/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2005 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifdef FSTACK #include #endif #include #include #include #include #include #include #ifndef FSTACK #include #endif #include #include #include #include #include "memstat.h" #include "memstat_internal.h" #ifndef FSTACK static int memstat_malloc_zone_count; static int memstat_malloc_zone_sizes[32]; static int memstat_malloc_zone_init(void); static int memstat_malloc_zone_init_kvm(kvm_t *kvm); static struct nlist namelist[] = { #define X_KMEMSTATISTICS 0 { .n_name = "_kmemstatistics" }, #define X_KMEMZONES 1 { .n_name = "_kmemzones" }, #define X_NUMZONES 2 { .n_name = "_numzones" }, #define X_VM_MALLOC_ZONE_COUNT 3 { .n_name = "_vm_malloc_zone_count" }, #define X_MP_MAXCPUS 4 { .n_name = "_mp_maxcpus" }, { .n_name = "" }, }; #endif /* * Extract malloc(9) statistics from the running kernel, and store all memory * type information in the passed list. For each type, check the list for an * existing entry with the right name/allocator -- if present, update that * entry. Otherwise, add a new entry. On error, the entire list will be * cleared, as entries will be in an inconsistent state. * * To reduce the level of work for a list that starts empty, we keep around a * hint as to whether it was empty when we began, so we can avoid searching * the list for entries to update. Updates are O(n^2) due to searching for * each entry before adding it. */ int memstat_sysctl_malloc(struct memory_type_list *list, int flags) { struct malloc_type_stream_header *mtshp; struct malloc_type_header *mthp; struct malloc_type_stats *mtsp; struct memory_type *mtp; int count, hint_dontsearch, i, j, maxcpus; char *buffer, *p; size_t size; hint_dontsearch = LIST_EMPTY(&list->mtl_list); /* * Query the number of CPUs, number of malloc types so that we can * guess an initial buffer size. We loop until we succeed or really * fail. Note that the value of maxcpus we query using sysctl is not * the version we use when processing the real data -- that is read * from the header. */ retry: size = sizeof(maxcpus); if (sysctlbyname("kern.smp.maxcpus", &maxcpus, &size, NULL, 0) < 0) { if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } if (size != sizeof(maxcpus)) { list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } size = sizeof(count); if (sysctlbyname("kern.malloc_count", &count, &size, NULL, 0) < 0) { if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_VERSION; return (-1); } if (size != sizeof(count)) { list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } #ifndef FSTACK if (memstat_malloc_zone_init() == -1) { list->mtl_error = MEMSTAT_ERROR_VERSION; return (-1); } #endif size = sizeof(*mthp) + count * (sizeof(*mthp) + sizeof(*mtsp) * maxcpus); buffer = malloc(size); if (buffer == NULL) { list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } if (sysctlbyname("kern.malloc_stats", buffer, &size, NULL, 0) < 0) { /* * XXXRW: ENOMEM is an ambiguous return, we should bound the * number of loops, perhaps. */ if (errno == ENOMEM) { free(buffer); goto retry; } if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } if (size == 0) { free(buffer); return (0); } if (size < sizeof(*mtshp)) { list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } p = buffer; mtshp = (struct malloc_type_stream_header *)p; p += sizeof(*mtshp); if (mtshp->mtsh_version != MALLOC_TYPE_STREAM_VERSION) { list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } /* * For the remainder of this function, we are quite trusting about * the layout of structures and sizes, since we've determined we have * a matching version and acceptable CPU count. */ maxcpus = mtshp->mtsh_maxcpus; count = mtshp->mtsh_count; for (i = 0; i < count; i++) { mthp = (struct malloc_type_header *)p; p += sizeof(*mthp); if (hint_dontsearch == 0) { mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC, mthp->mth_name); } else mtp = NULL; if (mtp == NULL) mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC, mthp->mth_name, maxcpus); if (mtp == NULL) { _memstat_mtl_empty(list); free(buffer); list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } /* * Reset the statistics on a current node. */ _memstat_mt_reset_stats(mtp, maxcpus); for (j = 0; j < maxcpus; j++) { mtsp = (struct malloc_type_stats *)p; p += sizeof(*mtsp); /* * Sumarize raw statistics across CPUs into coalesced * statistics. */ mtp->mt_memalloced += mtsp->mts_memalloced; mtp->mt_memfreed += mtsp->mts_memfreed; mtp->mt_numallocs += mtsp->mts_numallocs; mtp->mt_numfrees += mtsp->mts_numfrees; mtp->mt_sizemask |= mtsp->mts_size; /* * Copies of per-CPU statistics. */ mtp->mt_percpu_alloc[j].mtp_memalloced = mtsp->mts_memalloced; mtp->mt_percpu_alloc[j].mtp_memfreed = mtsp->mts_memfreed; mtp->mt_percpu_alloc[j].mtp_numallocs = mtsp->mts_numallocs; mtp->mt_percpu_alloc[j].mtp_numfrees = mtsp->mts_numfrees; mtp->mt_percpu_alloc[j].mtp_sizemask = mtsp->mts_size; } /* * Derived cross-CPU statistics. */ mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed; mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees; } free(buffer); return (0); } #ifndef FSTACK static int kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size, size_t offset) { ssize_t ret; ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address, size); if (ret < 0) return (MEMSTAT_ERROR_KVM); if ((size_t)ret != size) return (MEMSTAT_ERROR_KVM_SHORTREAD); return (0); } static int kread_string(kvm_t *kvm, const void *kvm_pointer, char *buffer, int buflen) { ssize_t ret; int i; for (i = 0; i < buflen; i++) { ret = kvm_read(kvm, __DECONST(unsigned long, kvm_pointer) + i, &(buffer[i]), sizeof(char)); if (ret < 0) return (MEMSTAT_ERROR_KVM); if ((size_t)ret != sizeof(char)) return (MEMSTAT_ERROR_KVM_SHORTREAD); if (buffer[i] == '\0') return (0); } /* Truncate. */ buffer[i-1] = '\0'; return (0); } static int kread_symbol(kvm_t *kvm, int index, void *address, size_t size, size_t offset) { ssize_t ret; ret = kvm_read(kvm, namelist[index].n_value + offset, address, size); if (ret < 0) return (MEMSTAT_ERROR_KVM); if ((size_t)ret != size) return (MEMSTAT_ERROR_KVM_SHORTREAD); return (0); } static int kread_zpcpu(kvm_t *kvm, u_long base, void *buf, size_t size, int cpu) { ssize_t ret; ret = kvm_read_zpcpu(kvm, base, buf, size, cpu); if (ret < 0) return (MEMSTAT_ERROR_KVM); if ((size_t)ret != size) return (MEMSTAT_ERROR_KVM_SHORTREAD); return (0); } int memstat_kvm_malloc(struct memory_type_list *list, void *kvm_handle) { struct memory_type *mtp; void *kmemstatistics; int hint_dontsearch, j, mp_maxcpus, mp_ncpus, ret; char name[MEMTYPE_MAXNAME]; struct malloc_type_stats mts; struct malloc_type_internal *mtip; struct malloc_type type, *typep; kvm_t *kvm; kvm = (kvm_t *)kvm_handle; hint_dontsearch = LIST_EMPTY(&list->mtl_list); if (kvm_nlist(kvm, namelist) != 0) { list->mtl_error = MEMSTAT_ERROR_KVM; return (-1); } if (namelist[X_KMEMSTATISTICS].n_type == 0 || namelist[X_KMEMSTATISTICS].n_value == 0) { list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL; return (-1); } ret = kread_symbol(kvm, X_MP_MAXCPUS, &mp_maxcpus, sizeof(mp_maxcpus), 0); if (ret != 0) { list->mtl_error = ret; return (-1); } ret = kread_symbol(kvm, X_KMEMSTATISTICS, &kmemstatistics, sizeof(kmemstatistics), 0); if (ret != 0) { list->mtl_error = ret; return (-1); } ret = memstat_malloc_zone_init_kvm(kvm); if (ret != 0) { list->mtl_error = ret; return (-1); } mp_ncpus = kvm_getncpus(kvm); for (typep = kmemstatistics; typep != NULL; typep = type.ks_next) { ret = kread(kvm, typep, &type, sizeof(type), 0); if (ret != 0) { _memstat_mtl_empty(list); list->mtl_error = ret; return (-1); } ret = kread_string(kvm, (void *)type.ks_shortdesc, name, MEMTYPE_MAXNAME); if (ret != 0) { _memstat_mtl_empty(list); list->mtl_error = ret; return (-1); } if (type.ks_version != M_VERSION) { warnx("type %s with unsupported version %lu; skipped", name, type.ks_version); continue; } /* * Since our compile-time value for MAXCPU may differ from the * kernel's, we populate our own array. */ mtip = &type.ks_mti; if (hint_dontsearch == 0) { mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC, name); } else mtp = NULL; if (mtp == NULL) mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC, name, mp_maxcpus); if (mtp == NULL) { _memstat_mtl_empty(list); list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } /* * This logic is replicated from kern_malloc.c, and should * be kept in sync. */ _memstat_mt_reset_stats(mtp, mp_maxcpus); for (j = 0; j < mp_ncpus; j++) { ret = kread_zpcpu(kvm, (u_long)mtip->mti_stats, &mts, sizeof(mts), j); if (ret != 0) { _memstat_mtl_empty(list); list->mtl_error = ret; return (-1); } mtp->mt_memalloced += mts.mts_memalloced; mtp->mt_memfreed += mts.mts_memfreed; mtp->mt_numallocs += mts.mts_numallocs; mtp->mt_numfrees += mts.mts_numfrees; mtp->mt_sizemask |= mts.mts_size; mtp->mt_percpu_alloc[j].mtp_memalloced = mts.mts_memalloced; mtp->mt_percpu_alloc[j].mtp_memfreed = mts.mts_memfreed; mtp->mt_percpu_alloc[j].mtp_numallocs = mts.mts_numallocs; mtp->mt_percpu_alloc[j].mtp_numfrees = mts.mts_numfrees; mtp->mt_percpu_alloc[j].mtp_sizemask = mts.mts_size; } for (; j < mp_maxcpus; j++) { bzero(&mtp->mt_percpu_alloc[j], sizeof(mtp->mt_percpu_alloc[0])); } mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed; mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees; } return (0); } static int memstat_malloc_zone_init(void) { size_t size; size = sizeof(memstat_malloc_zone_count); if (sysctlbyname("vm.malloc.zone_count", &memstat_malloc_zone_count, &size, NULL, 0) < 0) { return (-1); } if (memstat_malloc_zone_count > (int)nitems(memstat_malloc_zone_sizes)) { return (-1); } size = sizeof(memstat_malloc_zone_sizes); if (sysctlbyname("vm.malloc.zone_sizes", &memstat_malloc_zone_sizes, &size, NULL, 0) < 0) { return (-1); } return (0); } /* * Copied from kern_malloc.c * * kz_zone is an array sized at compilation time, the size is exported in * "numzones". Below we need to iterate kz_size. */ struct memstat_kmemzone { int kz_size; const char *kz_name; void *kz_zone[1]; }; static int memstat_malloc_zone_init_kvm(kvm_t *kvm) { struct memstat_kmemzone *kmemzones, *kz; int numzones, objsize, allocsize, ret; int i; ret = kread_symbol(kvm, X_VM_MALLOC_ZONE_COUNT, &memstat_malloc_zone_count, sizeof(memstat_malloc_zone_count), 0); if (ret != 0) { return (ret); } ret = kread_symbol(kvm, X_NUMZONES, &numzones, sizeof(numzones), 0); if (ret != 0) { return (ret); } objsize = __offsetof(struct memstat_kmemzone, kz_zone) + sizeof(void *) * numzones; allocsize = objsize * memstat_malloc_zone_count; kmemzones = malloc(allocsize); if (kmemzones == NULL) { return (MEMSTAT_ERROR_NOMEMORY); } ret = kread_symbol(kvm, X_KMEMZONES, kmemzones, allocsize, 0); if (ret != 0) { free(kmemzones); return (ret); } kz = kmemzones; for (i = 0; i < (int)nitems(memstat_malloc_zone_sizes); i++) { memstat_malloc_zone_sizes[i] = kz->kz_size; kz = (struct memstat_kmemzone *)((char *)kz + objsize); } free(kmemzones); return (0); } size_t memstat_malloc_zone_get_count(void) { return (memstat_malloc_zone_count); } size_t memstat_malloc_zone_get_size(size_t n) { if (n >= nitems(memstat_malloc_zone_sizes)) { return (-1); } return (memstat_malloc_zone_sizes[n]); } int memstat_malloc_zone_used(const struct memory_type *mtp, size_t n) { if (memstat_get_sizemask(mtp) & (1 << n)) return (1); return (0); } #endif