/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2013 6WIND S.A. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "testpmd.h" static const char * arp_op_name(uint16_t arp_op) { switch (arp_op) { case RTE_ARP_OP_REQUEST: return "ARP Request"; case RTE_ARP_OP_REPLY: return "ARP Reply"; case RTE_ARP_OP_REVREQUEST: return "Reverse ARP Request"; case RTE_ARP_OP_REVREPLY: return "Reverse ARP Reply"; case RTE_ARP_OP_INVREQUEST: return "Peer Identify Request"; case RTE_ARP_OP_INVREPLY: return "Peer Identify Reply"; default: break; } return "Unkwown ARP op"; } static const char * ip_proto_name(uint16_t ip_proto) { static const char * ip_proto_names[] = { "IP6HOPOPTS", /**< IP6 hop-by-hop options */ "ICMP", /**< control message protocol */ "IGMP", /**< group mgmt protocol */ "GGP", /**< gateway^2 (deprecated) */ "IPv4", /**< IPv4 encapsulation */ "UNASSIGNED", "TCP", /**< transport control protocol */ "ST", /**< Stream protocol II */ "EGP", /**< exterior gateway protocol */ "PIGP", /**< private interior gateway */ "RCC_MON", /**< BBN RCC Monitoring */ "NVPII", /**< network voice protocol*/ "PUP", /**< pup */ "ARGUS", /**< Argus */ "EMCON", /**< EMCON */ "XNET", /**< Cross Net Debugger */ "CHAOS", /**< Chaos*/ "UDP", /**< user datagram protocol */ "MUX", /**< Multiplexing */ "DCN_MEAS", /**< DCN Measurement Subsystems */ "HMP", /**< Host Monitoring */ "PRM", /**< Packet Radio Measurement */ "XNS_IDP", /**< xns idp */ "TRUNK1", /**< Trunk-1 */ "TRUNK2", /**< Trunk-2 */ "LEAF1", /**< Leaf-1 */ "LEAF2", /**< Leaf-2 */ "RDP", /**< Reliable Data */ "IRTP", /**< Reliable Transaction */ "TP4", /**< tp-4 w/ class negotiation */ "BLT", /**< Bulk Data Transfer */ "NSP", /**< Network Services */ "INP", /**< Merit Internodal */ "SEP", /**< Sequential Exchange */ "3PC", /**< Third Party Connect */ "IDPR", /**< InterDomain Policy Routing */ "XTP", /**< XTP */ "DDP", /**< Datagram Delivery */ "CMTP", /**< Control Message Transport */ "TPXX", /**< TP++ Transport */ "ILTP", /**< IL transport protocol */ "IPv6_HDR", /**< IP6 header */ "SDRP", /**< Source Demand Routing */ "IPv6_RTG", /**< IP6 routing header */ "IPv6_FRAG", /**< IP6 fragmentation header */ "IDRP", /**< InterDomain Routing*/ "RSVP", /**< resource reservation */ "GRE", /**< General Routing Encap. */ "MHRP", /**< Mobile Host Routing */ "BHA", /**< BHA */ "ESP", /**< IP6 Encap Sec. Payload */ "AH", /**< IP6 Auth Header */ "INLSP", /**< Integ. Net Layer Security */ "SWIPE", /**< IP with encryption */ "NHRP", /**< Next Hop Resolution */ "UNASSIGNED", "UNASSIGNED", "UNASSIGNED", "ICMPv6", /**< ICMP6 */ "IPv6NONEXT", /**< IP6 no next header */ "Ipv6DSTOPTS",/**< IP6 destination option */ "AHIP", /**< any host internal protocol */ "CFTP", /**< CFTP */ "HELLO", /**< "hello" routing protocol */ "SATEXPAK", /**< SATNET/Backroom EXPAK */ "KRYPTOLAN", /**< Kryptolan */ "RVD", /**< Remote Virtual Disk */ "IPPC", /**< Pluribus Packet Core */ "ADFS", /**< Any distributed FS */ "SATMON", /**< Satnet Monitoring */ "VISA", /**< VISA Protocol */ "IPCV", /**< Packet Core Utility */ "CPNX", /**< Comp. Prot. Net. Executive */ "CPHB", /**< Comp. Prot. HeartBeat */ "WSN", /**< Wang Span Network */ "PVP", /**< Packet Video Protocol */ "BRSATMON", /**< BackRoom SATNET Monitoring */ "ND", /**< Sun net disk proto (temp.) */ "WBMON", /**< WIDEBAND Monitoring */ "WBEXPAK", /**< WIDEBAND EXPAK */ "EON", /**< ISO cnlp */ "VMTP", /**< VMTP */ "SVMTP", /**< Secure VMTP */ "VINES", /**< Banyon VINES */ "TTP", /**< TTP */ "IGP", /**< NSFNET-IGP */ "DGP", /**< dissimilar gateway prot. */ "TCF", /**< TCF */ "IGRP", /**< Cisco/GXS IGRP */ "OSPFIGP", /**< OSPFIGP */ "SRPC", /**< Strite RPC protocol */ "LARP", /**< Locus Address Resolution */ "MTP", /**< Multicast Transport */ "AX25", /**< AX.25 Frames */ "4IN4", /**< IP encapsulated in IP */ "MICP", /**< Mobile Int.ing control */ "SCCSP", /**< Semaphore Comm. security */ "ETHERIP", /**< Ethernet IP encapsulation */ "ENCAP", /**< encapsulation header */ "AES", /**< any private encr. scheme */ "GMTP", /**< GMTP */ "IPCOMP", /**< payload compression (IPComp) */ "UNASSIGNED", "UNASSIGNED", "PIM", /**< Protocol Independent Mcast */ }; if (ip_proto < sizeof(ip_proto_names) / sizeof(ip_proto_names[0])) return ip_proto_names[ip_proto]; switch (ip_proto) { #ifdef IPPROTO_PGM case IPPROTO_PGM: /**< PGM */ return "PGM"; #endif case IPPROTO_SCTP: /**< Stream Control Transport Protocol */ return "SCTP"; #ifdef IPPROTO_DIVERT case IPPROTO_DIVERT: /**< divert pseudo-protocol */ return "DIVERT"; #endif case IPPROTO_RAW: /**< raw IP packet */ return "RAW"; default: break; } return "UNASSIGNED"; } static void ipv4_addr_to_dot(uint32_t be_ipv4_addr, char *buf) { uint32_t ipv4_addr; ipv4_addr = rte_be_to_cpu_32(be_ipv4_addr); sprintf(buf, "%d.%d.%d.%d", (ipv4_addr >> 24) & 0xFF, (ipv4_addr >> 16) & 0xFF, (ipv4_addr >> 8) & 0xFF, ipv4_addr & 0xFF); } static void ether_addr_dump(const char *what, const struct rte_ether_addr *ea) { char buf[RTE_ETHER_ADDR_FMT_SIZE]; rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, ea); if (what) printf("%s", what); printf("%s", buf); } static void ipv4_addr_dump(const char *what, uint32_t be_ipv4_addr) { char buf[16]; ipv4_addr_to_dot(be_ipv4_addr, buf); if (what) printf("%s", what); printf("%s", buf); } static uint16_t ipv4_hdr_cksum(struct rte_ipv4_hdr *ip_h) { uint16_t *v16_h; uint32_t ip_cksum; /* * Compute the sum of successive 16-bit words of the IPv4 header, * skipping the checksum field of the header. */ v16_h = (unaligned_uint16_t *) ip_h; ip_cksum = v16_h[0] + v16_h[1] + v16_h[2] + v16_h[3] + v16_h[4] + v16_h[6] + v16_h[7] + v16_h[8] + v16_h[9]; /* reduce 32 bit checksum to 16 bits and complement it */ ip_cksum = (ip_cksum & 0xffff) + (ip_cksum >> 16); ip_cksum = (ip_cksum & 0xffff) + (ip_cksum >> 16); ip_cksum = (~ip_cksum) & 0x0000FFFF; return (ip_cksum == 0) ? 0xFFFF : (uint16_t) ip_cksum; } #define is_multicast_ipv4_addr(ipv4_addr) \ (((rte_be_to_cpu_32((ipv4_addr)) >> 24) & 0x000000FF) == 0xE0) /* * Receive a burst of packets, lookup for ICMP echo requests, and, if any, * send back ICMP echo replies. */ static void reply_to_icmp_echo_rqsts(struct fwd_stream *fs) { struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; struct rte_mbuf *pkt; struct rte_ether_hdr *eth_h; struct rte_vlan_hdr *vlan_h; struct rte_arp_hdr *arp_h; struct rte_ipv4_hdr *ip_h; struct rte_icmp_hdr *icmp_h; struct rte_ether_addr eth_addr; uint32_t retry; uint32_t ip_addr; uint16_t nb_rx; uint16_t nb_tx; uint16_t nb_replies; uint16_t eth_type; uint16_t vlan_id; uint16_t arp_op; uint16_t arp_pro; uint32_t cksum; uint8_t i; int l2_len; #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES uint64_t start_tsc; uint64_t end_tsc; uint64_t core_cycles; #endif #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES start_tsc = rte_rdtsc(); #endif /* * First, receive a burst of packets. */ nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, nb_pkt_per_burst); if (unlikely(nb_rx == 0)) return; #ifdef RTE_TEST_PMD_RECORD_BURST_STATS fs->rx_burst_stats.pkt_burst_spread[nb_rx]++; #endif fs->rx_packets += nb_rx; nb_replies = 0; for (i = 0; i < nb_rx; i++) { if (likely(i < nb_rx - 1)) rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], void *)); pkt = pkts_burst[i]; eth_h = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *); eth_type = RTE_BE_TO_CPU_16(eth_h->ether_type); l2_len = sizeof(struct rte_ether_hdr); if (verbose_level > 0) { printf("\nPort %d pkt-len=%u nb-segs=%u\n", fs->rx_port, pkt->pkt_len, pkt->nb_segs); ether_addr_dump(" ETH: src=", ð_h->s_addr); ether_addr_dump(" dst=", ð_h->d_addr); } if (eth_type == RTE_ETHER_TYPE_VLAN) { vlan_h = (struct rte_vlan_hdr *) ((char *)eth_h + sizeof(struct rte_ether_hdr)); l2_len += sizeof(struct rte_vlan_hdr); eth_type = rte_be_to_cpu_16(vlan_h->eth_proto); if (verbose_level > 0) { vlan_id = rte_be_to_cpu_16(vlan_h->vlan_tci) & 0xFFF; printf(" [vlan id=%u]", vlan_id); } } if (verbose_level > 0) { printf(" type=0x%04x\n", eth_type); } /* Reply to ARP requests */ if (eth_type == RTE_ETHER_TYPE_ARP) { arp_h = (struct rte_arp_hdr *) ((char *)eth_h + l2_len); arp_op = RTE_BE_TO_CPU_16(arp_h->arp_opcode); arp_pro = RTE_BE_TO_CPU_16(arp_h->arp_protocol); if (verbose_level > 0) { printf(" ARP: hrd=%d proto=0x%04x hln=%d " "pln=%d op=%u (%s)\n", RTE_BE_TO_CPU_16(arp_h->arp_hardware), arp_pro, arp_h->arp_hlen, arp_h->arp_plen, arp_op, arp_op_name(arp_op)); } if ((RTE_BE_TO_CPU_16(arp_h->arp_hardware) != RTE_ARP_HRD_ETHER) || (arp_pro != RTE_ETHER_TYPE_IPV4) || (arp_h->arp_hlen != 6) || (arp_h->arp_plen != 4) ) { rte_pktmbuf_free(pkt); if (verbose_level > 0) printf("\n"); continue; } if (verbose_level > 0) { rte_ether_addr_copy(&arp_h->arp_data.arp_sha, ð_addr); ether_addr_dump(" sha=", ð_addr); ip_addr = arp_h->arp_data.arp_sip; ipv4_addr_dump(" sip=", ip_addr); printf("\n"); rte_ether_addr_copy(&arp_h->arp_data.arp_tha, ð_addr); ether_addr_dump(" tha=", ð_addr); ip_addr = arp_h->arp_data.arp_tip; ipv4_addr_dump(" tip=", ip_addr); printf("\n"); } if (arp_op != RTE_ARP_OP_REQUEST) { rte_pktmbuf_free(pkt); continue; } /* * Build ARP reply. */ /* Use source MAC address as destination MAC address. */ rte_ether_addr_copy(ð_h->s_addr, ð_h->d_addr); /* Set source MAC address with MAC address of TX port */ rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, ð_h->s_addr); arp_h->arp_opcode = rte_cpu_to_be_16(RTE_ARP_OP_REPLY); rte_ether_addr_copy(&arp_h->arp_data.arp_tha, ð_addr); rte_ether_addr_copy(&arp_h->arp_data.arp_sha, &arp_h->arp_data.arp_tha); rte_ether_addr_copy(ð_h->s_addr, &arp_h->arp_data.arp_sha); /* Swap IP addresses in ARP payload */ ip_addr = arp_h->arp_data.arp_sip; arp_h->arp_data.arp_sip = arp_h->arp_data.arp_tip; arp_h->arp_data.arp_tip = ip_addr; pkts_burst[nb_replies++] = pkt; continue; } if (eth_type != RTE_ETHER_TYPE_IPV4) { rte_pktmbuf_free(pkt); continue; } ip_h = (struct rte_ipv4_hdr *) ((char *)eth_h + l2_len); if (verbose_level > 0) { ipv4_addr_dump(" IPV4: src=", ip_h->src_addr); ipv4_addr_dump(" dst=", ip_h->dst_addr); printf(" proto=%d (%s)\n", ip_h->next_proto_id, ip_proto_name(ip_h->next_proto_id)); } /* * Check if packet is a ICMP echo request. */ icmp_h = (struct rte_icmp_hdr *) ((char *)ip_h + sizeof(struct rte_ipv4_hdr)); if (! ((ip_h->next_proto_id == IPPROTO_ICMP) && (icmp_h->icmp_type == RTE_IP_ICMP_ECHO_REQUEST) && (icmp_h->icmp_code == 0))) { rte_pktmbuf_free(pkt); continue; } if (verbose_level > 0) printf(" ICMP: echo request seq id=%d\n", rte_be_to_cpu_16(icmp_h->icmp_seq_nb)); /* * Prepare ICMP echo reply to be sent back. * - switch ethernet source and destinations addresses, * - use the request IP source address as the reply IP * destination address, * - if the request IP destination address is a multicast * address: * - choose a reply IP source address different from the * request IP source address, * - re-compute the IP header checksum. * Otherwise: * - switch the request IP source and destination * addresses in the reply IP header, * - keep the IP header checksum unchanged. * - set RTE_IP_ICMP_ECHO_REPLY in ICMP header. * ICMP checksum is computed by assuming it is valid in the * echo request and not verified. */ rte_ether_addr_copy(ð_h->s_addr, ð_addr); rte_ether_addr_copy(ð_h->d_addr, ð_h->s_addr); rte_ether_addr_copy(ð_addr, ð_h->d_addr); ip_addr = ip_h->src_addr; if (is_multicast_ipv4_addr(ip_h->dst_addr)) { uint32_t ip_src; ip_src = rte_be_to_cpu_32(ip_addr); if ((ip_src & 0x00000003) == 1) ip_src = (ip_src & 0xFFFFFFFC) | 0x00000002; else ip_src = (ip_src & 0xFFFFFFFC) | 0x00000001; ip_h->src_addr = rte_cpu_to_be_32(ip_src); ip_h->dst_addr = ip_addr; ip_h->hdr_checksum = ipv4_hdr_cksum(ip_h); } else { ip_h->src_addr = ip_h->dst_addr; ip_h->dst_addr = ip_addr; } icmp_h->icmp_type = RTE_IP_ICMP_ECHO_REPLY; cksum = ~icmp_h->icmp_cksum & 0xffff; cksum += ~htons(RTE_IP_ICMP_ECHO_REQUEST << 8) & 0xffff; cksum += htons(RTE_IP_ICMP_ECHO_REPLY << 8); cksum = (cksum & 0xffff) + (cksum >> 16); cksum = (cksum & 0xffff) + (cksum >> 16); icmp_h->icmp_cksum = ~cksum; pkts_burst[nb_replies++] = pkt; } /* Send back ICMP echo replies, if any. */ if (nb_replies > 0) { nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_replies); /* * Retry if necessary */ if (unlikely(nb_tx < nb_replies) && fs->retry_enabled) { retry = 0; while (nb_tx < nb_replies && retry++ < burst_tx_retry_num) { rte_delay_us(burst_tx_delay_time); nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, &pkts_burst[nb_tx], nb_replies - nb_tx); } } fs->tx_packets += nb_tx; #ifdef RTE_TEST_PMD_RECORD_BURST_STATS fs->tx_burst_stats.pkt_burst_spread[nb_tx]++; #endif if (unlikely(nb_tx < nb_replies)) { fs->fwd_dropped += (nb_replies - nb_tx); do { rte_pktmbuf_free(pkts_burst[nb_tx]); } while (++nb_tx < nb_replies); } } #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES end_tsc = rte_rdtsc(); core_cycles = (end_tsc - start_tsc); fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles); #endif } struct fwd_engine icmp_echo_engine = { .fwd_mode_name = "icmpecho", .port_fwd_begin = NULL, .port_fwd_end = NULL, .packet_fwd = reply_to_icmp_echo_rqsts, };