, mr) { unsigned int n; if (mr->ms_n == 0) continue; for (n = 0; n < mr->ms_bmp_n; ) { struct mr_cache_entry ret; memset(&ret, 0, sizeof(ret)); n = mr_find_next_chunk(mr, &ret, n); if (addr >= ret.start && addr < ret.end) { /* Found. */ *entry = ret; return mr; } } } return NULL; } /** * Look up address on global MR cache. * * @param share_cache * Pointer to a global shared MR cache. * @param[out] entry * Pointer to returning MR cache entry. If no match, this will not be updated. * @param addr * Search key. * * @return * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. */ static uint32_t mlx5_mr_lookup_cache(struct mlx5_mr_share_cache *share_cache, struct mr_cache_entry *entry, uintptr_t addr) { uint32_t idx; uint32_t lkey; lkey = mr_btree_lookup(&share_cache->cache, &idx, addr); if (lkey != UINT32_MAX) *entry = (*share_cache->cache.table)[idx]; MLX5_ASSERT(lkey == UINT32_MAX || (addr >= entry->start && addr < entry->end)); return lkey; } /** * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free() * can raise memory free event and the callback function will spin on the lock. * * @param mr * Pointer to MR to free. */ void mlx5_mr_free(struct mlx5_mr *mr, mlx5_dereg_mr_t dereg_mr_cb) { if (mr == NULL) return; DRV_LOG(DEBUG, "freeing MR(%p):", (void *)mr); dereg_mr_cb(&mr->pmd_mr); if (mr->ms_bmp != NULL) rte_bitmap_free(mr->ms_bmp); mlx5_free(mr); } void mlx5_mr_rebuild_cache(struct mlx5_mr_share_cache *share_cache) { struct mlx5_mr *mr; DRV_LOG(DEBUG, "Rebuild dev cache[] %p", (void *)share_cache); /* Flush cache to rebuild. */ share_cache->cache.len = 1; /* Iterate all the existing MRs. */ LIST_FOREACH(mr, &share_cache->mr_list, mr) if (mlx5_mr_insert_cache(share_cache, mr) < 0) return; } /** * Release resources of detached MR having no online entry. * * @param share_cache * Pointer to a global shared MR cache. */ static void mlx5_mr_garbage_collect(struct mlx5_mr_share_cache *share_cache) { struct mlx5_mr *mr_next; struct mlx5_mr_list free_list = LIST_HEAD_INITIALIZER(free_list); /* Must be called from the primary process. */ MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); /* * MR can't be freed with holding the lock because rte_free() could call * memory free callback function. This will be a deadlock situation. */ rte_rwlock_write_lock(&share_cache->rwlock); /* Detach the whole free list and release it after unlocking. */ free_list = share_cache->mr_free_list; LIST_INIT(&share_cache->mr_free_list); rte_rwlock_write_unlock(&share_cache->rwlock); /* Release resources. */ mr_next = LIST_FIRST(&free_list); while (mr_next != NULL) { struct mlx5_mr *mr = mr_next; mr_next = LIST_NEXT(mr, mr); mlx5_mr_free(mr, share_cache->dereg_mr_cb); } } /* Called during rte_memseg_contig_walk() by mlx5_mr_create(). */ static int mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl, const struct rte_memseg *ms, size_t len, void *arg) { struct mr_find_contig_memsegs_data *data = arg; if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len) return 0; /* Found, save it and stop walking. */ data->start = ms->addr_64; data->end = ms->addr_64 + len; data->msl = msl; return 1; } /** * Get the number of virtually-contiguous chunks in the MR. * HW MR does not need to be already created to use this function. * * @param mr * Pointer to the MR. * * @return * Number of chunks. */ static uint32_t mr_get_chunk_count(const struct mlx5_mr *mr) { uint32_t i, count = 0; bool was_in_chunk = false; bool is_in_chunk; /* There is only one chunk in case of external memory. */ if (mr->msl == NULL) return 1; for (i = 0; i < mr->ms_bmp_n; i++) { is_in_chunk = rte_bitmap_get(mr->ms_bmp, i); if (!was_in_chunk && is_in_chunk) count++; was_in_chunk = is_in_chunk; } return count; } /** * Thread-safely expand the global MR cache to at least @p new_size slots. * * @param share_cache * Shared MR cache for locking. * @param new_size * Desired cache size. * @param socket * NUMA node. * * @return * 0 in success, negative on failure and rte_errno is set. */ int mlx5_mr_expand_cache(struct mlx5_mr_share_cache *share_cache, uint32_t size, int socket) { struct mlx5_mr_btree cache = {0}; struct mlx5_mr_btree *bt; struct mr_cache_entry *lkp_tbl; int ret; size = rte_align32pow2(size); ret = mlx5_mr_btree_init(&cache, size, socket); if (ret < 0) return ret; rte_rwlock_write_lock(&share_cache->rwlock); bt = &share_cache->cache; lkp_tbl = *bt->table; if (cache.size > bt->size) { rte_memcpy(cache.table, lkp_tbl, bt->len * sizeof(lkp_tbl[0])); RTE_SWAP(*bt, cache); DRV_LOG(DEBUG, "Global MR cache expanded to %u slots", size); } rte_rwlock_write_unlock(&share_cache->rwlock); mlx5_mr_btree_free(&cache); return 0; } /** * Create a new global Memory Region (MR) for a missing virtual address. * This API should be called on a secondary process, then a request is sent to * the primary process in order to create a MR for the address. As the global MR * list is on the shared memory, following LKey lookup should succeed unless the * request fails. * * @param cdev * Pointer to the mlx5 common device. * @param share_cache * Pointer to a global shared MR cache. * @param[out] entry * Pointer to returning MR cache entry, found in the global cache or newly * created. If failed to create one, this will not be updated. * @param addr * Target virtual address to register. * * @return * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. */ static uint32_t mlx5_mr_create_secondary(struct mlx5_common_device *cdev, struct mlx5_mr_share_cache *share_cache, struct mr_cache_entry *entry, uintptr_t addr) { int ret; DRV_LOG(DEBUG, "Requesting MR creation for address (%p)", (void *)addr); ret = mlx5_mp_req_mr_create(cdev, addr); if (ret) { DRV_LOG(DEBUG, "Fail to request MR creation for address (%p)", (void *)addr); return UINT32_MAX; } rte_rwlock_read_lock(&share_cache->rwlock); /* Fill in output data. */ mlx5_mr_lookup_cache(share_cache, entry, addr); /* Lookup can't fail. */ MLX5_ASSERT(entry->lkey != UINT32_MAX); rte_rwlock_read_unlock(&share_cache->rwlock); DRV_LOG(DEBUG, "MR CREATED by primary process for %p:\n" " [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x", (void *)addr, entry->start, entry->end, entry->lkey); return entry->lkey; } /** * Create a new global Memory Region (MR) for a missing virtual address. * Register entire virtually contiguous memory chunk around the address. * * @param pd * Pointer to pd of a device (net, regex, vdpa,...). * @param share_cache * Pointer to a global shared MR cache. * @param[out] entry * Pointer to returning MR cache entry, found in the global cache or newly * created. If failed to create one, this will not be updated. * @param addr * Target virtual address to register. * @param mr_ext_memseg_en * Configurable flag about external memory segment enable or not. * * @return * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. */ static uint32_t mlx5_mr_create_primary(void *pd, struct mlx5_mr_share_cache *share_cache, struct mr_cache_entry *entry, uintptr_t addr, unsigned int mr_ext_memseg_en) { struct mr_find_contig_memsegs_data data = {.addr = addr, }; struct mr_find_contig_memsegs_data data_re; const struct rte_memseg_list *msl; const struct rte_memseg *ms; struct mlx5_mr_btree *bt; struct mlx5_mr *mr = NULL; int ms_idx_shift = -1; uint32_t bmp_size; void *bmp_mem; uint32_t ms_n; uint32_t n; uint32_t chunks_n; size_t len; DRV_LOG(DEBUG, "Creating a MR using address (%p)", (void *)addr); /* * Release detached MRs if any. This can't be called with holding either * memory_hotplug_lock or share_cache->rwlock. MRs on the free list have * been detached by the memory free event but it couldn't be released * inside the callback due to deadlock. As a result, releasing resources * is quite opportunistic. */ mlx5_mr_garbage_collect(share_cache); find_range: /* * If enabled, find out a contiguous virtual address chunk in use, to * which the given address belongs, in order to register maximum range. * In the best case where mempools are not dynamically recreated and * '--socket-mem' is specified as an EAL option, it is very likely to * have only one MR(LKey) per a socket and per a hugepage-size even * though the system memory is highly fragmented. As the whole memory * chunk will be pinned by kernel, it can't be reused unless entire * chunk is freed from EAL. * * If disabled, just register one memseg (page). Then, memory * consumption will be minimized but it may drop performance if there * are many MRs to lookup on the datapath. */ if (!mr_ext_memseg_en) { data.msl = rte_mem_virt2memseg_list((void *)addr); data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz); data.end = data.start + data.msl->page_sz; } else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) { DRV_LOG(WARNING, "Unable to find virtually contiguous" " chunk for address (%p)." " rte_memseg_contig_walk() failed.", (void *)addr); rte_errno = ENXIO; goto err_nolock; } alloc_resources: /* Addresses must be page-aligned. */ MLX5_ASSERT(data.msl); MLX5_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz)); MLX5_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz)); msl = data.msl; ms = rte_mem_virt2memseg((void *)data.start, msl); len = data.end - data.start; MLX5_ASSERT(ms); MLX5_ASSERT(msl->page_sz == ms->hugepage_sz); /* Number of memsegs in the range. */ ms_n = len / msl->page_sz; DRV_LOG(DEBUG, "Extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR ")," " page_sz=0x%" PRIx64 ", ms_n=%u", (void *)addr, data.start, data.end, msl->page_sz, ms_n); /* Size of memory for bitmap. */ bmp_size = rte_bitmap_get_memory_footprint(ms_n); mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE) + bmp_size, RTE_CACHE_LINE_SIZE, msl->socket_id); if (mr == NULL) { DRV_LOG(DEBUG, "Unable to allocate memory for a new MR of" " address (%p).", (void *)addr); rte_errno = ENOMEM; goto err_nolock; } mr->msl = msl; /* * Save the index of the first memseg and initialize memseg bitmap. To * see if a memseg of ms_idx in the memseg-list is still valid, check: * rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx) */ mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE); mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size); if (mr->ms_bmp == NULL) { DRV_LOG(DEBUG, "Unable to initialize bitmap for a new MR of" " address (%p).", (void *)addr); rte_errno = EINVAL; goto err_nolock; } /* * Should recheck whether the extended contiguous chunk is still valid. * Because memory_hotplug_lock can't be held if there's any memory * related calls in a critical path, resource allocation above can't be * locked. If the memory has been changed at this point, try again with * just single page. If not, go on with the big chunk atomically from * here. */ rte_mcfg_mem_read_lock(); data_re = data; if (len > msl->page_sz && !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) { DRV_LOG(DEBUG, "Unable to find virtually contiguous chunk for address " "(%p). rte_memseg_contig_walk() failed.", (void *)addr); rte_errno = ENXIO; goto err_memlock; } if (data.start != data_re.start || data.end != data_re.end) { /* * The extended contiguous chunk has been changed. Try again * with single memseg instead. */ data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz); data.end = data.start + msl->page_sz; rte_mcfg_mem_read_unlock(); mlx5_mr_free(mr, share_cache->dereg_mr_cb); goto alloc_resources; } MLX5_ASSERT(data.msl == data_re.msl); rte_rwlock_write_lock(&share_cache->rwlock); /* * Check the address is really missing. If other thread already created * one or it is not found due to overflow, abort and return. */ if (mlx5_mr_lookup_cache(share_cache, entry, addr) != UINT32_MAX) { /* * Insert to the global cache table. It may fail due to * low-on-memory. Then, this entry will have to be searched * here again. */ mr_btree_insert(&share_cache->cache, entry); DRV_LOG(DEBUG, "Found MR for %p on final lookup, abort", (void *)addr); rte_rwlock_write_unlock(&share_cache->rwlock); rte_mcfg_mem_read_unlock(); /* * Must be unlocked before calling rte_free() because * mlx5_mr_mem_event_free_cb() can be called inside. */ mlx5_mr_free(mr, share_cache->dereg_mr_cb); return entry->lkey; } /* * Trim start and end addresses for verbs MR. Set bits for registering * memsegs but exclude already registered ones. Bitmap can be * fragmented. */ for (n = 0; n < ms_n; ++n) { uintptr_t start; struct mr_cache_entry ret; memset(&ret, 0, sizeof(ret)); start = data_re.start + n * msl->page_sz; /* Exclude memsegs already registered by other MRs. */ if (mlx5_mr_lookup_cache(share_cache, &ret, start) == UINT32_MAX) { /* * Start from the first unregistered memseg in the * extended range. */ if (ms_idx_shift == -1) { mr->ms_base_idx += n; data.start = start; ms_idx_shift = n; } data.end = start + msl->page_sz; rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift); ++mr->ms_n; } } len = data.end - data.start; mr->ms_bmp_n = len / msl->page_sz; MLX5_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n); /* * It is now known how many entries will be used in the global cache. * If there is not enough, expand the cache. * This cannot be done while holding the memory hotplug lock. * While it is released, memory layout may change, * so the process must be repeated from the beginning. */ bt = &share_cache->cache; chunks_n = mr_get_chunk_count(mr); if (bt->len + chunks_n > bt->size) { struct mlx5_common_device *cdev; uint32_t size; size = bt->size + chunks_n; MLX5_ASSERT(size > bt->size); cdev = container_of(share_cache, struct mlx5_common_device, mr_scache); rte_rwlock_write_unlock(&share_cache->rwlock); rte_mcfg_mem_read_unlock(); if (mlx5_mr_expand_cache(share_cache, size, cdev->dev->numa_node) < 0) { DRV_LOG(ERR, "Failed to expand global MR cache to %u slots", size); goto err_nolock; } goto find_range; } /* * Finally create an MR for the memory chunk. Verbs: ibv_reg_mr() can * be called with holding the memory lock because it doesn't use * mlx5_alloc_buf_extern() which eventually calls rte_malloc_socket() * through mlx5_alloc_verbs_buf(). */ share_cache->reg_mr_cb(pd, (void *)data.start, len, &mr->pmd_mr); if (mr->pmd_mr.obj == NULL) { DRV_LOG(DEBUG, "Fail to create an MR for address (%p)", (void *)addr); rte_errno = EINVAL; goto err_mrlock; } MLX5_ASSERT((uintptr_t)mr->pmd_mr.addr == data.start); MLX5_ASSERT(mr->pmd_mr.len); LIST_INSERT_HEAD(&share_cache->mr_list, mr, mr); DRV_LOG(DEBUG, "MR CREATED (%p) for %p:\n" " [0x%" PRIxPTR ", 0x%" PRIxPTR ")," " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u", (void *)mr, (void *)addr, data.start, data.end, rte_cpu_to_be_32(mr->pmd_mr.lkey), mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n); /* Insert to the global cache table. */ mlx5_mr_insert_cache(share_cache, mr); /* Fill in output data. */ mlx5_mr_lookup_cache(share_cache, entry, addr); /* Lookup can't fail. */ MLX5_ASSERT(entry->lkey != UINT32_MAX); rte_rwlock_write_unlock(&share_cache->rwlock); rte_mcfg_mem_read_unlock(); return entry->lkey; err_mrlock: rte_rwlock_write_unlock(&share_cache->rwlock); err_memlock: rte_mcfg_mem_read_unlock(); err_nolock: /* * In case of error, as this can be called in a datapath, a warning * message per an error is preferable instead. Must be unlocked before * calling rte_free() because mlx5_mr_mem_event_free_cb() can be called * inside. */ mlx5_mr_free(mr, share_cache->dereg_mr_cb); return UINT32_MAX; } /** * Create a new global Memory Region (MR) for a missing virtual address. * This can be called from primary and secondary process. * * @param cdev * Pointer to the mlx5 common device. * @param share_cache * Pointer to a global shared MR cache. * @param[out] entry * Pointer to returning MR cache entry, found in the global cache or newly * created. If failed to create one, this will not be updated. * @param addr * Target virtual address to register. * * @return * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. */ uint32_t mlx5_mr_create(struct mlx5_common_device *cdev, struct mlx5_mr_share_cache *share_cache, struct mr_cache_entry *entry, uintptr_t addr) { uint32_t ret = 0; switch (rte_eal_process_type()) { case RTE_PROC_PRIMARY: ret = mlx5_mr_create_primary(cdev->pd, share_cache, entry, addr, cdev->config.mr_ext_memseg_en); break; case RTE_PROC_SECONDARY: ret = mlx5_mr_create_secondary(cdev, share_cache, entry, addr); break; default: break; } return ret; } /** * Look up address in the global MR cache table. If not found, create a new MR. * Insert the found/created entry to local bottom-half cache table. * * @param mr_ctrl * Pointer to per-queue MR control structure. * @param[out] entry * Pointer to returning MR cache entry, found in the global cache or newly * created. If failed to create one, this is not written. * @param addr * Search key. * * @return * Searched LKey on success, UINT32_MAX on no match. */ static uint32_t mr_lookup_caches(struct mlx5_mr_ctrl *mr_ctrl, struct mr_cache_entry *entry, uintptr_t addr) { struct mlx5_mr_share_cache *share_cache = container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache, dev_gen); struct mlx5_common_device *cdev = container_of(share_cache, struct mlx5_common_device, mr_scache); struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh; uint32_t lkey; uint32_t idx; /* If local cache table is full, try to double it. */ if (unlikely(bt->len == bt->size)) mr_btree_expand(bt, bt->size << 1); /* Look up in the global cache. */ rte_rwlock_read_lock(&share_cache->rwlock); lkey = mr_btree_lookup(&share_cache->cache, &idx, addr); if (lkey != UINT32_MAX) { /* Found. */ *entry = (*share_cache->cache.table)[idx]; rte_rwlock_read_unlock(&share_cache->rwlock); /* * Update local cache. Even if it fails, return the found entry * to update top-half cache. Next time, this entry will be found * in the global cache. */ mr_btree_insert(bt, entry); return lkey; } rte_rwlock_read_unlock(&share_cache->rwlock); /* First time to see the address? Create a new MR. */ lkey = mlx5_mr_create(cdev, share_cache, entry, addr); /* * Update the local cache if successfully created a new global MR. Even * if failed to create one, there's no action to take in this datapath * code. As returning LKey is invalid, this will eventually make HW * fail. */ if (lkey != UINT32_MAX) mr_btree_insert(bt, entry); return lkey; } /** * Bottom-half of LKey search on datapath. First search in cache_bh[] and if * misses, search in the global MR cache table and update the new entry to * per-queue local caches. * * @param mr_ctrl * Pointer to per-queue MR control structure. * @param addr * Search key. * * @return * Searched LKey on success, UINT32_MAX on no match. */ static uint32_t mlx5_mr_addr2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, uintptr_t addr) { uint32_t lkey; uint32_t bh_idx = 0; /* Victim in top-half cache to replace with new entry. */ struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head]; /* Binary-search MR translation table. */ lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr); /* Update top-half cache. */ if (likely(lkey != UINT32_MAX)) { *repl = (*mr_ctrl->cache_bh.table)[bh_idx]; } else { /* * If missed in local lookup table, search in the global cache * and local cache_bh[] will be updated inside if possible. * Top-half cache entry will also be updated. */ lkey = mr_lookup_caches(mr_ctrl, repl, addr); if (unlikely(lkey == UINT32_MAX)) return UINT32_MAX; } /* Update the most recently used entry. */ mr_ctrl->mru = mr_ctrl->head; /* Point to the next victim, the oldest. */ mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N; return lkey; } /** * Release all the created MRs and resources on global MR cache of a device * list. * * @param share_cache * Pointer to a global shared MR cache. */ void mlx5_mr_release_cache(struct mlx5_mr_share_cache *share_cache) { struct mlx5_mr *mr_next; rte_rwlock_write_lock(&share_cache->rwlock); /* Detach from MR list and move to free list. */ mr_next = LIST_FIRST(&share_cache->mr_list); while (mr_next != NULL) { struct mlx5_mr *mr = mr_next; mr_next = LIST_NEXT(mr, mr); LIST_REMOVE(mr, mr); LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr); } LIST_INIT(&share_cache->mr_list); /* Free global cache. */ mlx5_mr_btree_free(&share_cache->cache); rte_rwlock_write_unlock(&share_cache->rwlock); /* Free all remaining MRs. */ mlx5_mr_garbage_collect(share_cache); } /** * Initialize global MR cache of a device. * * @param share_cache * Pointer to a global shared MR cache. * @param socket * NUMA socket on which memory must be allocated. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_mr_create_cache(struct mlx5_mr_share_cache *share_cache, int socket) { /* Set the reg_mr and dereg_mr callback functions */ mlx5_os_set_reg_mr_cb(&share_cache->reg_mr_cb, &share_cache->dereg_mr_cb); rte_rwlock_init(&share_cache->rwlock); rte_rwlock_init(&share_cache->mprwlock); share_cache->mp_cb_registered = 0; /* Initialize B-tree and allocate memory for global MR cache table. */ return mlx5_mr_btree_init(&share_cache->cache, MLX5_MR_BTREE_CACHE_N * 2, socket); } /** * Flush all of the local cache entries. * * @param mr_ctrl * Pointer to per-queue MR local cache. */ void mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl) { /* Reset the most-recently-used index. */ mr_ctrl->mru = 0; /* Reset the linear search array. */ mr_ctrl->head = 0; memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache)); /* Reset the B-tree table. */ mr_ctrl->cache_bh.len = 1; /* Update the generation number. */ mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr; DRV_LOG(DEBUG, "mr_ctrl(%p): flushed, cur_gen=%d", (void *)mr_ctrl, mr_ctrl->cur_gen); } /** * Creates a memory region for external memory, that is memory which is not * part of the DPDK memory segments. * * @param pd * Pointer to pd of a device (net, regex, vdpa,...). * @param addr * Starting virtual address of memory. * @param len * Length of memory segment being mapped. * @param socked_id * Socket to allocate heap memory for the control structures. * * @return * Pointer to MR structure on success, NULL otherwise. */ struct mlx5_mr * mlx5_create_mr_ext(void *pd, uintptr_t addr, size_t len, int socket_id, mlx5_reg_mr_t reg_mr_cb) { struct mlx5_mr *mr = NULL; mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE), RTE_CACHE_LINE_SIZE, socket_id); if (mr == NULL) return NULL; reg_mr_cb(pd, (void *)addr, len, &mr->pmd_mr); if (mr->pmd_mr.obj == NULL) { DRV_LOG(WARNING, "Fail to create MR for address (%p)", (void *)addr); mlx5_free(mr); return NULL; } mr->msl = NULL; /* Mark it is external memory. */ mr->ms_bmp = NULL; mr->ms_n = 1; mr->ms_bmp_n = 1; DRV_LOG(DEBUG, "MR CREATED (%p) for external memory %p:\n" " [0x%" PRIxPTR ", 0x%" PRIxPTR ")," " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u", (void *)mr, (void *)addr, addr, addr + len, rte_cpu_to_be_32(mr->pmd_mr.lkey), mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n); return mr; } /** * Callback for memory free event. Iterate freed memsegs and check whether it * belongs to an existing MR. If found, clear the bit from bitmap of MR. As a * result, the MR would be fragmented. If it becomes empty, the MR will be freed * later by mlx5_mr_garbage_collect(). Even if this callback is called from a * secondary process, the garbage collector will be called in primary process * as the secondary process can't call mlx5_mr_create(). * * The global cache must be rebuilt if there's any change and this event has to * be propagated to dataplane threads to flush the local caches. * * @param share_cache * Pointer to a global shared MR cache. * @param ibdev_name * Name of ibv device. * @param addr * Address of freed memory. * @param len * Size of freed memory. */ void mlx5_free_mr_by_addr(struct mlx5_mr_share_cache *share_cache, const char *ibdev_name, const void *addr, size_t len) { const struct rte_memseg_list *msl; struct mlx5_mr *mr; int ms_n; int i; int rebuild = 0; DRV_LOG(DEBUG, "device %s free callback: addr=%p, len=%zu", ibdev_name, addr, len); msl = rte_mem_virt2memseg_list(addr); /* addr and len must be page-aligned. */ MLX5_ASSERT((uintptr_t)addr == RTE_ALIGN((uintptr_t)addr, msl->page_sz)); MLX5_ASSERT(len == RTE_ALIGN(len, msl->page_sz)); ms_n = len / msl->page_sz; rte_rwlock_write_lock(&share_cache->rwlock); /* Clear bits of freed memsegs from MR. */ for (i = 0; i < ms_n; ++i) { const struct rte_memseg *ms; struct mr_cache_entry entry; uintptr_t start; int ms_idx; uint32_t pos; /* Find MR having this memseg. */ start = (uintptr_t)addr + i * msl->page_sz; mr = mlx5_mr_lookup_list(share_cache, &entry, start); if (mr == NULL) continue; MLX5_ASSERT(mr->msl); /* Can't be external memory. */ ms = rte_mem_virt2memseg((void *)start, msl); MLX5_ASSERT(ms != NULL); MLX5_ASSERT(msl->page_sz == ms->hugepage_sz); ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); pos = ms_idx - mr->ms_base_idx; MLX5_ASSERT(rte_bitmap_get(mr->ms_bmp, pos)); MLX5_ASSERT(pos < mr->ms_bmp_n); DRV_LOG(DEBUG, "device %s MR(%p): clear bitmap[%u] for addr %p", ibdev_name, (void *)mr, pos, (void *)start); rte_bitmap_clear(mr->ms_bmp, pos); if (--mr->ms_n == 0) { LIST_REMOVE(mr, mr); LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr); DRV_LOG(DEBUG, "device %s remove MR(%p) from list", ibdev_name, (void *)mr); } /* * MR is fragmented or will be freed. the global cache must be * rebuilt. */ rebuild = 1; } if (rebuild) { mlx5_mr_rebuild_cache(share_cache); /* * No explicit wmb is needed after updating dev_gen due to * store-release ordering in unlock that provides the * implicit barrier at the software visible level. */ ++share_cache->dev_gen; DRV_LOG(DEBUG, "broadcasting local cache flush, gen=%d", share_cache->dev_gen); } rte_rwlock_write_unlock(&share_cache->rwlock); } /** * Dump all the created MRs and the global cache entries. * * @param share_cache * Pointer to a global shared MR cache. */ void mlx5_mr_dump_cache(struct mlx5_mr_share_cache *share_cache __rte_unused) { #ifdef RTE_LIBRTE_MLX5_DEBUG struct mlx5_mr *mr; int mr_n = 0; int chunk_n = 0; rte_rwlock_read_lock(&share_cache->rwlock); /* Iterate all the existing MRs. */ LIST_FOREACH(mr, &share_cache->mr_list, mr) { unsigned int n; DRV_LOG(DEBUG, "MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u", mr_n++, rte_cpu_to_be_32(mr->pmd_mr.lkey), mr->ms_n, mr->ms_bmp_n); if (mr->ms_n == 0) continue; for (n = 0; n < mr->ms_bmp_n; ) { struct mr_cache_entry ret = { 0, }; n = mr_find_next_chunk(mr, &ret, n); if (!ret.end) break; DRV_LOG(DEBUG, " chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")", chunk_n++, ret.start, ret.end); } } DRV_LOG(DEBUG, "Dumping global cache %p", (void *)share_cache); mlx5_mr_btree_dump(&share_cache->cache); rte_rwlock_read_unlock(&share_cache->rwlock); #endif } static int mlx5_range_compare_start(const void *lhs, const void *rhs) { const struct mlx5_range *r1 = lhs, *r2 = rhs; if (r1->start > r2->start) return 1; else if (r1->start < r2->start) return -1; return 0; } static void mlx5_range_from_mempool_chunk(struct rte_mempool *mp, void *opaque, struct rte_mempool_memhdr *memhdr, unsigned int idx) { struct mlx5_range *ranges = opaque, *range = &ranges[idx]; uintptr_t start = (uintptr_t)memhdr->addr; uint64_t page_size = rte_mem_page_size(); RTE_SET_USED(mp); range->start = RTE_ALIGN_FLOOR(start, page_size); range->end = RTE_ALIGN_CEIL(start + memhdr->len, page_size); } /** * Collect page-aligned memory ranges of the mempool. */ static int mlx5_mempool_get_chunks(struct rte_mempool *mp, struct mlx5_range **out, unsigned int *out_n) { unsigned int n; DRV_LOG(DEBUG, "Collecting chunks of regular mempool %s", mp->name); n = mp->nb_mem_chunks; *out = calloc(sizeof(**out), n); if (*out == NULL) return -1; rte_mempool_mem_iter(mp, mlx5_range_from_mempool_chunk, *out); *out_n = n; return 0; } struct mlx5_mempool_get_extmem_data { struct mlx5_range *heap; unsigned int heap_size; int ret; }; static void mlx5_mempool_get_extmem_cb(struct rte_mempool *mp, void *opaque, void *obj, unsigned int obj_idx) { struct mlx5_mempool_get_extmem_data *data = opaque; struct rte_mbuf *mbuf = obj; uintptr_t addr = (uintptr_t)mbuf->buf_addr; struct mlx5_range *seg, *heap; struct rte_memseg_list *msl; size_t page_size; uintptr_t page_start; unsigned int pos = 0, len = data->heap_size, delta; RTE_SET_USED(mp); RTE_SET_USED(obj_idx); if (data->ret < 0) return; /* Binary search for an already visited page. */ while (len > 1) { delta = len / 2; if (addr < data->heap[pos + delta].start) { len = delta; } else { pos += delta; len -= delta; } } if (data->heap != NULL) { seg = &data->heap[pos]; if (seg->start <= addr && addr < seg->end) return; } /* Determine the page boundaries and remember them. */ heap = realloc(data->heap, sizeof(heap[0]) * (data->heap_size + 1)); if (heap == NULL) { free(data->heap); data->heap = NULL; data->ret = -1; return; } data->heap = heap; data->heap_size++; seg = &heap[data->heap_size - 1]; msl = rte_mem_virt2memseg_list((void *)addr); page_size = msl != NULL ? msl->page_sz : rte_mem_page_size(); page_start = RTE_PTR_ALIGN_FLOOR(addr, page_size); seg->start = page_start; seg->end = page_start + page_size; /* Maintain the heap order. */ qsort(data->heap, data->heap_size, sizeof(heap[0]), mlx5_range_compare_start); } /** * Recover pages of external memory as close as possible * for a mempool with RTE_PKTMBUF_POOL_PINNED_EXT_BUF. * Pages are stored in a heap for efficient search, for mbufs are many. */ static int mlx5_mempool_get_extmem(struct rte_mempool *mp, struct mlx5_range **out, unsigned int *out_n) { struct mlx5_mempool_get_extmem_data data; DRV_LOG(DEBUG, "Recovering external pinned pages of mempool %s", mp->name); memset(&data, 0, sizeof(data)); rte_mempool_obj_iter(mp, mlx5_mempool_get_extmem_cb, &data); *out = data.heap; *out_n = data.heap_size; return data.ret; } /** * Get VA-contiguous ranges of the mempool memory. * Each range start and end is aligned to the system page size. * * @param[in] mp * Analyzed mempool. * @param[in] is_extmem * Whether the pool is contains only external pinned buffers. * @param[out] out * Receives the ranges, caller must release it with free(). * @param[out] out_n * Receives the number of @p out elements. * * @return * 0 on success, (-1) on failure. */ static int mlx5_get_mempool_ranges(struct rte_mempool *mp, bool is_extmem, struct mlx5_range **out, unsigned int *out_n) { struct mlx5_range *chunks; unsigned int chunks_n, contig_n, i; int ret; /* Collect the pool underlying memory. */ ret = is_extmem ? mlx5_mempool_get_extmem(mp, &chunks, &chunks_n) : mlx5_mempool_get_chunks(mp, &chunks, &chunks_n); if (ret < 0) return ret; /* Merge adjacent chunks and place them at the beginning. */ qsort(chunks, chunks_n, sizeof(chunks[0]), mlx5_range_compare_start); contig_n = 1; for (i = 1; i < chunks_n; i++) if (chunks[i - 1].end != chunks[i].start) { chunks[contig_n - 1].end = chunks[i - 1].end; chunks[contig_n] = chunks[i]; contig_n++; } /* Extend the last contiguous chunk to the end of the mempool. */ chunks[contig_n - 1].end = chunks[i - 1].end; *out = chunks; *out_n = contig_n; return 0; } /** * Analyze mempool memory to select memory ranges to register. * * @param[in] mp * Mempool to analyze. * @param[in] is_extmem * Whether the pool is contains only external pinned buffers. * @param[out] out * Receives memory ranges to register, aligned to the system page size. * The caller must release them with free(). * @param[out] out_n * Receives the number of @p out items. * @param[out] share_hugepage * Receives True if the entire pool resides within a single hugepage. * * @return * 0 on success, (-1) on failure. */ static int mlx5_mempool_reg_analyze(struct rte_mempool *mp, bool is_extmem, struct mlx5_range **out, unsigned int *out_n, bool *share_hugepage) { struct mlx5_range *ranges = NULL; unsigned int i, ranges_n = 0; struct rte_memseg_list *msl; if (mlx5_get_mempool_ranges(mp, is_extmem, &ranges, &ranges_n) < 0) { DRV_LOG(ERR, "Cannot get address ranges for mempool %s", mp->name); return -1; } /* Check if the hugepage of the pool can be shared. */ *share_hugepage = false; msl = rte_mem_virt2memseg_list((void *)ranges[0].start); if (msl != NULL) { uint64_t hugepage_sz = 0; /* Check that all ranges are on pages of the same size. */ for (i = 0; i < ranges_n; i++) { if (hugepage_sz != 0 && hugepage_sz != msl->page_sz) break; hugepage_sz = msl->page_sz; } if (i == ranges_n) { /* * If the entire pool is within one hugepage, * combine all ranges into one of the hugepage size. */ uintptr_t reg_start = ranges[0].start; uintptr_t reg_end = ranges[ranges_n - 1].end; uintptr_t hugepage_start = RTE_ALIGN_FLOOR(reg_start, hugepage_sz); uintptr_t hugepage_end = hugepage_start + hugepage_sz; if (reg_end < hugepage_end) { ranges[0].start = hugepage_start; ranges[0].end = hugepage_end; ranges_n = 1; *share_hugepage = true; } } } *out = ranges; *out_n = ranges_n; return 0; } /** Create a registration object for the mempool. */ static struct mlx5_mempool_reg * mlx5_mempool_reg_create(struct rte_mempool *mp, unsigned int mrs_n, bool is_extmem) { struct mlx5_mempool_reg *mpr = NULL; mpr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(struct mlx5_mempool_reg), RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY); if (mpr == NULL) { DRV_LOG(ERR, "Cannot allocate mempool %s registration object", mp->name); return NULL; } mpr->mrs = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, mrs_n * sizeof(struct mlx5_mempool_mr), RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY); if (!mpr->mrs) { DRV_LOG(ERR, "Cannot allocate mempool %s registration MRs", mp->name); mlx5_free(mpr); return NULL; } mpr->mp = mp; mpr->mrs_n = mrs_n; mpr->is_extmem = is_extmem; return mpr; } /** * Destroy a mempool registration object. * * @param standalone * Whether @p mpr owns its MRs exclusively, i.e. they are not shared. */ static void mlx5_mempool_reg_destroy(struct mlx5_mr_share_cache *share_cache, struct mlx5_mempool_reg *mpr, bool standalone) { if (standalone) { unsigned int i; for (i = 0; i < mpr->mrs_n; i++) share_cache->dereg_mr_cb(&mpr->mrs[i].pmd_mr); mlx5_free(mpr->mrs); } mlx5_free(mpr); } /** Find registration object of a mempool. */ static struct mlx5_mempool_reg * mlx5_mempool_reg_lookup(struct mlx5_mr_share_cache *share_cache, struct rte_mempool *mp) { struct mlx5_mempool_reg *mpr; LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) if (mpr->mp == mp) break; return mpr; } /** Increment reference counters of MRs used in the registration. */ static void mlx5_mempool_reg_attach(struct mlx5_mempool_reg *mpr) { unsigned int i; for (i = 0; i < mpr->mrs_n; i++) __atomic_add_fetch(&mpr->mrs[i].refcnt, 1, __ATOMIC_RELAXED); } /** * Decrement reference counters of MRs used in the registration. * * @return True if no more references to @p mpr MRs exist, False otherwise. */ static bool mlx5_mempool_reg_detach(struct mlx5_mempool_reg *mpr) { unsigned int i; bool ret = false; for (i = 0; i < mpr->mrs_n; i++) ret |= __atomic_sub_fetch(&mpr->mrs[i].refcnt, 1, __ATOMIC_RELAXED) == 0; return ret; } static int mlx5_mr_mempool_register_primary(struct mlx5_mr_share_cache *share_cache, void *pd, struct rte_mempool *mp, bool is_extmem) { struct mlx5_range *ranges = NULL; struct mlx5_mempool_reg *mpr, *old_mpr, *new_mpr; unsigned int i, ranges_n; bool share_hugepage, standalone = false; int ret = -1; /* Early check to avoid unnecessary creation of MRs. */ rte_rwlock_read_lock(&share_cache->rwlock); old_mpr = mlx5_mempool_reg_lookup(share_cache, mp); rte_rwlock_read_unlock(&share_cache->rwlock); if (old_mpr != NULL && (!is_extmem || old_mpr->is_extmem)) { DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p", mp->name, pd); rte_errno = EEXIST; goto exit; } if (mlx5_mempool_reg_analyze(mp, is_extmem, &ranges, &ranges_n, &share_hugepage) < 0) { DRV_LOG(ERR, "Cannot get mempool %s memory ranges", mp->name); rte_errno = ENOMEM; goto exit; } new_mpr = mlx5_mempool_reg_create(mp, ranges_n, is_extmem); if (new_mpr == NULL) { DRV_LOG(ERR, "Cannot create a registration object for mempool %s in PD %p", mp->name, pd); rte_errno = ENOMEM; goto exit; } /* * If the entire mempool fits in a single hugepage, the MR for this * hugepage can be shared across mempools that also fit in it. */ if (share_hugepage) { rte_rwlock_write_lock(&share_cache->rwlock); LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) { if (mpr->mrs[0].pmd_mr.addr == (void *)ranges[0].start) break; } if (mpr != NULL) { new_mpr->mrs = mpr->mrs; mlx5_mempool_reg_attach(new_mpr); LIST_INSERT_HEAD(&share_cache->mempool_reg_list, new_mpr, next); } rte_rwlock_write_unlock(&share_cache->rwlock); if (mpr != NULL) { DRV_LOG(DEBUG, "Shared MR %#x in PD %p for mempool %s with mempool %s", mpr->mrs[0].pmd_mr.lkey, pd, mp->name, mpr->mp->name); ret = 0; goto exit; } } for (i = 0; i < ranges_n; i++) { struct mlx5_mempool_mr *mr = &new_mpr->mrs[i]; const struct mlx5_range *range = &ranges[i]; size_t len = range->end - range->start; if (share_cache->reg_mr_cb(pd, (void *)range->start, len, &mr->pmd_mr) < 0) { DRV_LOG(ERR, "Failed to create an MR in PD %p for address range " "[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s", pd, range->start, range->end, len, mp->name); break; } DRV_LOG(DEBUG, "Created a new MR %#x in PD %p for address range " "[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s", mr->pmd_mr.lkey, pd, range->start, range->end, len, mp->name); } if (i != ranges_n) { mlx5_mempool_reg_destroy(share_cache, new_mpr, true); rte_errno = EINVAL; goto exit; } /* Concurrent registration is not supposed to happen. */ rte_rwlock_write_lock(&share_cache->rwlock); mpr = mlx5_mempool_reg_lookup(share_cache, mp); if (mpr == old_mpr && old_mpr != NULL) { LIST_REMOVE(old_mpr, next); standalone = mlx5_mempool_reg_detach(mpr); /* No need to flush the cache: old MRs cannot be in use. */ mpr = NULL; } if (mpr == NULL) { mlx5_mempool_reg_attach(new_mpr); LIST_INSERT_HEAD(&share_cache->mempool_reg_list, new_mpr, next); ret = 0; } rte_rwlock_write_unlock(&share_cache->rwlock); if (mpr != NULL) { DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p", mp->name, pd); mlx5_mempool_reg_destroy(share_cache, new_mpr, true); rte_errno = EEXIST; goto exit; } else if (old_mpr != NULL) { DRV_LOG(DEBUG, "Mempool %s registration for PD %p updated for external memory", mp->name, pd); mlx5_mempool_reg_destroy(share_cache, old_mpr, standalone); } exit: free(ranges); return ret; } static int mlx5_mr_mempool_register_secondary(struct mlx5_common_device *cdev, struct rte_mempool *mp, bool is_extmem) { return mlx5_mp_req_mempool_reg(cdev, mp, true, is_extmem); } /** * Register the memory of a mempool in the protection domain. * * @param cdev * Pointer to the mlx5 common device. * @param mp * Mempool to register. * * @return * 0 on success, (-1) on failure and rte_errno is set. */ int mlx5_mr_mempool_register(struct mlx5_common_device *cdev, struct rte_mempool *mp, bool is_extmem) { if (mp->flags & RTE_MEMPOOL_F_NON_IO) return 0; switch (rte_eal_process_type()) { case RTE_PROC_PRIMARY: return mlx5_mr_mempool_register_primary(&cdev->mr_scache, cdev->pd, mp, is_extmem); case RTE_PROC_SECONDARY: return mlx5_mr_mempool_register_secondary(cdev, mp, is_extmem); default: return -1; } } static int mlx5_mr_mempool_unregister_primary(struct mlx5_mr_share_cache *share_cache, struct rte_mempool *mp) { struct mlx5_mempool_reg *mpr; bool standalone = false; rte_rwlock_write_lock(&share_cache->rwlock); LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) if (mpr->mp == mp) { LIST_REMOVE(mpr, next); standalone = mlx5_mempool_reg_detach(mpr); if (standalone) /* * The unlock operation below provides a memory * barrier due to its store-release semantics. */ ++share_cache->dev_gen; break; } rte_rwlock_write_unlock(&share_cache->rwlock); if (mpr == NULL) { rte_errno = ENOENT; return -1; } mlx5_mempool_reg_destroy(share_cache, mpr, standalone); return 0; } static int mlx5_mr_mempool_unregister_secondary(struct mlx5_common_device *cdev, struct rte_mempool *mp) { return mlx5_mp_req_mempool_reg(cdev, mp, false, false /* is_extmem */); } /** * Unregister the memory of a mempool from the protection domain. * * @param cdev * Pointer to the mlx5 common device. * @param mp * Mempool to unregister. * * @return * 0 on success, (-1) on failure and rte_errno is set. */ int mlx5_mr_mempool_unregister(struct mlx5_common_device *cdev, struct rte_mempool *mp) { if (mp->flags & RTE_MEMPOOL_F_NON_IO) return 0; switch (rte_eal_process_type()) { case RTE_PROC_PRIMARY: return mlx5_mr_mempool_unregister_primary(&cdev->mr_scache, mp); case RTE_PROC_SECONDARY: return mlx5_mr_mempool_unregister_secondary(cdev, mp); default: return -1; } } /** * Lookup a MR key by and address in a registered mempool. * * @param mpr * Mempool registration object. * @param addr * Address within the mempool. * @param entry * Bottom-half cache entry to fill. * * @return * MR key or UINT32_MAX on failure, which can only happen * if the address is not from within the mempool. */ static uint32_t mlx5_mempool_reg_addr2mr(struct mlx5_mempool_reg *mpr, uintptr_t addr, struct mr_cache_entry *entry) { uint32_t lkey = UINT32_MAX; unsigned int i; for (i = 0; i < mpr->mrs_n; i++) { const struct mlx5_pmd_mr *mr = &mpr->mrs[i].pmd_mr; uintptr_t mr_start = (uintptr_t)mr->addr; uintptr_t mr_end = mr_start + mr->len; if (mr_start <= addr && addr < mr_end) { lkey = rte_cpu_to_be_32(mr->lkey); entry->start = mr_start; entry->end = mr_end; entry->lkey = lkey; break; } } return lkey; } /** * Update bottom-half cache from the list of mempool registrations. * * @param mr_ctrl * Per-queue MR control handle. * @param entry * Pointer to an entry in the bottom-half cache to update * with the MR lkey looked up. * @param mp * Mempool containing the address. * @param addr * Address to lookup. * @return * MR lkey on success, UINT32_MAX on failure. */ static uint32_t mlx5_lookup_mempool_regs(struct mlx5_mr_ctrl *mr_ctrl, struct mr_cache_entry *entry, struct rte_mempool *mp, uintptr_t addr) { struct mlx5_mr_share_cache *share_cache = container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache, dev_gen); struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh; struct mlx5_mempool_reg *mpr; uint32_t lkey = UINT32_MAX; /* If local cache table is full, try to double it. */ if (unlikely(bt->len == bt->size)) mr_btree_expand(bt, bt->size << 1); /* Look up in mempool registrations. */ rte_rwlock_read_lock(&share_cache->rwlock); mpr = mlx5_mempool_reg_lookup(share_cache, mp); if (mpr != NULL) lkey = mlx5_mempool_reg_addr2mr(mpr, addr, entry); rte_rwlock_read_unlock(&share_cache->rwlock); /* * Update local cache. Even if it fails, return the found entry * to update top-half cache. Next time, this entry will be found * in the global cache. */ if (lkey != UINT32_MAX) mr_btree_insert(bt, entry); return lkey; } /** * Populate cache with LKeys of all MRs used by the mempool. * It is intended to be used to register Rx mempools in advance. * * @param mr_ctrl * Per-queue MR control handle. * @param mp * Registered memory pool. * * @return * 0 on success, (-1) on failure and rte_errno is set. */ int mlx5_mr_mempool_populate_cache(struct mlx5_mr_ctrl *mr_ctrl, struct rte_mempool *mp) { struct mlx5_mr_share_cache *share_cache = container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache, dev_gen); struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh; struct mlx5_mempool_reg *mpr; unsigned int i; /* * Registration is valid after the lock is released, * because the function is called after the mempool is registered. */ rte_rwlock_read_lock(&share_cache->rwlock); mpr = mlx5_mempool_reg_lookup(share_cache, mp); rte_rwlock_read_unlock(&share_cache->rwlock); if (mpr == NULL) { DRV_LOG(ERR, "Mempool %s is not registered", mp->name); rte_errno = ENOENT; return -1; } for (i = 0; i < mpr->mrs_n; i++) { struct mlx5_mempool_mr *mr = &mpr->mrs[i]; struct mr_cache_entry entry; uint32_t lkey; uint32_t idx; lkey = mr_btree_lookup(bt, &idx, (uintptr_t)mr->pmd_mr.addr); if (lkey != UINT32_MAX) continue; if (bt->len == bt->size) mr_btree_expand(bt, bt->size << 1); entry.start = (uintptr_t)mr->pmd_mr.addr; entry.end = entry.start + mr->pmd_mr.len; entry.lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey); if (mr_btree_insert(bt, &entry) < 0) { DRV_LOG(ERR, "Cannot insert cache entry for mempool %s MR %08x", mp->name, entry.lkey); rte_errno = EINVAL; return -1; } } return 0; } /** * Bottom-half lookup for the address from the mempool. * * @param mr_ctrl * Per-queue MR control handle. * @param mp * Mempool containing the address. * @param addr * Address to lookup. * @return * MR lkey on success, UINT32_MAX on failure. */ uint32_t mlx5_mr_mempool2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, struct rte_mempool *mp, uintptr_t addr) { struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head]; uint32_t lkey; uint32_t bh_idx = 0; /* Binary-search MR translation table. */ lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr); /* Update top-half cache. */ if (likely(lkey != UINT32_MAX)) { *repl = (*mr_ctrl->cache_bh.table)[bh_idx]; } else { lkey = mlx5_lookup_mempool_regs(mr_ctrl, repl, mp, addr); /* Can only fail if the address is not from the mempool. */ if (unlikely(lkey == UINT32_MAX)) return UINT32_MAX; } /* Update the most recently used entry. */ mr_ctrl->mru = mr_ctrl->head; /* Point to the next victim, the oldest. */ mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N; return lkey; } uint32_t mlx5_mr_mb2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, struct rte_mbuf *mb) { struct rte_mempool *mp; struct mlx5_mprq_buf *buf; uint32_t lkey; uintptr_t addr = (uintptr_t)mb->buf_addr; struct mlx5_mr_share_cache *share_cache = container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache, dev_gen); struct mlx5_common_device *cdev = container_of(share_cache, struct mlx5_common_device, mr_scache); bool external, mprq, pinned = false; /* Recover MPRQ mempool. */ external = RTE_MBUF_HAS_EXTBUF(mb); if (external && mb->shinfo->free_cb == mlx5_mprq_buf_free_cb) { mprq = true; buf = mb->shinfo->fcb_opaque; mp = buf->mp; } else { mprq = false; mp = mlx5_mb2mp(mb); pinned = rte_pktmbuf_priv_flags(mp) & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF; } if (!external || mprq || pinned) { lkey = mlx5_mr_mempool2mr_bh(mr_ctrl, mp, addr); if (lkey != UINT32_MAX) return lkey; /* MPRQ is always registered. */ MLX5_ASSERT(!mprq); } /* Register pinned external memory if the mempool is not used for Rx. */ if (cdev->config.mr_mempool_reg_en && pinned) { if (mlx5_mr_mempool_register(cdev, mp, true) < 0) return UINT32_MAX; lkey = mlx5_mr_mempool2mr_bh(mr_ctrl, mp, addr); MLX5_ASSERT(lkey != UINT32_MAX); return lkey; } /* Fallback to generic mechanism in corner cases. */ return mlx5_mr_addr2mr_bh(mr_ctrl, addr); }