/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2019 Intel Corporation */ #include "ice_rxtx_vec_common.h" #include #ifndef __INTEL_COMPILER #pragma GCC diagnostic ignored "-Wcast-qual" #endif static inline void ice_rxq_rearm(struct ice_rx_queue *rxq) { int i; uint16_t rx_id; volatile union ice_rx_flex_desc *rxdp; struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start]; struct rte_mbuf *mb0, *mb1; __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, RTE_PKTMBUF_HEADROOM); __m128i dma_addr0, dma_addr1; rxdp = rxq->rx_ring + rxq->rxrearm_start; /* Pull 'n' more MBUFs into the software ring */ if (rte_mempool_get_bulk(rxq->mp, (void *)rxep, ICE_RXQ_REARM_THRESH) < 0) { if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >= rxq->nb_rx_desc) { dma_addr0 = _mm_setzero_si128(); for (i = 0; i < ICE_DESCS_PER_LOOP; i++) { rxep[i].mbuf = &rxq->fake_mbuf; _mm_store_si128((__m128i *)&rxdp[i].read, dma_addr0); } } rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += ICE_RXQ_REARM_THRESH; return; } /* Initialize the mbufs in vector, process 2 mbufs in one loop */ for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) { __m128i vaddr0, vaddr1; mb0 = rxep[0].mbuf; mb1 = rxep[1].mbuf; /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != offsetof(struct rte_mbuf, buf_addr) + 8); vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); /* convert pa to dma_addr hdr/data */ dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0); dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1); /* add headroom to pa values */ dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room); dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room); /* flush desc with pa dma_addr */ _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0); _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1); } rxq->rxrearm_start += ICE_RXQ_REARM_THRESH; if (rxq->rxrearm_start >= rxq->nb_rx_desc) rxq->rxrearm_start = 0; rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH; rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); /* Update the tail pointer on the NIC */ ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id); } static inline void ice_rx_desc_to_olflags_v(struct ice_rx_queue *rxq, __m128i descs[4], struct rte_mbuf **rx_pkts) { const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer); __m128i rearm0, rearm1, rearm2, rearm3; __m128i tmp_desc, flags, rss_vlan; /* mask everything except checksum, RSS and VLAN flags. * bit6:4 for checksum. * bit12 for RSS indication. * bit13 for VLAN indication. */ const __m128i desc_mask = _mm_set_epi32(0x3070, 0x3070, 0x3070, 0x3070); const __m128i cksum_mask = _mm_set_epi32(PKT_RX_IP_CKSUM_MASK | PKT_RX_L4_CKSUM_MASK | PKT_RX_EIP_CKSUM_BAD, PKT_RX_IP_CKSUM_MASK | PKT_RX_L4_CKSUM_MASK | PKT_RX_EIP_CKSUM_BAD, PKT_RX_IP_CKSUM_MASK | PKT_RX_L4_CKSUM_MASK | PKT_RX_EIP_CKSUM_BAD, PKT_RX_IP_CKSUM_MASK | PKT_RX_L4_CKSUM_MASK | PKT_RX_EIP_CKSUM_BAD); /* map the checksum, rss and vlan fields to the checksum, rss * and vlan flag */ const __m128i cksum_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, /* shift right 1 bit to make sure it not exceed 255 */ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1, (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1, (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1, (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1, (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1, (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1); const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, PKT_RX_RSS_HASH, 0); /* merge 4 descriptors */ flags = _mm_unpackhi_epi32(descs[0], descs[1]); tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]); tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc); tmp_desc = _mm_and_si128(tmp_desc, desc_mask); /* checksum flags */ tmp_desc = _mm_srli_epi32(tmp_desc, 4); flags = _mm_shuffle_epi8(cksum_flags, tmp_desc); /* then we shift left 1 bit */ flags = _mm_slli_epi32(flags, 1); /* we need to mask out the reduntant bits introduced by RSS or * VLAN fields. */ flags = _mm_and_si128(flags, cksum_mask); /* RSS, VLAN flag */ tmp_desc = _mm_srli_epi32(tmp_desc, 8); rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc); /* merge the flags */ flags = _mm_or_si128(flags, rss_vlan); /** * At this point, we have the 4 sets of flags in the low 16-bits * of each 32-bit value in flags. * We want to extract these, and merge them with the mbuf init data * so we can do a single 16-byte write to the mbuf to set the flags * and all the other initialization fields. Extracting the * appropriate flags means that we have to do a shift and blend for * each mbuf before we do the write. */ rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x10); rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x10); rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x10); rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x10); /* write the rearm data and the olflags in one write */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != offsetof(struct rte_mbuf, rearm_data) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16)); _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0); _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1); _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2); _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3); } static inline void ice_rx_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts, uint32_t *ptype_tbl) { const __m128i ptype_mask = _mm_set_epi16(ICE_RX_FLEX_DESC_PTYPE_M, 0, ICE_RX_FLEX_DESC_PTYPE_M, 0, ICE_RX_FLEX_DESC_PTYPE_M, 0, ICE_RX_FLEX_DESC_PTYPE_M, 0); __m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]); __m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]); __m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23); ptype_all = _mm_and_si128(ptype_all, ptype_mask); rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 1)]; rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 3)]; rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 5)]; rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 7)]; } /** * vPMD raw receive routine, only accept(nb_pkts >= ICE_DESCS_PER_LOOP) * * Notice: * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet * - floor align nb_pkts to a ICE_DESCS_PER_LOOP power-of-two */ static inline uint16_t _ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts, uint8_t *split_packet) { volatile union ice_rx_flex_desc *rxdp; struct ice_rx_entry *sw_ring; uint16_t nb_pkts_recd; int pos; uint64_t var; uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; __m128i crc_adjust = _mm_set_epi16 (0, 0, 0, /* ignore non-length fields */ -rxq->crc_len, /* sub crc on data_len */ 0, /* ignore high-16bits of pkt_len */ -rxq->crc_len, /* sub crc on pkt_len */ 0, 0 /* ignore pkt_type field */ ); const __m128i zero = _mm_setzero_si128(); /* mask to shuffle from desc. to mbuf */ const __m128i shuf_msk = _mm_set_epi8 (15, 14, 13, 12, /* octet 12~15, 32 bits rss */ 11, 10, /* octet 10~11, 16 bits vlan_macip */ 5, 4, /* octet 4~5, 16 bits data_len */ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ 5, 4, /* octet 4~5, low 16 bits pkt_len */ 0xFF, 0xFF, /* pkt_type set as unknown */ 0xFF, 0xFF /* pkt_type set as unknown */ ); const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x04, 0x0C, 0x00, 0x08); /** * compile-time check the above crc_adjust layout is correct. * NOTE: the first field (lowest address) is given last in set_epi16 * call above. */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); /* 4 packets DD mask */ const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL); /* 4 packets EOP mask */ const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL); /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP */ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP); /* Just the act of getting into the function from the application is * going to cost about 7 cycles */ rxdp = rxq->rx_ring + rxq->rx_tail; rte_prefetch0(rxdp); /* See if we need to rearm the RX queue - gives the prefetch a bit * of time to act */ if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH) ice_rxq_rearm(rxq); /* Before we start moving massive data around, check to see if * there is actually a packet available */ if (!(rxdp->wb.status_error0 & rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))) return 0; /** * Compile-time verify the shuffle mask * NOTE: some field positions already verified above, but duplicated * here for completeness in case of future modifications. */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); /* Cache is empty -> need to scan the buffer rings, but first move * the next 'n' mbufs into the cache */ sw_ring = &rxq->sw_ring[rxq->rx_tail]; /* A. load 4 packet in one loop * [A*. mask out 4 unused dirty field in desc] * B. copy 4 mbuf point from swring to rx_pkts * C. calc the number of DD bits among the 4 packets * [C*. extract the end-of-packet bit, if requested] * D. fill info. from desc to mbuf */ for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts; pos += ICE_DESCS_PER_LOOP, rxdp += ICE_DESCS_PER_LOOP) { __m128i descs[ICE_DESCS_PER_LOOP]; __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4; __m128i staterr, sterr_tmp1, sterr_tmp2; /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */ __m128i mbp1; #if defined(RTE_ARCH_X86_64) __m128i mbp2; #endif /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */ mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]); /* Read desc statuses backwards to avoid race condition */ /* A.1 load 4 pkts desc */ descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3)); rte_compiler_barrier(); /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */ _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1); #if defined(RTE_ARCH_X86_64) /* B.1 load 2 64 bit mbuf points */ mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]); #endif descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2)); rte_compiler_barrier(); /* B.1 load 2 mbuf point */ descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1)); rte_compiler_barrier(); descs[0] = _mm_loadu_si128((__m128i *)(rxdp)); #if defined(RTE_ARCH_X86_64) /* B.2 copy 2 mbuf point into rx_pkts */ _mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2); #endif if (split_packet) { rte_mbuf_prefetch_part2(rx_pkts[pos]); rte_mbuf_prefetch_part2(rx_pkts[pos + 1]); rte_mbuf_prefetch_part2(rx_pkts[pos + 2]); rte_mbuf_prefetch_part2(rx_pkts[pos + 3]); } /* avoid compiler reorder optimization */ rte_compiler_barrier(); /* D.1 pkt 3,4 convert format from desc to pktmbuf */ pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk); pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk); /* C.1 4=>2 filter staterr info only */ sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]); /* C.1 4=>2 filter staterr info only */ sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]); ice_rx_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]); /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */ pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust); pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust); /* D.1 pkt 1,2 convert format from desc to pktmbuf */ pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk); pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk); /* C.2 get 4 pkts staterr value */ staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2); /* D.3 copy final 3,4 data to rx_pkts */ _mm_storeu_si128 ((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1, pkt_mb4); _mm_storeu_si128 ((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1, pkt_mb3); /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */ pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust); pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust); /* C* extract and record EOP bit */ if (split_packet) { /* and with mask to extract bits, flipping 1-0 */ __m128i eop_bits = _mm_andnot_si128(staterr, eop_check); /* the staterr values are not in order, as the count * count of dd bits doesn't care. However, for end of * packet tracking, we do care, so shuffle. This also * compresses the 32-bit values to 8-bit */ eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask); /* store the resulting 32-bit value */ *(int *)split_packet = _mm_cvtsi128_si32(eop_bits); split_packet += ICE_DESCS_PER_LOOP; } /* C.3 calc available number of desc */ staterr = _mm_and_si128(staterr, dd_check); staterr = _mm_packs_epi32(staterr, zero); /* D.3 copy final 1,2 data to rx_pkts */ _mm_storeu_si128 ((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1, pkt_mb2); _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1, pkt_mb1); ice_rx_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl); /* C.4 calc avaialbe number of desc */ var = __builtin_popcountll(_mm_cvtsi128_si64(staterr)); nb_pkts_recd += var; if (likely(var != ICE_DESCS_PER_LOOP)) break; } /* Update our internal tail pointer */ rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd); rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1)); rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd); return nb_pkts_recd; } /** * Notice: * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet * - nb_pkts > ICE_VPMD_RX_BURST, only scan ICE_VPMD_RX_BURST * numbers of DD bits */ uint16_t ice_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return _ice_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL); } /** * vPMD receive routine that reassembles single burst of 32 scattered packets * * Notice: * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet */ static uint16_t ice_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct ice_rx_queue *rxq = rx_queue; uint8_t split_flags[ICE_VPMD_RX_BURST] = {0}; /* get some new buffers */ uint16_t nb_bufs = _ice_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts, split_flags); if (nb_bufs == 0) return 0; /* happy day case, full burst + no packets to be joined */ const uint64_t *split_fl64 = (uint64_t *)split_flags; if (!rxq->pkt_first_seg && split_fl64[0] == 0 && split_fl64[1] == 0 && split_fl64[2] == 0 && split_fl64[3] == 0) return nb_bufs; /* reassemble any packets that need reassembly*/ unsigned int i = 0; if (!rxq->pkt_first_seg) { /* find the first split flag, and only reassemble then*/ while (i < nb_bufs && !split_flags[i]) i++; if (i == nb_bufs) return nb_bufs; rxq->pkt_first_seg = rx_pkts[i]; } return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, &split_flags[i]); } /** * vPMD receive routine that reassembles scattered packets. */ uint16_t ice_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { uint16_t retval = 0; while (nb_pkts > ICE_VPMD_RX_BURST) { uint16_t burst; burst = ice_recv_scattered_burst_vec(rx_queue, rx_pkts + retval, ICE_VPMD_RX_BURST); retval += burst; nb_pkts -= burst; if (burst < ICE_VPMD_RX_BURST) return retval; } return retval + ice_recv_scattered_burst_vec(rx_queue, rx_pkts + retval, nb_pkts); } static inline void ice_vtx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags) { uint64_t high_qw = (ICE_TX_DESC_DTYPE_DATA | ((uint64_t)flags << ICE_TXD_QW1_CMD_S) | ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S)); __m128i descriptor = _mm_set_epi64x(high_qw, pkt->buf_iova + pkt->data_off); _mm_store_si128((__m128i *)txdp, descriptor); } static inline void ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags) { int i; for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt) ice_vtx1(txdp, *pkt, flags); } static uint16_t ice_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue; volatile struct ice_tx_desc *txdp; struct ice_tx_entry *txep; uint16_t n, nb_commit, tx_id; uint64_t flags = ICE_TD_CMD; uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD; int i; /* cross rx_thresh boundary is not allowed */ nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh); if (txq->nb_tx_free < txq->tx_free_thresh) ice_tx_free_bufs(txq); nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts); nb_commit = nb_pkts; if (unlikely(nb_pkts == 0)) return 0; tx_id = txq->tx_tail; txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts); n = (uint16_t)(txq->nb_tx_desc - tx_id); if (nb_commit >= n) { ice_tx_backlog_entry(txep, tx_pkts, n); for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp) ice_vtx1(txdp, *tx_pkts, flags); ice_vtx1(txdp, *tx_pkts++, rs); nb_commit = (uint16_t)(nb_commit - n); tx_id = 0; txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1); /* avoid reach the end of ring */ txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; } ice_tx_backlog_entry(txep, tx_pkts, nb_commit); ice_vtx(txdp, tx_pkts, nb_commit, flags); tx_id = (uint16_t)(tx_id + nb_commit); if (tx_id > txq->tx_next_rs) { txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |= rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) << ICE_TXD_QW1_CMD_S); txq->tx_next_rs = (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh); } txq->tx_tail = tx_id; ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail); return nb_pkts; } uint16_t ice_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { uint16_t nb_tx = 0; struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue; while (nb_pkts) { uint16_t ret, num; num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh); ret = ice_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num); nb_tx += ret; nb_pkts -= ret; if (ret < num) break; } return nb_tx; } int __attribute__((cold)) ice_rxq_vec_setup(struct ice_rx_queue *rxq) { if (!rxq) return -1; rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs_vec; return ice_rxq_vec_setup_default(rxq); } int __attribute__((cold)) ice_txq_vec_setup(struct ice_tx_queue __rte_unused *txq) { if (!txq) return -1; txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs_vec; return 0; } int __attribute__((cold)) ice_rx_vec_dev_check(struct rte_eth_dev *dev) { return ice_rx_vec_dev_check_default(dev); } int __attribute__((cold)) ice_tx_vec_dev_check(struct rte_eth_dev *dev) { return ice_tx_vec_dev_check_default(dev); }