/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2020 Mellanox Technologies, Ltd * * This file contain the application main file * This application provides the user the ability to test the * insertion rate for specific rte_flow rule under stress state ~4M rule/ * * Then it will also provide packet per second measurement after installing * all rules, the user may send traffic to test the PPS that match the rules * after all rules are installed, to check performance or functionality after * the stress. * * The flows insertion will go for all ports first, then it will print the * results, after that the application will go into forwarding packets mode * it will start receiving traffic if any and then forwarding it back and * gives packet per second measurement. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "config.h" #include "actions_gen.h" #include "flow_gen.h" #define MAX_BATCHES_COUNT 100 #define DEFAULT_RULES_COUNT 4000000 #define DEFAULT_RULES_BATCH 100000 #define DEFAULT_GROUP 0 struct rte_flow *flow; static uint8_t flow_group; static uint64_t encap_data; static uint64_t decap_data; static uint64_t all_actions[RTE_COLORS][MAX_ACTIONS_NUM]; static char *actions_str[RTE_COLORS]; static uint64_t flow_items[MAX_ITEMS_NUM]; static uint64_t flow_actions[MAX_ACTIONS_NUM]; static uint64_t flow_attrs[MAX_ATTRS_NUM]; static uint32_t policy_id[MAX_PORTS]; static uint8_t items_idx, actions_idx, attrs_idx; static uint64_t ports_mask; static uint16_t dst_ports[RTE_MAX_ETHPORTS]; static volatile bool force_quit; static bool dump_iterations; static bool delete_flag; static bool dump_socket_mem_flag; static bool enable_fwd; static bool unique_data; static bool policy_mtr; static bool packet_mode; static uint8_t rx_queues_count; static uint8_t tx_queues_count; static uint8_t rxd_count; static uint8_t txd_count; static uint32_t mbuf_size; static uint32_t mbuf_cache_size; static uint32_t total_mbuf_num; static struct rte_mempool *mbuf_mp; static uint32_t nb_lcores; static uint32_t rules_count; static uint32_t rules_batch; static uint32_t hairpin_queues_num; /* total hairpin q number - default: 0 */ static uint32_t nb_lcores; static uint8_t max_priority; static uint32_t rand_seed; static uint64_t meter_profile_values[3]; /* CIR CBS EBS values. */ #define MAX_PKT_BURST 32 #define LCORE_MODE_PKT 1 #define LCORE_MODE_STATS 2 #define MAX_STREAMS 64 #define METER_CREATE 1 #define METER_DELETE 2 struct stream { int tx_port; int tx_queue; int rx_port; int rx_queue; }; struct lcore_info { int mode; int streams_nb; struct stream streams[MAX_STREAMS]; /* stats */ uint64_t tx_pkts; uint64_t tx_drops; uint64_t rx_pkts; struct rte_mbuf *pkts[MAX_PKT_BURST]; } __rte_cache_aligned; static struct lcore_info lcore_infos[RTE_MAX_LCORE]; struct used_cpu_time { double insertion[MAX_PORTS][RTE_MAX_LCORE]; double deletion[MAX_PORTS][RTE_MAX_LCORE]; }; struct multi_cores_pool { uint32_t cores_count; uint32_t rules_count; struct used_cpu_time meters_record; struct used_cpu_time flows_record; int64_t last_alloc[RTE_MAX_LCORE]; int64_t current_alloc[RTE_MAX_LCORE]; } __rte_cache_aligned; static struct multi_cores_pool mc_pool = { .cores_count = 1, }; static const struct option_dict { const char *str; const uint64_t mask; uint64_t *map; uint8_t *map_idx; } flow_options[] = { { .str = "ether", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ETH), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "ipv4", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV4), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "ipv6", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV6), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "vlan", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VLAN), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "tcp", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_TCP), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "udp", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_UDP), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "vxlan", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VXLAN), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "vxlan-gpe", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VXLAN_GPE), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "gre", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GRE), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "geneve", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GENEVE), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "gtp", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GTP), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "meta", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_META), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "tag", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_TAG), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "icmpv4", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ICMP), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "icmpv6", .mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ICMP6), .map = &flow_items[0], .map_idx = &items_idx }, { .str = "ingress", .mask = INGRESS, .map = &flow_attrs[0], .map_idx = &attrs_idx }, { .str = "egress", .mask = EGRESS, .map = &flow_attrs[0], .map_idx = &attrs_idx }, { .str = "transfer", .mask = TRANSFER, .map = &flow_attrs[0], .map_idx = &attrs_idx }, { .str = "port-id", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_PORT_ID), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "rss", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_RSS), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "queue", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_QUEUE), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "jump", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_JUMP), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "mark", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_MARK), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "count", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_COUNT), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "set-meta", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_SET_META), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "set-tag", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_SET_TAG), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "drop", .mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_DROP), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "set-src-mac", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_SET_MAC_SRC ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "set-dst-mac", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_SET_MAC_DST ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "set-src-ipv4", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "set-dst-ipv4", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_SET_IPV4_DST ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "set-src-ipv6", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "set-dst-ipv6", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_SET_IPV6_DST ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "set-src-tp", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_SET_TP_SRC ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "set-dst-tp", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_SET_TP_DST ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "inc-tcp-ack", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_INC_TCP_ACK ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "dec-tcp-ack", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "inc-tcp-seq", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "dec-tcp-seq", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "set-ttl", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_SET_TTL ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "dec-ttl", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_DEC_TTL ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "set-ipv4-dscp", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "set-ipv6-dscp", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "flag", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_FLAG ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "meter", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_METER ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "vxlan-encap", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP ), .map = &flow_actions[0], .map_idx = &actions_idx }, { .str = "vxlan-decap", .mask = FLOW_ACTION_MASK( RTE_FLOW_ACTION_TYPE_VXLAN_DECAP ), .map = &flow_actions[0], .map_idx = &actions_idx }, }; static void usage(char *progname) { printf("\nusage: %s\n", progname); printf("\nControl configurations:\n"); printf(" --rules-count=N: to set the number of needed" " rules to insert, default is %d\n", DEFAULT_RULES_COUNT); printf(" --rules-batch=N: set number of batched rules," " default is %d\n", DEFAULT_RULES_BATCH); printf(" --dump-iterations: To print rates for each" " iteration\n"); printf(" --deletion-rate: Enable deletion rate" " calculations\n"); printf(" --dump-socket-mem: To dump all socket memory\n"); printf(" --enable-fwd: To enable packets forwarding" " after insertion\n"); printf(" --portmask=N: hexadecimal bitmask of ports used\n"); printf(" --random-priority=N,S: use random priority levels " "from 0 to (N - 1) for flows " "and S as seed for pseudo-random number generator\n"); printf(" --unique-data: flag to set using unique data for all" " actions that support data, such as header modify and encap actions\n"); printf(" --meter-profile=cir,cbs,ebs: set CIR CBS EBS parameters in meter" " profile, default values are %d,%d,%d\n", METER_CIR, METER_CIR / 8, 0); printf(" --packet-mode: to enable packet mode for meter profile\n"); printf("To set flow attributes:\n"); printf(" --ingress: set ingress attribute in flows\n"); printf(" --egress: set egress attribute in flows\n"); printf(" --transfer: set transfer attribute in flows\n"); printf(" --group=N: set group for all flows," " default is %d\n", DEFAULT_GROUP); printf(" --cores=N: to set the number of needed " "cores to insert rte_flow rules, default is 1\n"); printf(" --rxq=N: to set the count of receive queues\n"); printf(" --txq=N: to set the count of send queues\n"); printf(" --rxd=N: to set the count of rxd\n"); printf(" --txd=N: to set the count of txd\n"); printf(" --mbuf-size=N: to set the size of mbuf\n"); printf(" --mbuf-cache-size=N: to set the size of mbuf cache\n"); printf(" --total-mbuf-count=N: to set the count of total mbuf count\n"); printf("To set flow items:\n"); printf(" --ether: add ether layer in flow items\n"); printf(" --vlan: add vlan layer in flow items\n"); printf(" --ipv4: add ipv4 layer in flow items\n"); printf(" --ipv6: add ipv6 layer in flow items\n"); printf(" --tcp: add tcp layer in flow items\n"); printf(" --udp: add udp layer in flow items\n"); printf(" --vxlan: add vxlan layer in flow items\n"); printf(" --vxlan-gpe: add vxlan-gpe layer in flow items\n"); printf(" --gre: add gre layer in flow items\n"); printf(" --geneve: add geneve layer in flow items\n"); printf(" --gtp: add gtp layer in flow items\n"); printf(" --meta: add meta layer in flow items\n"); printf(" --tag: add tag layer in flow items\n"); printf(" --icmpv4: add icmpv4 layer in flow items\n"); printf(" --icmpv6: add icmpv6 layer in flow items\n"); printf("To set flow actions:\n"); printf(" --port-id: add port-id action in flow actions\n"); printf(" --rss: add rss action in flow actions\n"); printf(" --queue: add queue action in flow actions\n"); printf(" --jump: add jump action in flow actions\n"); printf(" --mark: add mark action in flow actions\n"); printf(" --count: add count action in flow actions\n"); printf(" --set-meta: add set meta action in flow actions\n"); printf(" --set-tag: add set tag action in flow actions\n"); printf(" --drop: add drop action in flow actions\n"); printf(" --hairpin-queue=N: add hairpin-queue action in flow actions\n"); printf(" --hairpin-rss=N: add hairpin-rss action in flow actions\n"); printf(" --set-src-mac: add set src mac action to flow actions\n" "Src mac to be set is random each flow\n"); printf(" --set-dst-mac: add set dst mac action to flow actions\n" "Dst mac to be set is random each flow\n"); printf(" --set-src-ipv4: add set src ipv4 action to flow actions\n" "Src ipv4 to be set is random each flow\n"); printf(" --set-dst-ipv4 add set dst ipv4 action to flow actions\n" "Dst ipv4 to be set is random each flow\n"); printf(" --set-src-ipv6: add set src ipv6 action to flow actions\n" "Src ipv6 to be set is random each flow\n"); printf(" --set-dst-ipv6: add set dst ipv6 action to flow actions\n" "Dst ipv6 to be set is random each flow\n"); printf(" --set-src-tp: add set src tp action to flow actions\n" "Src tp to be set is random each flow\n"); printf(" --set-dst-tp: add set dst tp action to flow actions\n" "Dst tp to be set is random each flow\n"); printf(" --inc-tcp-ack: add inc tcp ack action to flow actions\n" "tcp ack will be increments by 1\n"); printf(" --dec-tcp-ack: add dec tcp ack action to flow actions\n" "tcp ack will be decrements by 1\n"); printf(" --inc-tcp-seq: add inc tcp seq action to flow actions\n" "tcp seq will be increments by 1\n"); printf(" --dec-tcp-seq: add dec tcp seq action to flow actions\n" "tcp seq will be decrements by 1\n"); printf(" --set-ttl: add set ttl action to flow actions\n" "L3 ttl to be set is random each flow\n"); printf(" --dec-ttl: add dec ttl action to flow actions\n" "L3 ttl will be decrements by 1\n"); printf(" --set-ipv4-dscp: add set ipv4 dscp action to flow actions\n" "ipv4 dscp value to be set is random each flow\n"); printf(" --set-ipv6-dscp: add set ipv6 dscp action to flow actions\n" "ipv6 dscp value to be set is random each flow\n"); printf(" --flag: add flag action to flow actions\n"); printf(" --meter: add meter action to flow actions\n"); printf(" --policy-mtr=\"g1,g2:y1:r1\": to create meter with specified " "colored actions\n"); printf(" --raw-encap=: add raw encap action to flow actions\n" "Data is the data needed to be encaped\n" "Example: raw-encap=ether,ipv4,udp,vxlan\n"); printf(" --raw-decap=: add raw decap action to flow actions\n" "Data is the data needed to be decaped\n" "Example: raw-decap=ether,ipv4,udp,vxlan\n"); printf(" --vxlan-encap: add vxlan-encap action to flow actions\n" "Encapped data is fixed with pattern: ether,ipv4,udp,vxlan\n" "With fixed values\n"); printf(" --vxlan-decap: add vxlan_decap action to flow actions\n"); } static void read_meter_policy(char *prog, char *arg) { char *token; size_t i, j, k; j = 0; k = 0; policy_mtr = true; token = strsep(&arg, ":\0"); while (token != NULL && j < RTE_COLORS) { actions_str[j++] = token; token = strsep(&arg, ":\0"); } j = 0; token = strtok(actions_str[0], ",\0"); while (token == NULL && j < RTE_COLORS - 1) token = strtok(actions_str[++j], ",\0"); while (j < RTE_COLORS && token != NULL) { for (i = 0; i < RTE_DIM(flow_options); i++) { if (!strcmp(token, flow_options[i].str)) { all_actions[j][k++] = flow_options[i].mask; break; } } /* Reached last action with no match */ if (i >= RTE_DIM(flow_options)) { fprintf(stderr, "Invalid colored actions: %s\n", token); usage(prog); rte_exit(EXIT_SUCCESS, "Invalid colored actions\n"); } token = strtok(NULL, ",\0"); while (!token && j < RTE_COLORS - 1) { token = strtok(actions_str[++j], ",\0"); k = 0; } } } static void args_parse(int argc, char **argv) { uint64_t pm, seed; char **argvopt; uint32_t prio; char *token; char *end; int n, opt; int opt_idx; size_t i; static const struct option lgopts[] = { /* Control */ { "help", 0, 0, 0 }, { "rules-count", 1, 0, 0 }, { "rules-batch", 1, 0, 0 }, { "dump-iterations", 0, 0, 0 }, { "deletion-rate", 0, 0, 0 }, { "dump-socket-mem", 0, 0, 0 }, { "enable-fwd", 0, 0, 0 }, { "unique-data", 0, 0, 0 }, { "portmask", 1, 0, 0 }, { "cores", 1, 0, 0 }, { "random-priority", 1, 0, 0 }, { "meter-profile-alg", 1, 0, 0 }, { "rxq", 1, 0, 0 }, { "txq", 1, 0, 0 }, { "rxd", 1, 0, 0 }, { "txd", 1, 0, 0 }, { "mbuf-size", 1, 0, 0 }, { "mbuf-cache-size", 1, 0, 0 }, { "total-mbuf-count", 1, 0, 0 }, /* Attributes */ { "ingress", 0, 0, 0 }, { "egress", 0, 0, 0 }, { "transfer", 0, 0, 0 }, { "group", 1, 0, 0 }, /* Items */ { "ether", 0, 0, 0 }, { "vlan", 0, 0, 0 }, { "ipv4", 0, 0, 0 }, { "ipv6", 0, 0, 0 }, { "tcp", 0, 0, 0 }, { "udp", 0, 0, 0 }, { "vxlan", 0, 0, 0 }, { "vxlan-gpe", 0, 0, 0 }, { "gre", 0, 0, 0 }, { "geneve", 0, 0, 0 }, { "gtp", 0, 0, 0 }, { "meta", 0, 0, 0 }, { "tag", 0, 0, 0 }, { "icmpv4", 0, 0, 0 }, { "icmpv6", 0, 0, 0 }, /* Actions */ { "port-id", 2, 0, 0 }, { "rss", 0, 0, 0 }, { "queue", 0, 0, 0 }, { "jump", 0, 0, 0 }, { "mark", 0, 0, 0 }, { "count", 0, 0, 0 }, { "set-meta", 0, 0, 0 }, { "set-tag", 0, 0, 0 }, { "drop", 0, 0, 0 }, { "hairpin-queue", 1, 0, 0 }, { "hairpin-rss", 1, 0, 0 }, { "set-src-mac", 0, 0, 0 }, { "set-dst-mac", 0, 0, 0 }, { "set-src-ipv4", 0, 0, 0 }, { "set-dst-ipv4", 0, 0, 0 }, { "set-src-ipv6", 0, 0, 0 }, { "set-dst-ipv6", 0, 0, 0 }, { "set-src-tp", 0, 0, 0 }, { "set-dst-tp", 0, 0, 0 }, { "inc-tcp-ack", 0, 0, 0 }, { "dec-tcp-ack", 0, 0, 0 }, { "inc-tcp-seq", 0, 0, 0 }, { "dec-tcp-seq", 0, 0, 0 }, { "set-ttl", 0, 0, 0 }, { "dec-ttl", 0, 0, 0 }, { "set-ipv4-dscp", 0, 0, 0 }, { "set-ipv6-dscp", 0, 0, 0 }, { "flag", 0, 0, 0 }, { "meter", 0, 0, 0 }, { "raw-encap", 1, 0, 0 }, { "raw-decap", 1, 0, 0 }, { "vxlan-encap", 0, 0, 0 }, { "vxlan-decap", 0, 0, 0 }, { "policy-mtr", 1, 0, 0 }, { "meter-profile", 1, 0, 0 }, { "packet-mode", 0, 0, 0 }, { 0, 0, 0, 0 }, }; RTE_ETH_FOREACH_DEV(i) ports_mask |= 1 << i; for (i = 0; i < RTE_MAX_ETHPORTS; i++) dst_ports[i] = PORT_ID_DST; hairpin_queues_num = 0; argvopt = argv; printf(":: Flow -> "); while ((opt = getopt_long(argc, argvopt, "", lgopts, &opt_idx)) != EOF) { switch (opt) { case 0: if (strcmp(lgopts[opt_idx].name, "help") == 0) { usage(argv[0]); exit(EXIT_SUCCESS); } if (strcmp(lgopts[opt_idx].name, "group") == 0) { n = atoi(optarg); if (n >= 0) flow_group = n; else rte_exit(EXIT_FAILURE, "flow group should be >= 0\n"); printf("group %d / ", flow_group); } for (i = 0; i < RTE_DIM(flow_options); i++) if (strcmp(lgopts[opt_idx].name, flow_options[i].str) == 0) { flow_options[i].map[ (*flow_options[i].map_idx)++] = flow_options[i].mask; printf("%s / ", flow_options[i].str); } if (strcmp(lgopts[opt_idx].name, "hairpin-rss") == 0) { n = atoi(optarg); if (n > 0) hairpin_queues_num = n; else rte_exit(EXIT_FAILURE, "Hairpin queues should be > 0\n"); flow_actions[actions_idx++] = HAIRPIN_RSS_ACTION; printf("hairpin-rss / "); } if (strcmp(lgopts[opt_idx].name, "hairpin-queue") == 0) { n = atoi(optarg); if (n > 0) hairpin_queues_num = n; else rte_exit(EXIT_FAILURE, "Hairpin queues should be > 0\n"); flow_actions[actions_idx++] = HAIRPIN_QUEUE_ACTION; printf("hairpin-queue / "); } if (strcmp(lgopts[opt_idx].name, "raw-encap") == 0) { printf("raw-encap "); flow_actions[actions_idx++] = FLOW_ITEM_MASK( RTE_FLOW_ACTION_TYPE_RAW_ENCAP ); token = strtok(optarg, ","); while (token != NULL) { for (i = 0; i < RTE_DIM(flow_options); i++) { if (strcmp(flow_options[i].str, token) == 0) { printf("%s,", token); encap_data |= flow_options[i].mask; break; } /* Reached last item with no match */ if (i == (RTE_DIM(flow_options) - 1)) rte_exit(EXIT_FAILURE, "Invalid encap item: %s\n", token); } token = strtok(NULL, ","); } printf(" / "); } if (strcmp(lgopts[opt_idx].name, "raw-decap") == 0) { printf("raw-decap "); flow_actions[actions_idx++] = FLOW_ITEM_MASK( RTE_FLOW_ACTION_TYPE_RAW_DECAP ); token = strtok(optarg, ","); while (token != NULL) { for (i = 0; i < RTE_DIM(flow_options); i++) { if (strcmp(flow_options[i].str, token) == 0) { printf("%s,", token); decap_data |= flow_options[i].mask; break; } /* Reached last item with no match */ if (i == (RTE_DIM(flow_options) - 1)) rte_exit(EXIT_FAILURE, "Invalid decap item %s\n", token); } token = strtok(NULL, ","); } printf(" / "); } /* Control */ if (strcmp(lgopts[opt_idx].name, "rules-batch") == 0) { rules_batch = atoi(optarg); } if (strcmp(lgopts[opt_idx].name, "rules-count") == 0) { rules_count = atoi(optarg); } if (strcmp(lgopts[opt_idx].name, "random-priority") == 0) { end = NULL; prio = strtol(optarg, &end, 10); if ((optarg[0] == '\0') || (end == NULL)) rte_exit(EXIT_FAILURE, "Invalid value for random-priority\n"); max_priority = prio; token = end + 1; seed = strtoll(token, &end, 10); if ((token[0] == '\0') || (*end != '\0')) rte_exit(EXIT_FAILURE, "Invalid value for random-priority\n"); rand_seed = seed; } if (strcmp(lgopts[opt_idx].name, "dump-iterations") == 0) dump_iterations = true; if (strcmp(lgopts[opt_idx].name, "unique-data") == 0) unique_data = true; if (strcmp(lgopts[opt_idx].name, "deletion-rate") == 0) delete_flag = true; if (strcmp(lgopts[opt_idx].name, "dump-socket-mem") == 0) dump_socket_mem_flag = true; if (strcmp(lgopts[opt_idx].name, "enable-fwd") == 0) enable_fwd = true; if (strcmp(lgopts[opt_idx].name, "portmask") == 0) { /* parse hexadecimal string */ end = NULL; pm = strtoull(optarg, &end, 16); if ((optarg[0] == '\0') || (end == NULL) || (*end != '\0')) rte_exit(EXIT_FAILURE, "Invalid fwd port mask\n"); ports_mask = pm; } if (strcmp(lgopts[opt_idx].name, "port-id") == 0) { uint16_t port_idx = 0; char *token; token = strtok(optarg, ","); while (token != NULL) { dst_ports[port_idx++] = atoi(token); token = strtok(NULL, ","); } } if (strcmp(lgopts[opt_idx].name, "rxq") == 0) { n = atoi(optarg); rx_queues_count = (uint8_t) n; } if (strcmp(lgopts[opt_idx].name, "txq") == 0) { n = atoi(optarg); tx_queues_count = (uint8_t) n; } if (strcmp(lgopts[opt_idx].name, "rxd") == 0) { n = atoi(optarg); rxd_count = (uint8_t) n; } if (strcmp(lgopts[opt_idx].name, "txd") == 0) { n = atoi(optarg); txd_count = (uint8_t) n; } if (strcmp(lgopts[opt_idx].name, "mbuf-size") == 0) { n = atoi(optarg); mbuf_size = (uint32_t) n; } if (strcmp(lgopts[opt_idx].name, "mbuf-cache-size") == 0) { n = atoi(optarg); mbuf_cache_size = (uint32_t) n; } if (strcmp(lgopts[opt_idx].name, "total-mbuf-count") == 0) { n = atoi(optarg); total_mbuf_num = (uint32_t) n; } if (strcmp(lgopts[opt_idx].name, "cores") == 0) { n = atoi(optarg); if ((int) rte_lcore_count() <= n) { rte_exit(EXIT_FAILURE, "Error: you need %d cores to run on multi-cores\n" "Existing cores are: %d\n", n, rte_lcore_count()); } if (n <= RTE_MAX_LCORE && n > 0) mc_pool.cores_count = n; else { rte_exit(EXIT_FAILURE, "Error: cores count must be > 0 and < %d\n", RTE_MAX_LCORE); } } if (strcmp(lgopts[opt_idx].name, "policy-mtr") == 0) read_meter_policy(argv[0], optarg); if (strcmp(lgopts[opt_idx].name, "meter-profile") == 0) { i = 0; token = strsep(&optarg, ",\0"); while (token != NULL && i < sizeof( meter_profile_values) / sizeof(uint64_t)) { meter_profile_values[i++] = atol(token); token = strsep(&optarg, ",\0"); } } if (strcmp(lgopts[opt_idx].name, "packet-mode") == 0) packet_mode = true; break; default: usage(argv[0]); rte_exit(EXIT_FAILURE, "Invalid option: %s\n", argv[optind - 1]); break; } } if (rules_count % rules_batch != 0) { rte_exit(EXIT_FAILURE, "rules_count %% rules_batch should be 0\n"); } if (rules_count / rules_batch > MAX_BATCHES_COUNT) { rte_exit(EXIT_FAILURE, "rules_count / rules_batch should be <= %d\n", MAX_BATCHES_COUNT); } printf("end_flow\n"); } /* Dump the socket memory statistics on console */ static size_t dump_socket_mem(FILE *f) { struct rte_malloc_socket_stats socket_stats; unsigned int i = 0; size_t total = 0; size_t alloc = 0; size_t free = 0; unsigned int n_alloc = 0; unsigned int n_free = 0; bool active_nodes = false; for (i = 0; i < RTE_MAX_NUMA_NODES; i++) { if (rte_malloc_get_socket_stats(i, &socket_stats) || !socket_stats.heap_totalsz_bytes) continue; active_nodes = true; total += socket_stats.heap_totalsz_bytes; alloc += socket_stats.heap_allocsz_bytes; free += socket_stats.heap_freesz_bytes; n_alloc += socket_stats.alloc_count; n_free += socket_stats.free_count; if (dump_socket_mem_flag) { fprintf(f, "::::::::::::::::::::::::::::::::::::::::"); fprintf(f, "\nSocket %u:\nsize(M) total: %.6lf\nalloc:" " %.6lf(%.3lf%%)\nfree: %.6lf" "\nmax: %.6lf" "\ncount alloc: %u\nfree: %u\n", i, socket_stats.heap_totalsz_bytes / 1.0e6, socket_stats.heap_allocsz_bytes / 1.0e6, (double)socket_stats.heap_allocsz_bytes * 100 / (double)socket_stats.heap_totalsz_bytes, socket_stats.heap_freesz_bytes / 1.0e6, socket_stats.greatest_free_size / 1.0e6, socket_stats.alloc_count, socket_stats.free_count); fprintf(f, "::::::::::::::::::::::::::::::::::::::::"); } } if (dump_socket_mem_flag && active_nodes) { fprintf(f, "\nTotal: size(M)\ntotal: %.6lf" "\nalloc: %.6lf(%.3lf%%)\nfree: %.6lf" "\ncount alloc: %u\nfree: %u\n", total / 1.0e6, alloc / 1.0e6, (double)alloc * 100 / (double)total, free / 1.0e6, n_alloc, n_free); fprintf(f, "::::::::::::::::::::::::::::::::::::::::\n"); } return alloc; } static void print_flow_error(struct rte_flow_error error) { printf("Flow can't be created %d message: %s\n", error.type, error.message ? error.message : "(no stated reason)"); } static inline void print_rules_batches(double *cpu_time_per_batch) { uint8_t idx; double delta; double rate; for (idx = 0; idx < MAX_BATCHES_COUNT; idx++) { if (!cpu_time_per_batch[idx]) break; delta = (double)(rules_batch / cpu_time_per_batch[idx]); rate = delta / 1000; /* Save rate in K unit. */ printf(":: Rules batch #%d: %d rules " "in %f sec[ Rate = %f K Rule/Sec ]\n", idx, rules_batch, cpu_time_per_batch[idx], rate); } } static inline int has_meter(void) { int i; for (i = 0; i < MAX_ACTIONS_NUM; i++) { if (flow_actions[i] == 0) break; if (flow_actions[i] & FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_METER)) return 1; } return 0; } static void create_meter_policy(void) { struct rte_mtr_error error; int ret, port_id; struct rte_mtr_meter_policy_params policy; uint16_t nr_ports; struct rte_flow_action actions[RTE_COLORS][MAX_ACTIONS_NUM]; int i; memset(actions, 0, sizeof(actions)); memset(&policy, 0, sizeof(policy)); nr_ports = rte_eth_dev_count_avail(); for (port_id = 0; port_id < nr_ports; port_id++) { for (i = 0; i < RTE_COLORS; i++) fill_actions(actions[i], all_actions[i], 0, 0, 0, 0, 0, 0, unique_data, rx_queues_count, dst_ports[port_id]); policy.actions[RTE_COLOR_GREEN] = actions[RTE_COLOR_GREEN]; policy.actions[RTE_COLOR_YELLOW] = actions[RTE_COLOR_YELLOW]; policy.actions[RTE_COLOR_RED] = actions[RTE_COLOR_RED]; policy_id[port_id] = port_id + 10; ret = rte_mtr_meter_policy_add(port_id, policy_id[port_id], &policy, &error); if (ret) { fprintf(stderr, "port %d: failed to create meter policy\n", port_id); policy_id[port_id] = UINT32_MAX; } memset(actions, 0, sizeof(actions)); } } static void destroy_meter_policy(void) { struct rte_mtr_error error; uint16_t nr_ports; int port_id; nr_ports = rte_eth_dev_count_avail(); for (port_id = 0; port_id < nr_ports; port_id++) { /* If port outside portmask */ if (!((ports_mask >> port_id) & 0x1)) continue; if (rte_mtr_meter_policy_delete (port_id, policy_id[port_id], &error)) { fprintf(stderr, "port %u: failed to delete meter policy\n", port_id); rte_exit(EXIT_FAILURE, "Error: Failed to delete meter policy.\n"); } } } static void create_meter_rule(int port_id, uint32_t counter) { int ret; struct rte_mtr_params params; struct rte_mtr_error error; memset(¶ms, 0, sizeof(struct rte_mtr_params)); params.meter_enable = 1; params.stats_mask = 0xffff; params.use_prev_mtr_color = 0; params.dscp_table = NULL; /*create meter*/ params.meter_profile_id = DEFAULT_METER_PROF_ID; if (!policy_mtr) { ret = rte_mtr_create(port_id, counter, ¶ms, 1, &error); } else { params.meter_policy_id = policy_id[port_id]; ret = rte_mtr_create(port_id, counter, ¶ms, 0, &error); } if (ret != 0) { printf("Port %u create meter idx(%d) error(%d) message: %s\n", port_id, counter, error.type, error.message ? error.message : "(no stated reason)"); rte_exit(EXIT_FAILURE, "Error in creating meter\n"); } } static void destroy_meter_rule(int port_id, uint32_t counter) { struct rte_mtr_error error; if (policy_mtr && policy_id[port_id] != UINT32_MAX) { if (rte_mtr_meter_policy_delete(port_id, policy_id[port_id], &error)) fprintf(stderr, "Error: Failed to delete meter policy\n"); policy_id[port_id] = UINT32_MAX; } if (rte_mtr_destroy(port_id, counter, &error)) { fprintf(stderr, "Port %d: Failed to delete meter.\n", port_id); rte_exit(EXIT_FAILURE, "Error in deleting meter rule"); } } static void meters_handler(int port_id, uint8_t core_id, uint8_t ops) { uint64_t start_batch; double cpu_time_used, insertion_rate; int rules_count_per_core, rules_batch_idx; uint32_t counter, start_counter = 0, end_counter; double cpu_time_per_batch[MAX_BATCHES_COUNT] = { 0 }; rules_count_per_core = rules_count / mc_pool.cores_count; if (core_id) start_counter = core_id * rules_count_per_core; end_counter = (core_id + 1) * rules_count_per_core; cpu_time_used = 0; start_batch = rte_get_timer_cycles(); for (counter = start_counter; counter < end_counter; counter++) { if (ops == METER_CREATE) create_meter_rule(port_id, counter); else destroy_meter_rule(port_id, counter); /* * Save the insertion rate for rules batch. * Check if the insertion reached the rules * patch counter, then save the insertion rate * for this batch. */ if (!((counter + 1) % rules_batch)) { rules_batch_idx = ((counter + 1) / rules_batch) - 1; cpu_time_per_batch[rules_batch_idx] = ((double)(rte_get_timer_cycles() - start_batch)) / rte_get_timer_hz(); cpu_time_used += cpu_time_per_batch[rules_batch_idx]; start_batch = rte_get_timer_cycles(); } } /* Print insertion rates for all batches */ if (dump_iterations) print_rules_batches(cpu_time_per_batch); insertion_rate = ((double) (rules_count_per_core / cpu_time_used) / 1000); /* Insertion rate for all rules in one core */ printf(":: Port %d :: Core %d Meter %s :: start @[%d] - end @[%d]," " use:%.02fs, rate:%.02fk Rule/Sec\n", port_id, core_id, ops == METER_CREATE ? "create" : "delete", start_counter, end_counter - 1, cpu_time_used, insertion_rate); if (ops == METER_CREATE) mc_pool.meters_record.insertion[port_id][core_id] = cpu_time_used; else mc_pool.meters_record.deletion[port_id][core_id] = cpu_time_used; } static void destroy_meter_profile(void) { struct rte_mtr_error error; uint16_t nr_ports; int port_id; nr_ports = rte_eth_dev_count_avail(); for (port_id = 0; port_id < nr_ports; port_id++) { /* If port outside portmask */ if (!((ports_mask >> port_id) & 0x1)) continue; if (rte_mtr_meter_profile_delete (port_id, DEFAULT_METER_PROF_ID, &error)) { printf("Port %u del profile error(%d) message: %s\n", port_id, error.type, error.message ? error.message : "(no stated reason)"); rte_exit(EXIT_FAILURE, "Error: Destroy meter profile Failed!\n"); } } } static void create_meter_profile(void) { uint16_t nr_ports; int ret, port_id; struct rte_mtr_meter_profile mp; struct rte_mtr_error error; /* *currently , only create one meter file for one port *1 meter profile -> N meter rules -> N rte flows */ memset(&mp, 0, sizeof(struct rte_mtr_meter_profile)); nr_ports = rte_eth_dev_count_avail(); for (port_id = 0; port_id < nr_ports; port_id++) { /* If port outside portmask */ if (!((ports_mask >> port_id) & 0x1)) continue; mp.alg = RTE_MTR_SRTCM_RFC2697; mp.srtcm_rfc2697.cir = meter_profile_values[0] ? meter_profile_values[0] : METER_CIR; mp.srtcm_rfc2697.cbs = meter_profile_values[1] ? meter_profile_values[1] : METER_CIR / 8; mp.srtcm_rfc2697.ebs = meter_profile_values[2]; mp.packet_mode = packet_mode; ret = rte_mtr_meter_profile_add (port_id, DEFAULT_METER_PROF_ID, &mp, &error); if (ret != 0) { printf("Port %u create Profile error(%d) message: %s\n", port_id, error.type, error.message ? error.message : "(no stated reason)"); rte_exit(EXIT_FAILURE, "Error: Creation meter profile Failed!\n"); } } } static inline void destroy_flows(int port_id, uint8_t core_id, struct rte_flow **flows_list) { struct rte_flow_error error; clock_t start_batch, end_batch; double cpu_time_used = 0; double deletion_rate; double cpu_time_per_batch[MAX_BATCHES_COUNT] = { 0 }; double delta; uint32_t i; int rules_batch_idx; int rules_count_per_core; rules_count_per_core = rules_count / mc_pool.cores_count; /* If group > 0 , should add 1 flow which created in group 0 */ if (flow_group > 0 && core_id == 0) rules_count_per_core++; start_batch = rte_get_timer_cycles(); for (i = 0; i < (uint32_t) rules_count_per_core; i++) { if (flows_list[i] == 0) break; memset(&error, 0x33, sizeof(error)); if (rte_flow_destroy(port_id, flows_list[i], &error)) { print_flow_error(error); rte_exit(EXIT_FAILURE, "Error in deleting flow\n"); } /* * Save the deletion rate for rules batch. * Check if the deletion reached the rules * patch counter, then save the deletion rate * for this batch. */ if (!((i + 1) % rules_batch)) { end_batch = rte_get_timer_cycles(); delta = (double) (end_batch - start_batch); rules_batch_idx = ((i + 1) / rules_batch) - 1; cpu_time_per_batch[rules_batch_idx] = delta / rte_get_timer_hz(); cpu_time_used += cpu_time_per_batch[rules_batch_idx]; start_batch = rte_get_timer_cycles(); } } /* Print deletion rates for all batches */ if (dump_iterations) print_rules_batches(cpu_time_per_batch); /* Deletion rate for all rules */ deletion_rate = ((double) (rules_count_per_core / cpu_time_used) / 1000); printf(":: Port %d :: Core %d :: Rules deletion rate -> %f K Rule/Sec\n", port_id, core_id, deletion_rate); printf(":: Port %d :: Core %d :: The time for deleting %d rules is %f seconds\n", port_id, core_id, rules_count_per_core, cpu_time_used); mc_pool.flows_record.deletion[port_id][core_id] = cpu_time_used; } static struct rte_flow ** insert_flows(int port_id, uint8_t core_id, uint16_t dst_port_id) { struct rte_flow **flows_list; struct rte_flow_error error; clock_t start_batch, end_batch; double first_flow_latency; double cpu_time_used; double insertion_rate; double cpu_time_per_batch[MAX_BATCHES_COUNT] = { 0 }; double delta; uint32_t flow_index; uint32_t counter, start_counter = 0, end_counter; uint64_t global_items[MAX_ITEMS_NUM] = { 0 }; uint64_t global_actions[MAX_ACTIONS_NUM] = { 0 }; int rules_batch_idx; int rules_count_per_core; rules_count_per_core = rules_count / mc_pool.cores_count; /* Set boundaries of rules for each core. */ if (core_id) start_counter = core_id * rules_count_per_core; end_counter = (core_id + 1) * rules_count_per_core; global_items[0] = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ETH); global_actions[0] = FLOW_ITEM_MASK(RTE_FLOW_ACTION_TYPE_JUMP); flows_list = rte_zmalloc("flows_list", (sizeof(struct rte_flow *) * rules_count_per_core) + 1, 0); if (flows_list == NULL) rte_exit(EXIT_FAILURE, "No Memory available!\n"); cpu_time_used = 0; flow_index = 0; if (flow_group > 0 && core_id == 0) { /* * Create global rule to jump into flow_group, * this way the app will avoid the default rules. * * This rule will be created only once. * * Global rule: * group 0 eth / end actions jump group */ flow = generate_flow(port_id, 0, flow_attrs, global_items, global_actions, flow_group, 0, 0, 0, 0, dst_port_id, core_id, rx_queues_count, unique_data, max_priority, &error); if (flow == NULL) { print_flow_error(error); rte_exit(EXIT_FAILURE, "Error in creating flow\n"); } flows_list[flow_index++] = flow; } start_batch = rte_get_timer_cycles(); for (counter = start_counter; counter < end_counter; counter++) { flow = generate_flow(port_id, flow_group, flow_attrs, flow_items, flow_actions, JUMP_ACTION_TABLE, counter, hairpin_queues_num, encap_data, decap_data, dst_port_id, core_id, rx_queues_count, unique_data, max_priority, &error); if (!counter) { first_flow_latency = (double) (rte_get_timer_cycles() - start_batch); first_flow_latency /= rte_get_timer_hz(); /* In millisecond */ first_flow_latency *= 1000; printf(":: First Flow Latency :: Port %d :: First flow " "installed in %f milliseconds\n", port_id, first_flow_latency); } if (force_quit) counter = end_counter; if (!flow) { print_flow_error(error); rte_exit(EXIT_FAILURE, "Error in creating flow\n"); } flows_list[flow_index++] = flow; /* * Save the insertion rate for rules batch. * Check if the insertion reached the rules * patch counter, then save the insertion rate * for this batch. */ if (!((counter + 1) % rules_batch)) { end_batch = rte_get_timer_cycles(); delta = (double) (end_batch - start_batch); rules_batch_idx = ((counter + 1) / rules_batch) - 1; cpu_time_per_batch[rules_batch_idx] = delta / rte_get_timer_hz(); cpu_time_used += cpu_time_per_batch[rules_batch_idx]; start_batch = rte_get_timer_cycles(); } } /* Print insertion rates for all batches */ if (dump_iterations) print_rules_batches(cpu_time_per_batch); printf(":: Port %d :: Core %d boundaries :: start @[%d] - end @[%d]\n", port_id, core_id, start_counter, end_counter - 1); /* Insertion rate for all rules in one core */ insertion_rate = ((double) (rules_count_per_core / cpu_time_used) / 1000); printf(":: Port %d :: Core %d :: Rules insertion rate -> %f K Rule/Sec\n", port_id, core_id, insertion_rate); printf(":: Port %d :: Core %d :: The time for creating %d in rules %f seconds\n", port_id, core_id, rules_count_per_core, cpu_time_used); mc_pool.flows_record.insertion[port_id][core_id] = cpu_time_used; return flows_list; } static void flows_handler(uint8_t core_id) { struct rte_flow **flows_list; uint16_t port_idx = 0; uint16_t nr_ports; int port_id; nr_ports = rte_eth_dev_count_avail(); if (rules_batch > rules_count) rules_batch = rules_count; printf(":: Rules Count per port: %d\n\n", rules_count); for (port_id = 0; port_id < nr_ports; port_id++) { /* If port outside portmask */ if (!((ports_mask >> port_id) & 0x1)) continue; /* Insertion part. */ mc_pool.last_alloc[core_id] = (int64_t)dump_socket_mem(stdout); if (has_meter()) meters_handler(port_id, core_id, METER_CREATE); flows_list = insert_flows(port_id, core_id, dst_ports[port_idx++]); if (flows_list == NULL) rte_exit(EXIT_FAILURE, "Error: Insertion Failed!\n"); mc_pool.current_alloc[core_id] = (int64_t)dump_socket_mem(stdout); /* Deletion part. */ if (delete_flag) { destroy_flows(port_id, core_id, flows_list); if (has_meter()) meters_handler(port_id, core_id, METER_DELETE); } } } static void dump_used_cpu_time(const char *item, uint16_t port, struct used_cpu_time *used_time) { uint32_t i; /* Latency: total count of rte rules divided * over max time used by thread between all * threads time. * * Throughput: total count of rte rules divided * over the average of the time consumed by all * threads time. */ double insertion_latency_time; double insertion_throughput_time; double deletion_latency_time; double deletion_throughput_time; double insertion_latency, insertion_throughput; double deletion_latency, deletion_throughput; /* Save first insertion/deletion rates from first thread. * Start comparing with all threads, if any thread used * time more than current saved, replace it. * * Thus in the end we will have the max time used for * insertion/deletion by one thread. * * As for memory consumption, save the min of all threads * of last alloc, and save the max for all threads for * current alloc. */ insertion_latency_time = used_time->insertion[port][0]; deletion_latency_time = used_time->deletion[port][0]; insertion_throughput_time = used_time->insertion[port][0]; deletion_throughput_time = used_time->deletion[port][0]; i = mc_pool.cores_count; while (i-- > 1) { insertion_throughput_time += used_time->insertion[port][i]; deletion_throughput_time += used_time->deletion[port][i]; if (insertion_latency_time < used_time->insertion[port][i]) insertion_latency_time = used_time->insertion[port][i]; if (deletion_latency_time < used_time->deletion[port][i]) deletion_latency_time = used_time->deletion[port][i]; } insertion_latency = ((double) (mc_pool.rules_count / insertion_latency_time) / 1000); deletion_latency = ((double) (mc_pool.rules_count / deletion_latency_time) / 1000); insertion_throughput_time /= mc_pool.cores_count; deletion_throughput_time /= mc_pool.cores_count; insertion_throughput = ((double) (mc_pool.rules_count / insertion_throughput_time) / 1000); deletion_throughput = ((double) (mc_pool.rules_count / deletion_throughput_time) / 1000); /* Latency stats */ printf("\n%s\n:: [Latency | Insertion] All Cores :: Port %d :: ", item, port); printf("Total flows insertion rate -> %f K Rules/Sec\n", insertion_latency); printf(":: [Latency | Insertion] All Cores :: Port %d :: ", port); printf("The time for creating %d rules is %f seconds\n", mc_pool.rules_count, insertion_latency_time); /* Throughput stats */ printf(":: [Throughput | Insertion] All Cores :: Port %d :: ", port); printf("Total flows insertion rate -> %f K Rules/Sec\n", insertion_throughput); printf(":: [Throughput | Insertion] All Cores :: Port %d :: ", port); printf("The average time for creating %d rules is %f seconds\n", mc_pool.rules_count, insertion_throughput_time); if (delete_flag) { /* Latency stats */ printf(":: [Latency | Deletion] All Cores :: Port %d :: Total " "deletion rate -> %f K Rules/Sec\n", port, deletion_latency); printf(":: [Latency | Deletion] All Cores :: Port %d :: ", port); printf("The time for deleting %d rules is %f seconds\n", mc_pool.rules_count, deletion_latency_time); /* Throughput stats */ printf(":: [Throughput | Deletion] All Cores :: Port %d :: Total " "deletion rate -> %f K Rules/Sec\n", port, deletion_throughput); printf(":: [Throughput | Deletion] All Cores :: Port %d :: ", port); printf("The average time for deleting %d rules is %f seconds\n", mc_pool.rules_count, deletion_throughput_time); } } static void dump_used_mem(uint16_t port) { uint32_t i; int64_t last_alloc, current_alloc; int flow_size_in_bytes; last_alloc = mc_pool.last_alloc[0]; current_alloc = mc_pool.current_alloc[0]; i = mc_pool.cores_count; while (i-- > 1) { if (last_alloc > mc_pool.last_alloc[i]) last_alloc = mc_pool.last_alloc[i]; if (current_alloc < mc_pool.current_alloc[i]) current_alloc = mc_pool.current_alloc[i]; } flow_size_in_bytes = (current_alloc - last_alloc) / mc_pool.rules_count; printf("\n:: Port %d :: rte_flow size in DPDK layer: %d Bytes\n", port, flow_size_in_bytes); } static int run_rte_flow_handler_cores(void *data __rte_unused) { uint16_t port; int lcore_counter = 0; int lcore_id = rte_lcore_id(); int i; RTE_LCORE_FOREACH(i) { /* If core not needed return. */ if (lcore_id == i) { printf(":: lcore %d mapped with index %d\n", lcore_id, lcore_counter); if (lcore_counter >= (int) mc_pool.cores_count) return 0; break; } lcore_counter++; } lcore_id = lcore_counter; if (lcore_id >= (int) mc_pool.cores_count) return 0; mc_pool.rules_count = rules_count; flows_handler(lcore_id); /* Only main core to print total results. */ if (lcore_id != 0) return 0; /* Make sure all cores finished insertion/deletion process. */ rte_eal_mp_wait_lcore(); RTE_ETH_FOREACH_DEV(port) { /* If port outside portmask */ if (!((ports_mask >> port) & 0x1)) continue; if (has_meter()) dump_used_cpu_time("Meters:", port, &mc_pool.meters_record); dump_used_cpu_time("Flows:", port, &mc_pool.flows_record); dump_used_mem(port); } return 0; } static void signal_handler(int signum) { if (signum == SIGINT || signum == SIGTERM) { printf("\n\nSignal %d received, preparing to exit...\n", signum); printf("Error: Stats are wrong due to sudden signal!\n\n"); force_quit = true; } } static inline uint16_t do_rx(struct lcore_info *li, uint16_t rx_port, uint16_t rx_queue) { uint16_t cnt = 0; cnt = rte_eth_rx_burst(rx_port, rx_queue, li->pkts, MAX_PKT_BURST); li->rx_pkts += cnt; return cnt; } static inline void do_tx(struct lcore_info *li, uint16_t cnt, uint16_t tx_port, uint16_t tx_queue) { uint16_t nr_tx = 0; uint16_t i; nr_tx = rte_eth_tx_burst(tx_port, tx_queue, li->pkts, cnt); li->tx_pkts += nr_tx; li->tx_drops += cnt - nr_tx; for (i = nr_tx; i < cnt; i++) rte_pktmbuf_free(li->pkts[i]); } static void packet_per_second_stats(void) { struct lcore_info *old; struct lcore_info *li, *oli; int nr_lines = 0; int i; old = rte_zmalloc("old", sizeof(struct lcore_info) * RTE_MAX_LCORE, 0); if (old == NULL) rte_exit(EXIT_FAILURE, "No Memory available!\n"); memcpy(old, lcore_infos, sizeof(struct lcore_info) * RTE_MAX_LCORE); while (!force_quit) { uint64_t total_tx_pkts = 0; uint64_t total_rx_pkts = 0; uint64_t total_tx_drops = 0; uint64_t tx_delta, rx_delta, drops_delta; int nr_valid_core = 0; sleep(1); if (nr_lines) { char go_up_nr_lines[16]; sprintf(go_up_nr_lines, "%c[%dA\r", 27, nr_lines); printf("%s\r", go_up_nr_lines); } printf("\n%6s %16s %16s %16s\n", "core", "tx", "tx drops", "rx"); printf("%6s %16s %16s %16s\n", "------", "----------------", "----------------", "----------------"); nr_lines = 3; for (i = 0; i < RTE_MAX_LCORE; i++) { li = &lcore_infos[i]; oli = &old[i]; if (li->mode != LCORE_MODE_PKT) continue; tx_delta = li->tx_pkts - oli->tx_pkts; rx_delta = li->rx_pkts - oli->rx_pkts; drops_delta = li->tx_drops - oli->tx_drops; printf("%6d %'16"PRId64" %'16"PRId64" %'16"PRId64"\n", i, tx_delta, drops_delta, rx_delta); total_tx_pkts += tx_delta; total_rx_pkts += rx_delta; total_tx_drops += drops_delta; nr_valid_core++; nr_lines += 1; } if (nr_valid_core > 1) { printf("%6s %'16"PRId64" %'16"PRId64" %'16"PRId64"\n", "total", total_tx_pkts, total_tx_drops, total_rx_pkts); nr_lines += 1; } memcpy(old, lcore_infos, sizeof(struct lcore_info) * RTE_MAX_LCORE); } } static int start_forwarding(void *data __rte_unused) { int lcore = rte_lcore_id(); int stream_id; uint16_t cnt; struct lcore_info *li = &lcore_infos[lcore]; if (!li->mode) return 0; if (li->mode == LCORE_MODE_STATS) { printf(":: started stats on lcore %u\n", lcore); packet_per_second_stats(); return 0; } while (!force_quit) for (stream_id = 0; stream_id < MAX_STREAMS; stream_id++) { if (li->streams[stream_id].rx_port == -1) continue; cnt = do_rx(li, li->streams[stream_id].rx_port, li->streams[stream_id].rx_queue); if (cnt) do_tx(li, cnt, li->streams[stream_id].tx_port, li->streams[stream_id].tx_queue); } return 0; } static void init_lcore_info(void) { int i, j; unsigned int lcore; uint16_t nr_port; uint16_t queue; int port; int stream_id = 0; int streams_per_core; int unassigned_streams; int nb_fwd_streams; nr_port = rte_eth_dev_count_avail(); /* First logical core is reserved for stats printing */ lcore = rte_get_next_lcore(-1, 0, 0); lcore_infos[lcore].mode = LCORE_MODE_STATS; /* * Initialize all cores * All cores at first must have -1 value in all streams * This means that this stream is not used, or not set * yet. */ for (i = 0; i < RTE_MAX_LCORE; i++) for (j = 0; j < MAX_STREAMS; j++) { lcore_infos[i].streams[j].tx_port = -1; lcore_infos[i].streams[j].rx_port = -1; lcore_infos[i].streams[j].tx_queue = -1; lcore_infos[i].streams[j].rx_queue = -1; lcore_infos[i].streams_nb = 0; } /* * Calculate the total streams count. * Also distribute those streams count between the available * logical cores except first core, since it's reserved for * stats prints. */ nb_fwd_streams = nr_port * rx_queues_count; if ((int)(nb_lcores - 1) >= nb_fwd_streams) for (i = 0; i < (int)(nb_lcores - 1); i++) { lcore = rte_get_next_lcore(lcore, 0, 0); lcore_infos[lcore].streams_nb = 1; } else { streams_per_core = nb_fwd_streams / (nb_lcores - 1); unassigned_streams = nb_fwd_streams % (nb_lcores - 1); for (i = 0; i < (int)(nb_lcores - 1); i++) { lcore = rte_get_next_lcore(lcore, 0, 0); lcore_infos[lcore].streams_nb = streams_per_core; if (unassigned_streams) { lcore_infos[lcore].streams_nb++; unassigned_streams--; } } } /* * Set the streams for the cores according to each logical * core stream count. * The streams is built on the design of what received should * forward as well, this means that if you received packets on * port 0 queue 0 then the same queue should forward the * packets, using the same logical core. */ lcore = rte_get_next_lcore(-1, 0, 0); for (port = 0; port < nr_port; port++) { /* Create FWD stream */ for (queue = 0; queue < rx_queues_count; queue++) { if (!lcore_infos[lcore].streams_nb || !(stream_id % lcore_infos[lcore].streams_nb)) { lcore = rte_get_next_lcore(lcore, 0, 0); lcore_infos[lcore].mode = LCORE_MODE_PKT; stream_id = 0; } lcore_infos[lcore].streams[stream_id].rx_queue = queue; lcore_infos[lcore].streams[stream_id].tx_queue = queue; lcore_infos[lcore].streams[stream_id].rx_port = port; lcore_infos[lcore].streams[stream_id].tx_port = port; stream_id++; } } /* Print all streams */ printf(":: Stream -> core id[N]: (rx_port, rx_queue)->(tx_port, tx_queue)\n"); for (i = 0; i < RTE_MAX_LCORE; i++) for (j = 0; j < MAX_STREAMS; j++) { /* No streams for this core */ if (lcore_infos[i].streams[j].tx_port == -1) break; printf("Stream -> core id[%d]: (%d,%d)->(%d,%d)\n", i, lcore_infos[i].streams[j].rx_port, lcore_infos[i].streams[j].rx_queue, lcore_infos[i].streams[j].tx_port, lcore_infos[i].streams[j].tx_queue); } } static void init_port(void) { int ret; uint16_t std_queue; uint16_t hairpin_queue; uint16_t port_id; uint16_t nr_ports; uint16_t nr_queues; struct rte_eth_hairpin_conf hairpin_conf = { .peer_count = 1, }; struct rte_eth_conf port_conf = { .rx_adv_conf = { .rss_conf.rss_hf = GET_RSS_HF(), } }; struct rte_eth_txconf txq_conf; struct rte_eth_rxconf rxq_conf; struct rte_eth_dev_info dev_info; nr_queues = rx_queues_count; if (hairpin_queues_num != 0) nr_queues = rx_queues_count + hairpin_queues_num; nr_ports = rte_eth_dev_count_avail(); if (nr_ports == 0) rte_exit(EXIT_FAILURE, "Error: no port detected\n"); mbuf_mp = rte_pktmbuf_pool_create("mbuf_pool", total_mbuf_num, mbuf_cache_size, 0, mbuf_size, rte_socket_id()); if (mbuf_mp == NULL) rte_exit(EXIT_FAILURE, "Error: can't init mbuf pool\n"); for (port_id = 0; port_id < nr_ports; port_id++) { uint64_t rx_metadata = 0; rx_metadata |= RTE_ETH_RX_METADATA_USER_FLAG; rx_metadata |= RTE_ETH_RX_METADATA_USER_MARK; ret = rte_eth_rx_metadata_negotiate(port_id, &rx_metadata); if (ret == 0) { if (!(rx_metadata & RTE_ETH_RX_METADATA_USER_FLAG)) { printf(":: flow action FLAG will not affect Rx mbufs on port=%u\n", port_id); } if (!(rx_metadata & RTE_ETH_RX_METADATA_USER_MARK)) { printf(":: flow action MARK will not affect Rx mbufs on port=%u\n", port_id); } } else if (ret != -ENOTSUP) { rte_exit(EXIT_FAILURE, "Error when negotiating Rx meta features on port=%u: %s\n", port_id, rte_strerror(-ret)); } ret = rte_eth_dev_info_get(port_id, &dev_info); if (ret != 0) rte_exit(EXIT_FAILURE, "Error during getting device" " (port %u) info: %s\n", port_id, strerror(-ret)); port_conf.txmode.offloads &= dev_info.tx_offload_capa; port_conf.rxmode.offloads &= dev_info.rx_offload_capa; printf(":: initializing port: %d\n", port_id); ret = rte_eth_dev_configure(port_id, nr_queues, nr_queues, &port_conf); if (ret < 0) rte_exit(EXIT_FAILURE, ":: cannot configure device: err=%d, port=%u\n", ret, port_id); rxq_conf = dev_info.default_rxconf; for (std_queue = 0; std_queue < rx_queues_count; std_queue++) { ret = rte_eth_rx_queue_setup(port_id, std_queue, rxd_count, rte_eth_dev_socket_id(port_id), &rxq_conf, mbuf_mp); if (ret < 0) rte_exit(EXIT_FAILURE, ":: Rx queue setup failed: err=%d, port=%u\n", ret, port_id); } txq_conf = dev_info.default_txconf; for (std_queue = 0; std_queue < tx_queues_count; std_queue++) { ret = rte_eth_tx_queue_setup(port_id, std_queue, txd_count, rte_eth_dev_socket_id(port_id), &txq_conf); if (ret < 0) rte_exit(EXIT_FAILURE, ":: Tx queue setup failed: err=%d, port=%u\n", ret, port_id); } /* Catch all packets from traffic generator. */ ret = rte_eth_promiscuous_enable(port_id); if (ret != 0) rte_exit(EXIT_FAILURE, ":: promiscuous mode enable failed: err=%s, port=%u\n", rte_strerror(-ret), port_id); if (hairpin_queues_num != 0) { /* * Configure peer which represents hairpin Tx. * Hairpin queue numbers start after standard queues * (rx_queues_count and tx_queues_count). */ for (hairpin_queue = rx_queues_count, std_queue = 0; hairpin_queue < nr_queues; hairpin_queue++, std_queue++) { hairpin_conf.peers[0].port = port_id; hairpin_conf.peers[0].queue = std_queue + tx_queues_count; ret = rte_eth_rx_hairpin_queue_setup( port_id, hairpin_queue, rxd_count, &hairpin_conf); if (ret != 0) rte_exit(EXIT_FAILURE, ":: Hairpin rx queue setup failed: err=%d, port=%u\n", ret, port_id); } for (hairpin_queue = tx_queues_count, std_queue = 0; hairpin_queue < nr_queues; hairpin_queue++, std_queue++) { hairpin_conf.peers[0].port = port_id; hairpin_conf.peers[0].queue = std_queue + rx_queues_count; ret = rte_eth_tx_hairpin_queue_setup( port_id, hairpin_queue, txd_count, &hairpin_conf); if (ret != 0) rte_exit(EXIT_FAILURE, ":: Hairpin tx queue setup failed: err=%d, port=%u\n", ret, port_id); } } ret = rte_eth_dev_start(port_id); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_dev_start:err=%d, port=%u\n", ret, port_id); printf(":: initializing port: %d done\n", port_id); } } int main(int argc, char **argv) { int ret; uint16_t port; struct rte_flow_error error; ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "EAL init failed\n"); force_quit = false; dump_iterations = false; rules_count = DEFAULT_RULES_COUNT; rules_batch = DEFAULT_RULES_BATCH; delete_flag = false; dump_socket_mem_flag = false; flow_group = DEFAULT_GROUP; unique_data = false; rx_queues_count = (uint8_t) RXQ_NUM; tx_queues_count = (uint8_t) TXQ_NUM; rxd_count = (uint8_t) NR_RXD; txd_count = (uint8_t) NR_TXD; mbuf_size = (uint32_t) MBUF_SIZE; mbuf_cache_size = (uint32_t) MBUF_CACHE_SIZE; total_mbuf_num = (uint32_t) TOTAL_MBUF_NUM; signal(SIGINT, signal_handler); signal(SIGTERM, signal_handler); argc -= ret; argv += ret; if (argc > 1) args_parse(argc, argv); /* For more fancy, localised integer formatting. */ setlocale(LC_NUMERIC, ""); init_port(); nb_lcores = rte_lcore_count(); if (nb_lcores <= 1) rte_exit(EXIT_FAILURE, "This app needs at least two cores\n"); printf(":: Flows Count per port: %d\n\n", rules_count); rte_srand(rand_seed); if (has_meter()) { create_meter_profile(); if (policy_mtr) create_meter_policy(); } rte_eal_mp_remote_launch(run_rte_flow_handler_cores, NULL, CALL_MAIN); if (enable_fwd) { init_lcore_info(); rte_eal_mp_remote_launch(start_forwarding, NULL, CALL_MAIN); } if (has_meter() && delete_flag) { destroy_meter_profile(); if (policy_mtr) destroy_meter_policy(); } RTE_ETH_FOREACH_DEV(port) { rte_flow_flush(port, &error); if (rte_eth_dev_stop(port) != 0) printf("Failed to stop device on port %u\n", port); rte_eth_dev_close(port); } printf("\nBye ...\n"); return 0; }