/* SPDX-License-Identifier: BSD-3-Clause * Copyright(C) 2021 Marvell. */ #ifndef _CNXK_SE_H_ #define _CNXK_SE_H_ #include #include #include "cnxk_cryptodev.h" #include "cnxk_cryptodev_ops.h" #include "cnxk_sg.h" #define SRC_IOV_SIZE \ (sizeof(struct roc_se_iov_ptr) + (sizeof(struct roc_se_buf_ptr) * ROC_MAX_SG_CNT)) #define DST_IOV_SIZE \ (sizeof(struct roc_se_iov_ptr) + (sizeof(struct roc_se_buf_ptr) * ROC_MAX_SG_CNT)) enum cpt_dp_thread_type { CPT_DP_THREAD_TYPE_FC_CHAIN = 0x1, CPT_DP_THREAD_TYPE_FC_AEAD, CPT_DP_THREAD_TYPE_PDCP, CPT_DP_THREAD_TYPE_PDCP_CHAIN, CPT_DP_THREAD_TYPE_KASUMI, CPT_DP_THREAD_TYPE_SM, CPT_DP_THREAD_AUTH_ONLY, CPT_DP_THREAD_GENERIC, CPT_DP_THREAD_TYPE_PT, }; struct cnxk_se_sess { struct rte_cryptodev_sym_session rte_sess; uint8_t aes_gcm : 1; uint8_t aes_ccm : 1; uint8_t aes_ctr : 1; uint8_t chacha_poly : 1; uint8_t is_null : 1; uint8_t is_gmac : 1; uint8_t chained_op : 1; uint8_t auth_first : 1; uint8_t aes_ctr_eea2 : 1; uint8_t is_sha3 : 1; uint8_t short_iv : 1; uint8_t is_sm3 : 1; uint8_t passthrough : 1; uint8_t is_sm4 : 1; uint8_t cipher_only : 1; uint8_t rsvd : 1; uint8_t cpt_op : 4; uint8_t zsk_flag : 4; uint8_t zs_cipher : 4; uint8_t zs_auth : 4; uint8_t dp_thr_type; uint8_t mac_len; uint8_t iv_length; uint8_t auth_iv_length; uint16_t aad_length; uint16_t iv_offset; uint16_t auth_iv_offset; uint32_t salt; uint64_t cpt_inst_w7; uint64_t cpt_inst_w2; struct cnxk_cpt_qp *qp; struct roc_se_ctx roc_se_ctx; struct roc_cpt_lf *lf; } __rte_aligned(ROC_ALIGN); struct cnxk_sym_dp_ctx { struct cnxk_se_sess *sess; }; struct cnxk_iov { char src[SRC_IOV_SIZE]; char dst[SRC_IOV_SIZE]; void *iv_buf; void *aad_buf; void *mac_buf; uint16_t c_head; uint16_t c_tail; uint16_t a_head; uint16_t a_tail; int data_len; }; static __rte_always_inline int fill_sess_gmac(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess); static inline void cpt_pack_iv(uint8_t *iv_src, uint8_t *iv_dst) { /* pack the first 8 bytes of IV to 6 bytes. * discard the 2 MSB bits of each byte */ iv_dst[0] = (((iv_src[0] & 0x3f) << 2) | ((iv_src[1] >> 4) & 0x3)); iv_dst[1] = (((iv_src[1] & 0xf) << 4) | ((iv_src[2] >> 2) & 0xf)); iv_dst[2] = (((iv_src[2] & 0x3) << 6) | (iv_src[3] & 0x3f)); iv_dst[3] = (((iv_src[4] & 0x3f) << 2) | ((iv_src[5] >> 4) & 0x3)); iv_dst[4] = (((iv_src[5] & 0xf) << 4) | ((iv_src[6] >> 2) & 0xf)); iv_dst[5] = (((iv_src[6] & 0x3) << 6) | (iv_src[7] & 0x3f)); } static inline void pdcp_iv_copy(uint8_t *iv_d, const uint8_t *iv_s, const uint8_t pdcp_alg_type, uint8_t pack_iv) { const uint32_t *iv_s_temp; uint32_t iv_temp[4]; int j; if (unlikely(iv_s == NULL)) { memset(iv_d, 0, 16); return; } if (pdcp_alg_type == ROC_SE_PDCP_ALG_TYPE_SNOW3G) { /* * DPDK seems to provide it in form of IV3 IV2 IV1 IV0 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3 */ iv_s_temp = (const uint32_t *)iv_s; for (j = 0; j < 4; j++) iv_temp[j] = iv_s_temp[3 - j]; memcpy(iv_d, iv_temp, 16); } else if ((pdcp_alg_type == ROC_SE_PDCP_ALG_TYPE_ZUC) || pdcp_alg_type == ROC_SE_PDCP_ALG_TYPE_AES_CTR) { memcpy(iv_d, iv_s, 16); if (pack_iv) { uint8_t iv_d23, iv_d24; /* Save last two bytes as only 23B IV space is available */ iv_d23 = iv_d[23]; iv_d24 = iv_d[24]; /* Copy remaining part of IV */ memcpy(iv_d + 16, iv_s + 16, 25 - 16); /* Swap IV */ roc_se_zuc_bytes_swap(iv_d, 25); /* Pack IV */ cpt_pack_iv(iv_d, iv_d); /* Move IV */ for (j = 6; j < 23; j++) iv_d[j] = iv_d[j + 2]; iv_d[23] = iv_d23; iv_d[24] = iv_d24; } } } /* * Digest immediately at the end of the data is the best case. Switch to SG if * that cannot be ensured. */ static inline void cpt_digest_buf_lb_check(const struct cnxk_se_sess *sess, struct rte_mbuf *m, struct roc_se_fc_params *fc_params, uint32_t *flags, struct rte_crypto_sym_op *sym_op, bool *inplace, uint32_t a_data_off, uint32_t a_data_len, uint32_t c_data_off, uint32_t c_data_len, const bool is_pdcp_chain) { const uint32_t auth_end = a_data_off + a_data_len; uint32_t mc_hash_off; /* PDCP_CHAIN only supports auth_first */ if (is_pdcp_chain || sess->auth_first) mc_hash_off = auth_end; else mc_hash_off = RTE_MAX(c_data_off + c_data_len, auth_end); /* Digest immediately following data is best case */ if (unlikely(rte_pktmbuf_mtod_offset(m, uint8_t *, mc_hash_off) != sym_op->auth.digest.data)) { *flags |= ROC_SE_VALID_MAC_BUF; fc_params->mac_buf.size = sess->mac_len; fc_params->mac_buf.vaddr = sym_op->auth.digest.data; *inplace = false; } } static inline struct rte_mbuf * cpt_m_dst_get(uint8_t cpt_op, struct rte_mbuf *m_src, struct rte_mbuf *m_dst) { if (m_dst != NULL && (cpt_op & ROC_SE_OP_ENCODE)) return m_dst; else return m_src; } static __rte_always_inline int cpt_mac_len_verify(struct rte_crypto_auth_xform *auth) { uint16_t mac_len = auth->digest_length; int ret; if ((auth->algo != RTE_CRYPTO_AUTH_NULL) && (mac_len == 0)) return -1; switch (auth->algo) { case RTE_CRYPTO_AUTH_MD5: case RTE_CRYPTO_AUTH_MD5_HMAC: ret = (mac_len <= 16) ? 0 : -1; break; case RTE_CRYPTO_AUTH_SHA1: case RTE_CRYPTO_AUTH_SHA1_HMAC: ret = (mac_len <= 20) ? 0 : -1; break; case RTE_CRYPTO_AUTH_SHA224: case RTE_CRYPTO_AUTH_SHA224_HMAC: case RTE_CRYPTO_AUTH_SHA3_224: case RTE_CRYPTO_AUTH_SHA3_224_HMAC: ret = (mac_len <= 28) ? 0 : -1; break; case RTE_CRYPTO_AUTH_SHA256: case RTE_CRYPTO_AUTH_SHA256_HMAC: case RTE_CRYPTO_AUTH_SHA3_256: case RTE_CRYPTO_AUTH_SHA3_256_HMAC: ret = (mac_len <= 32) ? 0 : -1; break; case RTE_CRYPTO_AUTH_SHA384: case RTE_CRYPTO_AUTH_SHA384_HMAC: case RTE_CRYPTO_AUTH_SHA3_384: case RTE_CRYPTO_AUTH_SHA3_384_HMAC: ret = (mac_len <= 48) ? 0 : -1; break; case RTE_CRYPTO_AUTH_SHA512: case RTE_CRYPTO_AUTH_SHA512_HMAC: case RTE_CRYPTO_AUTH_SHA3_512: case RTE_CRYPTO_AUTH_SHA3_512_HMAC: ret = (mac_len <= 64) ? 0 : -1; break; /* SHAKE itself doesn't have limitation of digest length, * but in microcode size of length field is limited to 8 bits */ case RTE_CRYPTO_AUTH_SHAKE_128: case RTE_CRYPTO_AUTH_SHAKE_256: ret = (mac_len <= UINT8_MAX) ? 0 : -1; break; case RTE_CRYPTO_AUTH_SM3: ret = (mac_len <= 32) ? 0 : -1; break; case RTE_CRYPTO_AUTH_NULL: ret = 0; break; default: ret = -1; } return ret; } static __rte_always_inline int sg_inst_prep(struct roc_se_fc_params *params, struct cpt_inst_s *inst, uint64_t offset_ctrl, const uint8_t *iv_s, int iv_len, uint8_t pack_iv, uint8_t pdcp_alg_type, int32_t inputlen, int32_t outputlen, uint32_t passthrough_len, uint32_t req_flags, int pdcp_flag, int decrypt) { struct roc_sglist_comp *gather_comp, *scatter_comp; void *m_vaddr = params->meta_buf.vaddr; struct roc_se_buf_ptr *aad_buf = NULL; uint32_t mac_len = 0, aad_len = 0; struct roc_se_ctx *se_ctx; uint32_t i, g_size_bytes; int zsk_flags, ret = 0; uint64_t *offset_vaddr; uint32_t s_size_bytes; uint8_t *in_buffer; uint32_t size; uint8_t *iv_d; se_ctx = params->ctx; zsk_flags = se_ctx->zsk_flags; mac_len = se_ctx->mac_len; if (unlikely(req_flags & ROC_SE_VALID_AAD_BUF)) { /* We don't support both AAD and auth data separately */ aad_len = params->aad_buf.size; aad_buf = ¶ms->aad_buf; } /* save space for iv */ offset_vaddr = m_vaddr; m_vaddr = (uint8_t *)m_vaddr + ROC_SE_OFF_CTRL_LEN + RTE_ALIGN_CEIL(iv_len, 8); inst->w4.s.opcode_major |= (uint64_t)ROC_DMA_MODE_SG; /* iv offset is 0 */ *offset_vaddr = offset_ctrl; iv_d = ((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN); if (pdcp_flag) { if (likely(iv_len)) pdcp_iv_copy(iv_d, iv_s, pdcp_alg_type, pack_iv); } else { if (likely(iv_len)) memcpy(iv_d, iv_s, iv_len); } /* DPTR has SG list */ /* TODO Add error check if space will be sufficient */ gather_comp = (struct roc_sglist_comp *)((uint8_t *)m_vaddr + 8); /* * Input Gather List */ i = 0; /* Offset control word followed by iv */ i = fill_sg_comp(gather_comp, i, (uint64_t)offset_vaddr, ROC_SE_OFF_CTRL_LEN + iv_len); /* Add input data */ if (decrypt && (req_flags & ROC_SE_VALID_MAC_BUF)) { size = inputlen - iv_len - mac_len; if (likely(size)) { uint32_t aad_offset = aad_len ? passthrough_len : 0; /* input data only */ if (unlikely(req_flags & ROC_SE_SINGLE_BUF_INPLACE)) { i = fill_sg_comp_from_buf_min(gather_comp, i, params->bufs, &size); } else { i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { plt_dp_err("Insufficient buffer" " space, size %d needed", size); return -1; } } if (mac_len) i = fill_sg_comp_from_buf(gather_comp, i, ¶ms->mac_buf); } else { /* input data */ size = inputlen - iv_len; if (size) { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (unlikely(req_flags & ROC_SE_SINGLE_BUF_INPLACE)) { i = fill_sg_comp_from_buf_min(gather_comp, i, params->bufs, &size); } else { i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } } in_buffer = m_vaddr; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(struct roc_sglist_comp); /* * Output Scatter List */ i = 0; scatter_comp = (struct roc_sglist_comp *)((uint8_t *)gather_comp + g_size_bytes); if (zsk_flags == 0x1) { /* IV in SLIST only for EEA3 & UEA2 or for F8 */ iv_len = 0; } if (iv_len) { i = fill_sg_comp(scatter_comp, i, (uint64_t)offset_vaddr + ROC_SE_OFF_CTRL_LEN, iv_len); } /* Add output data */ if ((!decrypt) && (req_flags & ROC_SE_VALID_MAC_BUF)) { size = outputlen - iv_len - mac_len; if (size) { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (unlikely(req_flags & ROC_SE_SINGLE_BUF_INPLACE)) { i = fill_sg_comp_from_buf_min(scatter_comp, i, params->bufs, &size); } else { i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } /* mac data */ if (mac_len) i = fill_sg_comp_from_buf(scatter_comp, i, ¶ms->mac_buf); } else { /* Output including mac */ size = outputlen - iv_len; if (size) { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (unlikely(req_flags & ROC_SE_SINGLE_BUF_INPLACE)) { i = fill_sg_comp_from_buf_min(scatter_comp, i, params->bufs, &size); } else { i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(struct roc_sglist_comp); size = g_size_bytes + s_size_bytes + ROC_SG_LIST_HDR_SIZE; /* This is DPTR len in case of SG mode */ inst->w4.s.dlen = size; if (unlikely(size > ROC_SG_MAX_DLEN_SIZE)) { plt_dp_err("Exceeds max supported components. Reduce segments"); ret = -1; } inst->dptr = (uint64_t)in_buffer; return ret; } static __rte_always_inline int sg2_inst_prep(struct roc_se_fc_params *params, struct cpt_inst_s *inst, uint64_t offset_ctrl, const uint8_t *iv_s, int iv_len, uint8_t pack_iv, uint8_t pdcp_alg_type, int32_t inputlen, int32_t outputlen, uint32_t passthrough_len, uint32_t req_flags, int pdcp_flag, int decrypt) { struct roc_sg2list_comp *gather_comp, *scatter_comp; void *m_vaddr = params->meta_buf.vaddr; struct roc_se_buf_ptr *aad_buf = NULL; uint32_t mac_len = 0, aad_len = 0; uint16_t scatter_sz, gather_sz; union cpt_inst_w5 cpt_inst_w5; union cpt_inst_w6 cpt_inst_w6; struct roc_se_ctx *se_ctx; uint32_t i, g_size_bytes; uint64_t *offset_vaddr; int zsk_flags, ret = 0; uint32_t size; uint8_t *iv_d; se_ctx = params->ctx; zsk_flags = se_ctx->zsk_flags; mac_len = se_ctx->mac_len; if (unlikely(req_flags & ROC_SE_VALID_AAD_BUF)) { /* We don't support both AAD and auth data separately */ aad_len = params->aad_buf.size; aad_buf = ¶ms->aad_buf; } /* save space for iv */ offset_vaddr = m_vaddr; m_vaddr = (uint8_t *)m_vaddr + ROC_SE_OFF_CTRL_LEN + RTE_ALIGN_CEIL(iv_len, 8); inst->w4.s.opcode_major |= (uint64_t)ROC_DMA_MODE_SG; /* This is DPTR len in case of SG mode */ inst->w4.s.dlen = inputlen + ROC_SE_OFF_CTRL_LEN; /* iv offset is 0 */ *offset_vaddr = offset_ctrl; iv_d = ((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN); if (pdcp_flag) { if (likely(iv_len)) pdcp_iv_copy(iv_d, iv_s, pdcp_alg_type, pack_iv); } else { if (likely(iv_len)) memcpy(iv_d, iv_s, iv_len); } /* DPTR has SG list */ /* TODO Add error check if space will be sufficient */ gather_comp = (struct roc_sg2list_comp *)((uint8_t *)m_vaddr); /* * Input Gather List */ i = 0; /* Offset control word followed by iv */ i = fill_sg2_comp(gather_comp, i, (uint64_t)offset_vaddr, ROC_SE_OFF_CTRL_LEN + iv_len); /* Add input data */ if (decrypt && (req_flags & ROC_SE_VALID_MAC_BUF)) { size = inputlen - iv_len - mac_len; if (size) { /* input data only */ if (unlikely(req_flags & ROC_SE_SINGLE_BUF_INPLACE)) { i = fill_sg2_comp_from_buf_min(gather_comp, i, params->bufs, &size); } else { uint32_t aad_offset = aad_len ? passthrough_len : 0; i = fill_sg2_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { plt_dp_err("Insufficient buffer" " space, size %d needed", size); return -1; } } /* mac data */ if (mac_len) i = fill_sg2_comp_from_buf(gather_comp, i, ¶ms->mac_buf); } else { /* input data */ size = inputlen - iv_len; if (size) { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (unlikely(req_flags & ROC_SE_SINGLE_BUF_INPLACE)) { i = fill_sg2_comp_from_buf_min(gather_comp, i, params->bufs, &size); } else { i = fill_sg2_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } } gather_sz = (i + 2) / 3; g_size_bytes = gather_sz * sizeof(struct roc_sg2list_comp); /* * Output Scatter List */ i = 0; scatter_comp = (struct roc_sg2list_comp *)((uint8_t *)gather_comp + g_size_bytes); if (zsk_flags == 0x1) { /* IV in SLIST only for EEA3 & UEA2 or for F8 */ iv_len = 0; } if (iv_len) { i = fill_sg2_comp(scatter_comp, i, (uint64_t)offset_vaddr + ROC_SE_OFF_CTRL_LEN, iv_len); } /* Add output data */ if ((!decrypt) && (req_flags & ROC_SE_VALID_MAC_BUF)) { size = outputlen - iv_len - mac_len; if (size) { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (unlikely(req_flags & ROC_SE_SINGLE_BUF_INPLACE)) { i = fill_sg2_comp_from_buf_min(scatter_comp, i, params->bufs, &size); } else { i = fill_sg2_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } /* mac data */ if (mac_len) i = fill_sg2_comp_from_buf(scatter_comp, i, ¶ms->mac_buf); } else { /* Output including mac */ size = outputlen - iv_len; if (size) { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (unlikely(req_flags & ROC_SE_SINGLE_BUF_INPLACE)) { i = fill_sg2_comp_from_buf_min(scatter_comp, i, params->bufs, &size); } else { i = fill_sg2_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { plt_dp_err("Insufficient buffer space," " size %d needed", size); return -1; } } } scatter_sz = (i + 2) / 3; cpt_inst_w5.s.gather_sz = gather_sz; cpt_inst_w6.s.scatter_sz = scatter_sz; cpt_inst_w5.s.dptr = (uint64_t)gather_comp; cpt_inst_w6.s.rptr = (uint64_t)scatter_comp; inst->w5.u64 = cpt_inst_w5.u64; inst->w6.u64 = cpt_inst_w6.u64; if (unlikely((scatter_sz >> 4) || (gather_sz >> 4))) { plt_dp_err("Exceeds max supported components. Reduce segments"); ret = -1; } return ret; } static __rte_always_inline int cpt_digest_gen_sg_ver1_prep(uint32_t flags, uint64_t d_lens, struct roc_se_fc_params *params, struct cpt_inst_s *inst) { struct roc_sglist_comp *gather_comp, *scatter_comp; void *m_vaddr = params->meta_buf.vaddr; uint32_t g_size_bytes, s_size_bytes; uint16_t data_len, mac_len, key_len; union cpt_inst_w4 cpt_inst_w4; roc_se_auth_type hash_type; struct roc_se_ctx *ctx; uint8_t *in_buffer; uint32_t size, i; int ret = 0; ctx = params->ctx; hash_type = ctx->hash_type; mac_len = ctx->mac_len; key_len = ctx->auth_key_len; data_len = ROC_SE_AUTH_DLEN(d_lens); cpt_inst_w4.u64 = ctx->template_w4.u64; cpt_inst_w4.s.param2 = ((uint16_t)hash_type << 8) | mac_len; if (ctx->hmac) { cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_HMAC | ROC_DMA_MODE_SG; cpt_inst_w4.s.param1 = key_len; cpt_inst_w4.s.dlen = data_len + RTE_ALIGN_CEIL(key_len, 8); } else { cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_HASH | ROC_DMA_MODE_SG; cpt_inst_w4.s.param1 = 0; cpt_inst_w4.s.dlen = data_len; } /* DPTR has SG list */ in_buffer = m_vaddr; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; /* TODO Add error check if space will be sufficient */ gather_comp = (struct roc_sglist_comp *)((uint8_t *)m_vaddr + 8); /* * Input gather list */ i = 0; if (ctx->hmac) { uint64_t k_vaddr = (uint64_t)ctx->auth_key; /* Key */ i = fill_sg_comp(gather_comp, i, k_vaddr, RTE_ALIGN_CEIL(key_len, 8)); } /* input data */ size = data_len; i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient dst IOV size, short by %dB", size); return -1; } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(struct roc_sglist_comp); /* * Output Gather list */ i = 0; scatter_comp = (struct roc_sglist_comp *)((uint8_t *)gather_comp + g_size_bytes); if (flags & ROC_SE_VALID_MAC_BUF) { if (unlikely(params->mac_buf.size < mac_len)) { plt_dp_err("Insufficient MAC size"); return -1; } size = mac_len; i = fill_sg_comp_from_buf_min(scatter_comp, i, ¶ms->mac_buf, &size); } else { size = mac_len; i = fill_sg_comp_from_iov(scatter_comp, i, params->src_iov, data_len, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient dst IOV size, short by %dB", size); return -1; } } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(struct roc_sglist_comp); size = g_size_bytes + s_size_bytes + ROC_SG_LIST_HDR_SIZE; if (unlikely(size > ROC_SG_MAX_DLEN_SIZE)) { plt_dp_err("Exceeds max supported components. Reduce segments"); ret = -1; } /* This is DPTR len in case of SG mode */ cpt_inst_w4.s.dlen = size; inst->dptr = (uint64_t)in_buffer; inst->w4.u64 = cpt_inst_w4.u64; return ret; } static __rte_always_inline int cpt_digest_gen_sg_ver2_prep(uint32_t flags, uint64_t d_lens, struct roc_se_fc_params *params, struct cpt_inst_s *inst) { uint16_t data_len, mac_len, key_len, scatter_sz, gather_sz; struct roc_sg2list_comp *gather_comp, *scatter_comp; void *m_vaddr = params->meta_buf.vaddr; union cpt_inst_w4 cpt_inst_w4; union cpt_inst_w5 cpt_inst_w5; union cpt_inst_w6 cpt_inst_w6; roc_se_auth_type hash_type; struct roc_se_ctx *ctx; uint32_t g_size_bytes; uint32_t size, i; int ret = 0; ctx = params->ctx; hash_type = ctx->hash_type; mac_len = ctx->mac_len; key_len = ctx->auth_key_len; data_len = ROC_SE_AUTH_DLEN(d_lens); cpt_inst_w4.u64 = ctx->template_w4.u64; cpt_inst_w4.s.param2 = ((uint16_t)hash_type << 8) | mac_len; if (ctx->hmac) { cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_HMAC; cpt_inst_w4.s.param1 = key_len; cpt_inst_w4.s.dlen = data_len + RTE_ALIGN_CEIL(key_len, 8); } else { cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_HASH; cpt_inst_w4.s.param1 = 0; cpt_inst_w4.s.dlen = data_len; } /* DPTR has SG list */ /* TODO Add error check if space will be sufficient */ gather_comp = (struct roc_sg2list_comp *)((uint8_t *)m_vaddr + 0); /* * Input gather list */ i = 0; if (ctx->hmac) { uint64_t k_vaddr = (uint64_t)ctx->auth_key; /* Key */ i = fill_sg2_comp(gather_comp, i, k_vaddr, RTE_ALIGN_CEIL(key_len, 8)); } /* input data */ size = data_len; i = fill_sg2_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient dst IOV size, short by %dB", size); return -1; } gather_sz = (i + 2) / 3; g_size_bytes = gather_sz * sizeof(struct roc_sg2list_comp); /* * Output Gather list */ i = 0; scatter_comp = (struct roc_sg2list_comp *)((uint8_t *)gather_comp + g_size_bytes); if (flags & ROC_SE_VALID_MAC_BUF) { if (unlikely(params->mac_buf.size < mac_len)) { plt_dp_err("Insufficient MAC size"); return -1; } size = mac_len; i = fill_sg2_comp_from_buf_min(scatter_comp, i, ¶ms->mac_buf, &size); } else { size = mac_len; i = fill_sg2_comp_from_iov(scatter_comp, i, params->src_iov, data_len, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient dst IOV size, short by %dB", size); return -1; } } scatter_sz = (i + 2) / 3; cpt_inst_w5.s.gather_sz = gather_sz; cpt_inst_w6.s.scatter_sz = scatter_sz; cpt_inst_w5.s.dptr = (uint64_t)gather_comp; cpt_inst_w6.s.rptr = (uint64_t)scatter_comp; inst->w5.u64 = cpt_inst_w5.u64; inst->w6.u64 = cpt_inst_w6.u64; inst->w4.u64 = cpt_inst_w4.u64; if (unlikely((scatter_sz >> 4) || (gather_sz >> 4))) { plt_dp_err("Exceeds max supported components. Reduce segments"); ret = -1; } return ret; } static inline int pdcp_chain_sg1_prep(struct roc_se_fc_params *params, struct roc_se_ctx *cpt_ctx, struct cpt_inst_s *inst, union cpt_inst_w4 w4, int32_t inputlen, uint8_t hdr_len, uint64_t offset_ctrl, uint32_t req_flags, const uint8_t *cipher_iv, const uint8_t *auth_iv, const int pack_iv, const uint8_t pdcp_ci_alg, const uint8_t pdcp_auth_alg) { struct roc_sglist_comp *scatter_comp, *gather_comp; void *m_vaddr = params->meta_buf.vaddr; uint32_t i, g_size_bytes, s_size_bytes; const uint32_t mac_len = 4; uint8_t *iv_d, *in_buffer; uint64_t *offset_vaddr; uint32_t size; int ret = 0; /* save space for IV */ offset_vaddr = m_vaddr; m_vaddr = PLT_PTR_ADD(m_vaddr, ROC_SE_OFF_CTRL_LEN + PLT_ALIGN_CEIL(hdr_len, 8)); w4.s.opcode_major |= (uint64_t)ROC_DMA_MODE_SG; /* DPTR has SG list */ in_buffer = m_vaddr; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; gather_comp = PLT_PTR_ADD(m_vaddr, 8); /* Input Gather List */ i = 0; /* Offset control word followed by IV */ i = fill_sg_comp(gather_comp, i, (uint64_t)offset_vaddr, ROC_SE_OFF_CTRL_LEN + hdr_len); *(uint64_t *)offset_vaddr = offset_ctrl; /* Cipher IV */ iv_d = ((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN); pdcp_iv_copy(iv_d, cipher_iv, pdcp_ci_alg, pack_iv); /* Auth IV */ iv_d = ((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN + params->pdcp_iv_offset); pdcp_iv_copy(iv_d, auth_iv, pdcp_auth_alg, pack_iv); /* input data */ size = inputlen - hdr_len; if (size) { i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient buffer space, size %d needed", size); return -1; } } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(struct roc_sglist_comp); /* * Output Scatter List */ i = 0; scatter_comp = PLT_PTR_ADD(gather_comp, g_size_bytes); if ((hdr_len)) { i = fill_sg_comp(scatter_comp, i, (uint64_t)offset_vaddr + ROC_SE_OFF_CTRL_LEN, hdr_len); } /* Add output data */ if (cpt_ctx->ciph_then_auth && (req_flags & ROC_SE_VALID_MAC_BUF)) size = inputlen; else /* Output including mac */ size = inputlen + mac_len; size -= hdr_len; if (size) { i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient buffer space, size %d needed", size); return -1; } } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(struct roc_sglist_comp); size = g_size_bytes + s_size_bytes + ROC_SG_LIST_HDR_SIZE; if (unlikely(size > ROC_SG_MAX_DLEN_SIZE)) { plt_dp_err("Exceeds max supported components. Reduce segments"); ret = -1; } /* This is DPTR len in case of SG mode */ w4.s.dlen = size; inst->w4.u64 = w4.u64; inst->dptr = (uint64_t)in_buffer; return ret; } static inline int pdcp_chain_sg2_prep(struct roc_se_fc_params *params, struct roc_se_ctx *cpt_ctx, struct cpt_inst_s *inst, union cpt_inst_w4 w4, int32_t inputlen, uint8_t hdr_len, uint64_t offset_ctrl, uint32_t req_flags, const uint8_t *cipher_iv, const uint8_t *auth_iv, const int pack_iv, const uint8_t pdcp_ci_alg, const uint8_t pdcp_auth_alg) { struct roc_sg2list_comp *gather_comp, *scatter_comp; void *m_vaddr = params->meta_buf.vaddr; uint16_t scatter_sz, gather_sz; const uint32_t mac_len = 4; uint32_t i, g_size_bytes; uint64_t *offset_vaddr; union cpt_inst_w5 w5; union cpt_inst_w6 w6; uint8_t *iv_d; uint32_t size; int ret = 0; /* save space for IV */ offset_vaddr = m_vaddr; m_vaddr = PLT_PTR_ADD(m_vaddr, ROC_SE_OFF_CTRL_LEN + RTE_ALIGN_CEIL(hdr_len, 8)); w4.s.opcode_major |= (uint64_t)ROC_DMA_MODE_SG; w4.s.dlen = inputlen + ROC_SE_OFF_CTRL_LEN; gather_comp = m_vaddr; /* Input Gather List */ i = 0; /* Offset control word followed by IV */ *(uint64_t *)offset_vaddr = offset_ctrl; i = fill_sg2_comp(gather_comp, i, (uint64_t)offset_vaddr, ROC_SE_OFF_CTRL_LEN + hdr_len); /* Cipher IV */ iv_d = ((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN); pdcp_iv_copy(iv_d, cipher_iv, pdcp_ci_alg, pack_iv); /* Auth IV */ iv_d = ((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN + params->pdcp_iv_offset); pdcp_iv_copy(iv_d, auth_iv, pdcp_auth_alg, pack_iv); /* input data */ size = inputlen - hdr_len; if (size) { i = fill_sg2_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient buffer space, size %d needed", size); return -1; } } gather_sz = (i + 2) / 3; g_size_bytes = gather_sz * sizeof(struct roc_sg2list_comp); /* * Output Scatter List */ i = 0; scatter_comp = PLT_PTR_ADD(gather_comp, g_size_bytes); if ((hdr_len)) i = fill_sg2_comp(scatter_comp, i, (uint64_t)(offset_vaddr) + ROC_SE_OFF_CTRL_LEN, hdr_len); /* Add output data */ if (cpt_ctx->ciph_then_auth && (req_flags & ROC_SE_VALID_MAC_BUF)) size = inputlen; else /* Output including mac */ size = inputlen + mac_len; size -= hdr_len; if (size) { i = fill_sg2_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, NULL, 0); if (unlikely(size)) { plt_dp_err("Insufficient buffer space, size %d needed", size); return -1; } } scatter_sz = (i + 2) / 3; w5.s.gather_sz = gather_sz; w6.s.scatter_sz = scatter_sz; w5.s.dptr = (uint64_t)gather_comp; w6.s.rptr = (uint64_t)scatter_comp; inst->w4.u64 = w4.u64; inst->w5.u64 = w5.u64; inst->w6.u64 = w6.u64; if (unlikely((scatter_sz >> 4) || (gather_sz >> 4))) { plt_dp_err("Exceeds max supported components. Reduce segments"); ret = -1; } return ret; } static __rte_always_inline int cpt_sm_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *fc_params, struct cpt_inst_s *inst, const bool is_sg_ver2, int decrypt) { int32_t inputlen, outputlen, enc_dlen; union cpt_inst_w4 cpt_inst_w4; uint32_t passthrough_len = 0; const uint8_t *src = NULL; struct roc_se_ctx *se_ctx; uint32_t encr_data_len; uint32_t encr_offset; uint64_t offset_ctrl; uint8_t iv_len = 16; void *offset_vaddr; int ret; encr_offset = ROC_SE_ENCR_OFFSET(d_offs); encr_data_len = ROC_SE_ENCR_DLEN(d_lens); se_ctx = fc_params->ctx; cpt_inst_w4.u64 = se_ctx->template_w4.u64; if (unlikely(!(flags & ROC_SE_VALID_IV_BUF))) iv_len = 0; encr_offset += iv_len; enc_dlen = RTE_ALIGN_CEIL(encr_data_len, 8) + encr_offset; inputlen = enc_dlen; outputlen = enc_dlen; cpt_inst_w4.s.param1 = encr_data_len; if (unlikely(encr_offset >> 8)) { plt_dp_err("Offset not supported"); plt_dp_err("enc_offset: %d", encr_offset); return -1; } offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset); /* * In cn9k, cn10k since we have a limitation of * IV & Offset control word not part of instruction * and need to be part of Data Buffer, we check if * head room is there and then only do the Direct mode processing */ if (likely((flags & ROC_SE_SINGLE_BUF_INPLACE) && (flags & ROC_SE_SINGLE_BUF_HEADROOM))) { void *dm_vaddr = fc_params->bufs[0].vaddr; /* Use Direct mode */ offset_vaddr = PLT_PTR_SUB(dm_vaddr, ROC_SE_OFF_CTRL_LEN + iv_len); *(uint64_t *)offset_vaddr = offset_ctrl; /* DPTR */ inst->dptr = (uint64_t)offset_vaddr; /* RPTR should just exclude offset control word */ inst->rptr = (uint64_t)dm_vaddr - iv_len; cpt_inst_w4.s.dlen = inputlen + ROC_SE_OFF_CTRL_LEN; if (likely(iv_len)) { void *dst = PLT_PTR_ADD(offset_vaddr, ROC_SE_OFF_CTRL_LEN); const uint64_t *src = fc_params->iv_buf; rte_memcpy(dst, src, 16); } inst->w4.u64 = cpt_inst_w4.u64; } else { if (likely(iv_len)) src = fc_params->iv_buf; inst->w4.u64 = cpt_inst_w4.u64; if (is_sg_ver2) ret = sg2_inst_prep(fc_params, inst, offset_ctrl, src, iv_len, 0, 0, inputlen, outputlen, passthrough_len, flags, 0, decrypt); else ret = sg_inst_prep(fc_params, inst, offset_ctrl, src, iv_len, 0, 0, inputlen, outputlen, passthrough_len, flags, 0, decrypt); if (unlikely(ret)) { plt_dp_err("sg prep failed"); return -1; } } return 0; } static __rte_always_inline int cpt_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *fc_params, struct cpt_inst_s *inst, const bool is_sg_ver2) { uint32_t encr_data_len, auth_data_len, aad_len = 0; uint32_t encr_offset, auth_offset, iv_offset = 0; int32_t inputlen, outputlen, enc_dlen, auth_dlen; uint32_t cipher_type, hash_type; union cpt_inst_w4 cpt_inst_w4; uint32_t passthrough_len = 0; const uint8_t *src = NULL; struct roc_se_ctx *se_ctx; uint64_t offset_ctrl; uint8_t iv_len = 16; void *offset_vaddr; uint8_t op_minor; uint32_t mac_len; int ret; encr_offset = ROC_SE_ENCR_OFFSET(d_offs); auth_offset = ROC_SE_AUTH_OFFSET(d_offs); encr_data_len = ROC_SE_ENCR_DLEN(d_lens); auth_data_len = ROC_SE_AUTH_DLEN(d_lens); if (unlikely(flags & ROC_SE_VALID_AAD_BUF)) { /* We don't support both AAD and auth data separately */ auth_data_len = 0; auth_offset = 0; aad_len = fc_params->aad_buf.size; } se_ctx = fc_params->ctx; cipher_type = se_ctx->enc_cipher; hash_type = se_ctx->hash_type; mac_len = se_ctx->mac_len; cpt_inst_w4.u64 = se_ctx->template_w4.u64; op_minor = cpt_inst_w4.s.opcode_minor; if (unlikely(!(flags & ROC_SE_VALID_IV_BUF))) { iv_len = 0; iv_offset = ROC_SE_ENCR_IV_OFFSET(d_offs); } if (unlikely(flags & ROC_SE_VALID_AAD_BUF)) { /* * When AAD is given, data above encr_offset is pass through * Since AAD is given as separate pointer and not as offset, * this is a special case as we need to fragment input data * into passthrough + encr_data and then insert AAD in between. */ if (hash_type != ROC_SE_GMAC_TYPE) { passthrough_len = encr_offset; auth_offset = passthrough_len + iv_len; encr_offset = passthrough_len + aad_len + iv_len; auth_data_len = aad_len + encr_data_len; } else { passthrough_len = 16 + aad_len; auth_offset = passthrough_len + iv_len; auth_data_len = aad_len; } } else { encr_offset += iv_len; auth_offset += iv_len; } /* Encryption */ cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_FC; cpt_inst_w4.s.opcode_minor |= ROC_SE_FC_MINOR_OP_ENCRYPT; if (hash_type == ROC_SE_GMAC_TYPE) { encr_offset = 0; encr_data_len = 0; } auth_dlen = auth_offset + auth_data_len; enc_dlen = encr_data_len + encr_offset; if (unlikely(encr_data_len & 0xf)) { if ((cipher_type == ROC_SE_DES3_CBC) || (cipher_type == ROC_SE_DES3_ECB)) enc_dlen = RTE_ALIGN_CEIL(encr_data_len, 8) + encr_offset; else if (likely((cipher_type == ROC_SE_AES_CBC) || (cipher_type == ROC_SE_AES_ECB))) enc_dlen = RTE_ALIGN_CEIL(encr_data_len, 8) + encr_offset; } if (unlikely(auth_dlen > enc_dlen)) { inputlen = auth_dlen; outputlen = auth_dlen + mac_len; } else { inputlen = enc_dlen; outputlen = enc_dlen + mac_len; } if (op_minor & ROC_SE_FC_MINOR_OP_HMAC_FIRST) outputlen = enc_dlen; cpt_inst_w4.s.param1 = encr_data_len; cpt_inst_w4.s.param2 = auth_data_len; if (unlikely((encr_offset >> 16) || (iv_offset >> 8) || (auth_offset >> 8))) { plt_dp_err("Offset not supported"); plt_dp_err("enc_offset: %d", encr_offset); plt_dp_err("iv_offset : %d", iv_offset); plt_dp_err("auth_offset: %d", auth_offset); return -1; } offset_ctrl = rte_cpu_to_be_64(((uint64_t)encr_offset << 16) | ((uint64_t)iv_offset << 8) | ((uint64_t)auth_offset)); /* * In cn9k, cn10k since we have a limitation of * IV & Offset control word not part of instruction * and need to be part of Data Buffer, we check if * head room is there and then only do the Direct mode processing */ if (likely((flags & ROC_SE_SINGLE_BUF_INPLACE) && (flags & ROC_SE_SINGLE_BUF_HEADROOM))) { void *dm_vaddr = fc_params->bufs[0].vaddr; /* Use Direct mode */ offset_vaddr = (uint8_t *)dm_vaddr - ROC_SE_OFF_CTRL_LEN - iv_len; *(uint64_t *)offset_vaddr = rte_cpu_to_be_64(((uint64_t)encr_offset << 16) | ((uint64_t)iv_offset << 8) | ((uint64_t)auth_offset)); /* DPTR */ inst->dptr = (uint64_t)offset_vaddr; /* RPTR should just exclude offset control word */ inst->rptr = (uint64_t)dm_vaddr - iv_len; cpt_inst_w4.s.dlen = inputlen + ROC_SE_OFF_CTRL_LEN; if (likely(iv_len)) { uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN); const uint64_t *src = fc_params->iv_buf; dest[0] = src[0]; dest[1] = src[1]; } inst->w4.u64 = cpt_inst_w4.u64; } else { if (likely(iv_len)) src = fc_params->iv_buf; inst->w4.u64 = cpt_inst_w4.u64; if (is_sg_ver2) ret = sg2_inst_prep(fc_params, inst, offset_ctrl, src, iv_len, 0, 0, inputlen, outputlen, passthrough_len, flags, 0, 0); else ret = sg_inst_prep(fc_params, inst, offset_ctrl, src, iv_len, 0, 0, inputlen, outputlen, passthrough_len, flags, 0, 0); if (unlikely(ret)) { plt_dp_err("sg prep failed"); return -1; } } return 0; } static __rte_always_inline int cpt_dec_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *fc_params, struct cpt_inst_s *inst, const bool is_sg_ver2) { uint32_t encr_data_len, auth_data_len, aad_len = 0; uint32_t encr_offset, auth_offset, iv_offset = 0; int32_t inputlen, outputlen, enc_dlen, auth_dlen; union cpt_inst_w4 cpt_inst_w4; uint32_t passthrough_len = 0; int32_t hash_type, mac_len; const uint8_t *src = NULL; struct roc_se_ctx *se_ctx; uint64_t offset_ctrl; uint8_t iv_len = 16; void *offset_vaddr; uint8_t op_minor; int ret; encr_offset = ROC_SE_ENCR_OFFSET(d_offs); auth_offset = ROC_SE_AUTH_OFFSET(d_offs); encr_data_len = ROC_SE_ENCR_DLEN(d_lens); auth_data_len = ROC_SE_AUTH_DLEN(d_lens); if (unlikely(flags & ROC_SE_VALID_AAD_BUF)) { /* We don't support both AAD and auth data separately */ auth_data_len = 0; auth_offset = 0; aad_len = fc_params->aad_buf.size; } se_ctx = fc_params->ctx; hash_type = se_ctx->hash_type; mac_len = se_ctx->mac_len; cpt_inst_w4.u64 = se_ctx->template_w4.u64; op_minor = cpt_inst_w4.s.opcode_minor; if (unlikely(!(flags & ROC_SE_VALID_IV_BUF))) { iv_len = 0; iv_offset = ROC_SE_ENCR_IV_OFFSET(d_offs); } if (unlikely(flags & ROC_SE_VALID_AAD_BUF)) { /* * When AAD is given, data above encr_offset is pass through * Since AAD is given as separate pointer and not as offset, * this is a special case as we need to fragment input data * into passthrough + encr_data and then insert AAD in between. */ if (hash_type != ROC_SE_GMAC_TYPE) { passthrough_len = encr_offset; auth_offset = passthrough_len + iv_len; encr_offset = passthrough_len + aad_len + iv_len; auth_data_len = aad_len + encr_data_len; } else { passthrough_len = 16 + aad_len; auth_offset = passthrough_len + iv_len; auth_data_len = aad_len; } } else { encr_offset += iv_len; auth_offset += iv_len; } /* Decryption */ cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_FC; cpt_inst_w4.s.opcode_minor = ROC_SE_FC_MINOR_OP_DECRYPT; cpt_inst_w4.s.opcode_minor |= (uint64_t)op_minor; if (hash_type == ROC_SE_GMAC_TYPE) { encr_offset = 0; encr_data_len = 0; } enc_dlen = encr_offset + encr_data_len; auth_dlen = auth_offset + auth_data_len; if (auth_dlen > enc_dlen) { inputlen = auth_dlen + mac_len; outputlen = auth_dlen; } else { inputlen = enc_dlen + mac_len; outputlen = enc_dlen; } if (op_minor & ROC_SE_FC_MINOR_OP_HMAC_FIRST) outputlen = inputlen = enc_dlen; cpt_inst_w4.s.param1 = encr_data_len; cpt_inst_w4.s.param2 = auth_data_len; if (unlikely((encr_offset >> 16) || (iv_offset >> 8) || (auth_offset >> 8))) { plt_dp_err("Offset not supported"); plt_dp_err("enc_offset: %d", encr_offset); plt_dp_err("iv_offset : %d", iv_offset); plt_dp_err("auth_offset: %d", auth_offset); return -1; } offset_ctrl = rte_cpu_to_be_64(((uint64_t)encr_offset << 16) | ((uint64_t)iv_offset << 8) | ((uint64_t)auth_offset)); /* * In cn9k, cn10k since we have a limitation of * IV & Offset control word not part of instruction * and need to be part of Data Buffer, we check if * head room is there and then only do the Direct mode processing */ if (likely((flags & ROC_SE_SINGLE_BUF_INPLACE) && (flags & ROC_SE_SINGLE_BUF_HEADROOM))) { void *dm_vaddr = fc_params->bufs[0].vaddr; /* Use Direct mode */ offset_vaddr = (uint8_t *)dm_vaddr - ROC_SE_OFF_CTRL_LEN - iv_len; *(uint64_t *)offset_vaddr = rte_cpu_to_be_64(((uint64_t)encr_offset << 16) | ((uint64_t)iv_offset << 8) | ((uint64_t)auth_offset)); inst->dptr = (uint64_t)offset_vaddr; /* RPTR should just exclude offset control word */ inst->rptr = (uint64_t)dm_vaddr - iv_len; cpt_inst_w4.s.dlen = inputlen + ROC_SE_OFF_CTRL_LEN; if (likely(iv_len)) { uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN); const uint64_t *src = fc_params->iv_buf; dest[0] = src[0]; dest[1] = src[1]; } inst->w4.u64 = cpt_inst_w4.u64; } else { if (likely(iv_len)) { src = fc_params->iv_buf; } inst->w4.u64 = cpt_inst_w4.u64; if (is_sg_ver2) ret = sg2_inst_prep(fc_params, inst, offset_ctrl, src, iv_len, 0, 0, inputlen, outputlen, passthrough_len, flags, 0, 1); else ret = sg_inst_prep(fc_params, inst, offset_ctrl, src, iv_len, 0, 0, inputlen, outputlen, passthrough_len, flags, 0, 1); if (unlikely(ret)) { plt_dp_err("sg prep failed"); return -1; } } return 0; } static __rte_always_inline int cpt_pdcp_chain_alg_prep(uint32_t req_flags, uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *params, struct cpt_inst_s *inst, const bool is_sg_ver2) { uint32_t encr_data_len, auth_data_len, aad_len, passthr_len, pad_len, hdr_len; uint32_t encr_offset, auth_offset, iv_offset = 0; const uint8_t *auth_iv = NULL, *cipher_iv = NULL; uint8_t pdcp_iv_off = params->pdcp_iv_offset; const int iv_len = pdcp_iv_off * 2; uint8_t pdcp_ci_alg, pdcp_auth_alg; union cpt_inst_w4 cpt_inst_w4; struct roc_se_ctx *se_ctx; uint64_t *offset_vaddr; uint64_t offset_ctrl; uint8_t pack_iv = 0; int32_t inputlen; void *dm_vaddr; uint8_t *iv_d; encr_offset = ROC_SE_ENCR_OFFSET(d_offs); auth_offset = ROC_SE_AUTH_OFFSET(d_offs); aad_len = encr_offset - auth_offset; if (unlikely(encr_offset >> 16)) { plt_dp_err("Offset not supported"); plt_dp_err("enc_offset: %d", encr_offset); return -1; } se_ctx = params->ctx; pdcp_ci_alg = se_ctx->pdcp_ci_alg; pdcp_auth_alg = se_ctx->pdcp_auth_alg; encr_data_len = ROC_SE_ENCR_DLEN(d_lens); auth_data_len = ROC_SE_AUTH_DLEN(d_lens); auth_data_len -= aad_len; encr_offset += iv_len; auth_offset = encr_offset - aad_len; passthr_len = RTE_ALIGN_CEIL(auth_offset, 8); if (unlikely((aad_len >> 16) || (passthr_len >> 8))) { plt_dp_err("Length not supported"); plt_dp_err("AAD_len: %d", aad_len); plt_dp_err("Passthrough_len: %d", passthr_len); return -1; } cpt_inst_w4.u64 = se_ctx->template_w4.u64; cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_PDCP_CHAIN; cpt_inst_w4.s.param1 = auth_data_len; cpt_inst_w4.s.param2 = 0; if (likely(params->auth_iv_len)) auth_iv = params->auth_iv_buf; if (likely(params->cipher_iv_len)) cipher_iv = params->iv_buf; pad_len = passthr_len - auth_offset; hdr_len = iv_len + pad_len; if (se_ctx->auth_then_ciph) inputlen = auth_data_len; else inputlen = encr_data_len; inputlen += (encr_offset + pad_len); offset_ctrl = rte_cpu_to_be_64(((uint64_t)(aad_len) << 16) | ((uint64_t)(iv_offset) << 8) | ((uint64_t)(passthr_len))); if (likely(((req_flags & ROC_SE_SINGLE_BUF_INPLACE)) && ((req_flags & ROC_SE_SINGLE_BUF_HEADROOM)))) { dm_vaddr = params->bufs[0].vaddr; /* Use Direct mode */ offset_vaddr = PLT_PTR_SUB(dm_vaddr, ROC_SE_OFF_CTRL_LEN + hdr_len); *offset_vaddr = offset_ctrl; /* DPTR */ inst->dptr = (uint64_t)offset_vaddr; /* RPTR should just exclude offset control word */ inst->rptr = (uint64_t)PLT_PTR_SUB(dm_vaddr, hdr_len); cpt_inst_w4.s.dlen = inputlen + ROC_SE_OFF_CTRL_LEN; iv_d = ((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN); pdcp_iv_copy(iv_d, cipher_iv, pdcp_ci_alg, pack_iv); iv_d = ((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN + pdcp_iv_off); pdcp_iv_copy(iv_d, auth_iv, pdcp_auth_alg, pack_iv); inst->w4.u64 = cpt_inst_w4.u64; return 0; } else { if (is_sg_ver2) return pdcp_chain_sg2_prep(params, se_ctx, inst, cpt_inst_w4, inputlen, hdr_len, offset_ctrl, req_flags, cipher_iv, auth_iv, pack_iv, pdcp_ci_alg, pdcp_auth_alg); else return pdcp_chain_sg1_prep(params, se_ctx, inst, cpt_inst_w4, inputlen, hdr_len, offset_ctrl, req_flags, cipher_iv, auth_iv, pack_iv, pdcp_ci_alg, pdcp_auth_alg); } } static __rte_always_inline int cpt_pdcp_alg_prep(uint32_t req_flags, uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *params, struct cpt_inst_s *inst, const bool is_sg_ver2) { uint32_t encr_data_len, auth_data_len; uint32_t encr_offset, auth_offset; union cpt_inst_w4 cpt_inst_w4; int32_t inputlen, outputlen; struct roc_se_ctx *se_ctx; uint64_t *offset_vaddr; uint8_t pdcp_alg_type; uint32_t mac_len = 0; const uint8_t *iv_s; uint8_t pack_iv = 0; uint64_t offset_ctrl; int flags, iv_len; int ret; se_ctx = params->ctx; flags = se_ctx->zsk_flags; mac_len = se_ctx->mac_len; cpt_inst_w4.u64 = se_ctx->template_w4.u64; cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_PDCP; if (flags == 0x1) { iv_s = params->auth_iv_buf; /* * Microcode expects offsets in bytes * TODO: Rounding off */ auth_data_len = ROC_SE_AUTH_DLEN(d_lens); auth_offset = ROC_SE_AUTH_OFFSET(d_offs); pdcp_alg_type = se_ctx->pdcp_auth_alg; if (pdcp_alg_type != ROC_SE_PDCP_ALG_TYPE_AES_CMAC) { iv_len = params->auth_iv_len; if (iv_len == 25) { iv_len -= 2; pack_iv = 1; } auth_offset = auth_offset / 8; /* consider iv len */ auth_offset += iv_len; inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8); } else { iv_len = 16; /* consider iv len */ auth_offset += iv_len; inputlen = auth_offset + auth_data_len; /* length should be in bits */ auth_data_len *= 8; } outputlen = mac_len; offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset); encr_data_len = 0; encr_offset = 0; } else { iv_s = params->iv_buf; iv_len = params->cipher_iv_len; pdcp_alg_type = se_ctx->pdcp_ci_alg; if (iv_len == 25) { iv_len -= 2; pack_iv = 1; } /* * Microcode expects offsets in bytes * TODO: Rounding off */ encr_data_len = ROC_SE_ENCR_DLEN(d_lens); encr_offset = ROC_SE_ENCR_OFFSET(d_offs); encr_offset = encr_offset / 8; /* consider iv len */ encr_offset += iv_len; inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8); outputlen = inputlen; /* iv offset is 0 */ offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16); auth_data_len = 0; auth_offset = 0; } if (unlikely((encr_offset >> 16) || (auth_offset >> 8))) { plt_dp_err("Offset not supported"); plt_dp_err("enc_offset: %d", encr_offset); plt_dp_err("auth_offset: %d", auth_offset); return -1; } /* * Lengths are expected in bits. */ cpt_inst_w4.s.param1 = encr_data_len; cpt_inst_w4.s.param2 = auth_data_len; /* * In cn9k, cn10k since we have a limitation of * IV & Offset control word not part of instruction * and need to be part of Data Buffer, we check if * head room is there and then only do the Direct mode processing */ if (likely((req_flags & ROC_SE_SINGLE_BUF_INPLACE) && (req_flags & ROC_SE_SINGLE_BUF_HEADROOM))) { void *dm_vaddr = params->bufs[0].vaddr; /* Use Direct mode */ offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr - ROC_SE_OFF_CTRL_LEN - iv_len); /* DPTR */ inst->dptr = (uint64_t)offset_vaddr; /* RPTR should just exclude offset control word */ inst->rptr = (uint64_t)dm_vaddr - iv_len; cpt_inst_w4.s.dlen = inputlen + ROC_SE_OFF_CTRL_LEN; uint8_t *iv_d = ((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN); pdcp_iv_copy(iv_d, iv_s, pdcp_alg_type, pack_iv); *offset_vaddr = offset_ctrl; inst->w4.u64 = cpt_inst_w4.u64; } else { inst->w4.u64 = cpt_inst_w4.u64; if (is_sg_ver2) ret = sg2_inst_prep(params, inst, offset_ctrl, iv_s, iv_len, pack_iv, pdcp_alg_type, inputlen, outputlen, 0, req_flags, 1, 0); else ret = sg_inst_prep(params, inst, offset_ctrl, iv_s, iv_len, pack_iv, pdcp_alg_type, inputlen, outputlen, 0, req_flags, 1, 0); if (unlikely(ret)) { plt_dp_err("sg prep failed"); return -1; } } return 0; } static __rte_always_inline int cpt_kasumi_enc_prep(uint32_t req_flags, uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *params, struct cpt_inst_s *inst, const bool is_sg_ver2) { uint32_t encr_data_len, auth_data_len; int32_t inputlen = 0, outputlen = 0; uint32_t encr_offset, auth_offset; const uint8_t *iv_s, iv_len = 8; union cpt_inst_w4 cpt_inst_w4; struct roc_se_ctx *se_ctx; uint64_t offset_ctrl; uint32_t mac_len = 0; uint8_t dir = 0; int flags; encr_offset = ROC_SE_ENCR_OFFSET(d_offs) / 8; auth_offset = ROC_SE_AUTH_OFFSET(d_offs) / 8; encr_data_len = ROC_SE_ENCR_DLEN(d_lens); auth_data_len = ROC_SE_AUTH_DLEN(d_lens); se_ctx = params->ctx; flags = se_ctx->zsk_flags; mac_len = se_ctx->mac_len; cpt_inst_w4.u64 = se_ctx->template_w4.u64; if (flags == 0x0) { iv_s = params->iv_buf; /* Consider IV len */ encr_offset += iv_len; inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8); outputlen = inputlen; /* iv offset is 0 */ offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16); if (unlikely((encr_offset >> 16))) { plt_dp_err("Offset not supported"); plt_dp_err("enc_offset: %d", encr_offset); return -1; } } else { iv_s = params->auth_iv_buf; dir = iv_s[8] & 0x1; inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8); outputlen = mac_len; /* iv offset is 0 */ offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset); if (unlikely((auth_offset >> 8))) { plt_dp_err("Offset not supported"); plt_dp_err("auth_offset: %d", auth_offset); return -1; } } cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_KASUMI | ROC_DMA_MODE_SG; /* Indicate ECB/CBC, direction, CTX from CPTR, IV from DPTR */ cpt_inst_w4.s.opcode_minor = ((1 << 6) | (se_ctx->k_ecb << 5) | (dir << 4) | (0 << 3) | (flags & 0x7)); cpt_inst_w4.s.param1 = encr_data_len; cpt_inst_w4.s.param2 = auth_data_len; inst->w4.u64 = cpt_inst_w4.u64; if (unlikely(iv_s == NULL)) return -1; if (is_sg_ver2) sg2_inst_prep(params, inst, offset_ctrl, iv_s, iv_len, 0, 0, inputlen, outputlen, 0, req_flags, 0, 0); else sg_inst_prep(params, inst, offset_ctrl, iv_s, iv_len, 0, 0, inputlen, outputlen, 0, req_flags, 0, 0); return 0; } static __rte_always_inline int cpt_kasumi_dec_prep(uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *params, struct cpt_inst_s *inst, const bool is_sg_ver2) { int32_t inputlen = 0, outputlen; struct roc_se_ctx *se_ctx; uint8_t iv_len = 8; uint32_t encr_offset; uint32_t encr_data_len; int flags; uint8_t dir = 0; union cpt_inst_w4 cpt_inst_w4; uint64_t offset_ctrl; encr_offset = ROC_SE_ENCR_OFFSET(d_offs) / 8; encr_data_len = ROC_SE_ENCR_DLEN(d_lens); se_ctx = params->ctx; flags = se_ctx->zsk_flags; cpt_inst_w4.u64 = 0; cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_KASUMI | ROC_DMA_MODE_SG; /* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */ cpt_inst_w4.s.opcode_minor = ((1 << 6) | (se_ctx->k_ecb << 5) | (dir << 4) | (0 << 3) | (flags & 0x7)); /* * Lengths are expected in bits. */ cpt_inst_w4.s.param1 = encr_data_len; /* consider iv len */ encr_offset += iv_len; inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8); outputlen = inputlen; offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16); if (unlikely((encr_offset >> 16))) { plt_dp_err("Offset not supported"); plt_dp_err("enc_offset: %d", encr_offset); return -1; } inst->w4.u64 = cpt_inst_w4.u64; if (unlikely(params->iv_buf == NULL)) return -1; if (is_sg_ver2) sg2_inst_prep(params, inst, offset_ctrl, params->iv_buf, iv_len, 0, 0, inputlen, outputlen, 0, 0, 0, 1); else sg_inst_prep(params, inst, offset_ctrl, params->iv_buf, iv_len, 0, 0, inputlen, outputlen, 0, 0, 0, 1); return 0; } static __rte_always_inline int cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens, struct roc_se_fc_params *fc_params, struct cpt_inst_s *inst, const bool is_sg_ver2) { struct roc_se_ctx *ctx = fc_params->ctx; uint8_t fc_type; int ret = -1; fc_type = ctx->fc_type; if (likely(fc_type == ROC_SE_FC_GEN)) { ret = cpt_enc_hmac_prep(flags, d_offs, d_lens, fc_params, inst, is_sg_ver2); } else if (fc_type == ROC_SE_PDCP) { ret = cpt_pdcp_alg_prep(flags, d_offs, d_lens, fc_params, inst, is_sg_ver2); } else if (fc_type == ROC_SE_KASUMI) { ret = cpt_kasumi_enc_prep(flags, d_offs, d_lens, fc_params, inst, is_sg_ver2); } else if (fc_type == ROC_SE_HASH_HMAC) { if (is_sg_ver2) ret = cpt_digest_gen_sg_ver2_prep(flags, d_lens, fc_params, inst); else ret = cpt_digest_gen_sg_ver1_prep(flags, d_lens, fc_params, inst); } return ret; } static __rte_always_inline int fill_sess_aead(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess) { struct rte_crypto_aead_xform *aead_form; uint8_t aes_gcm = 0, aes_ccm = 0; roc_se_cipher_type enc_type = 0; /* NULL Cipher type */ roc_se_auth_type auth_type = 0; /* NULL Auth type */ uint32_t cipher_key_len = 0; aead_form = &xform->aead; if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT) { sess->cpt_op |= ROC_SE_OP_CIPHER_ENCRYPT; sess->cpt_op |= ROC_SE_OP_AUTH_GENERATE; } else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT) { sess->cpt_op |= ROC_SE_OP_CIPHER_DECRYPT; sess->cpt_op |= ROC_SE_OP_AUTH_VERIFY; } else { plt_dp_err("Unknown aead operation"); return -1; } switch (aead_form->algo) { case RTE_CRYPTO_AEAD_AES_GCM: enc_type = ROC_SE_AES_GCM; cipher_key_len = 16; aes_gcm = 1; break; case RTE_CRYPTO_AEAD_AES_CCM: enc_type = ROC_SE_AES_CCM; cipher_key_len = 16; aes_ccm = 1; break; case RTE_CRYPTO_AEAD_CHACHA20_POLY1305: enc_type = ROC_SE_CHACHA20; auth_type = ROC_SE_POLY1305; cipher_key_len = 32; sess->chacha_poly = 1; break; default: plt_dp_err("Crypto: Undefined cipher algo %u specified", aead_form->algo); return -1; } if (aead_form->key.length < cipher_key_len) { plt_dp_err("Invalid cipher params keylen %u", aead_form->key.length); return -1; } sess->zsk_flag = 0; sess->aes_gcm = aes_gcm; sess->aes_ccm = aes_ccm; sess->mac_len = aead_form->digest_length; sess->iv_offset = aead_form->iv.offset; sess->iv_length = aead_form->iv.length; sess->aad_length = aead_form->aad_length; if (aes_ccm) { if ((sess->iv_length < 11) || (sess->iv_length > 13)) { plt_dp_err("Crypto: Unsupported IV length %u", sess->iv_length); return -1; } } else { switch (sess->iv_length) { case 12: sess->short_iv = 1; case 16: break; default: plt_dp_err("Crypto: Unsupported IV length %u", sess->iv_length); return -1; } } if (unlikely(roc_se_ciph_key_set(&sess->roc_se_ctx, enc_type, aead_form->key.data, aead_form->key.length))) return -1; if (unlikely(roc_se_auth_key_set(&sess->roc_se_ctx, auth_type, NULL, 0, aead_form->digest_length))) return -1; if (enc_type == ROC_SE_CHACHA20) sess->roc_se_ctx.template_w4.s.opcode_minor |= BIT(5); return 0; } static __rte_always_inline int fill_sm_sess_cipher(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess) { struct roc_se_sm_context *sm_ctx = &sess->roc_se_ctx.se_ctx.sm_ctx; struct rte_crypto_cipher_xform *c_form; roc_sm_cipher_type enc_type = 0; c_form = &xform->cipher; if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { sess->cpt_op |= ROC_SE_OP_CIPHER_ENCRYPT; sess->roc_se_ctx.template_w4.s.opcode_minor = ROC_SE_FC_MINOR_OP_ENCRYPT; } else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT) { sess->cpt_op |= ROC_SE_OP_CIPHER_DECRYPT; sess->roc_se_ctx.template_w4.s.opcode_minor = ROC_SE_FC_MINOR_OP_DECRYPT; } else { plt_dp_err("Unknown cipher operation"); return -1; } switch (c_form->algo) { case RTE_CRYPTO_CIPHER_SM4_CBC: enc_type = ROC_SM4_CBC; break; case RTE_CRYPTO_CIPHER_SM4_ECB: enc_type = ROC_SM4_ECB; break; case RTE_CRYPTO_CIPHER_SM4_CTR: enc_type = ROC_SM4_CTR; break; case RTE_CRYPTO_CIPHER_SM4_CFB: enc_type = ROC_SM4_CFB; break; case RTE_CRYPTO_CIPHER_SM4_OFB: enc_type = ROC_SM4_OFB; break; default: plt_dp_err("Crypto: Undefined cipher algo %u specified", c_form->algo); return -1; } sess->iv_offset = c_form->iv.offset; sess->iv_length = c_form->iv.length; if (c_form->key.length != ROC_SE_SM4_KEY_LEN) { plt_dp_err("Invalid cipher params keylen %u", c_form->key.length); return -1; } sess->zsk_flag = 0; sess->zs_cipher = 0; sess->aes_gcm = 0; sess->aes_ctr = 0; sess->is_null = 0; sess->is_sm4 = 1; sess->roc_se_ctx.fc_type = ROC_SE_SM; sess->roc_se_ctx.template_w4.s.opcode_major = ROC_SE_MAJOR_OP_SM; memcpy(sm_ctx->encr_key, c_form->key.data, ROC_SE_SM4_KEY_LEN); sm_ctx->enc_cipher = enc_type; return 0; } static __rte_always_inline int fill_sess_cipher(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess) { uint8_t zsk_flag = 0, zs_cipher = 0, aes_ctr = 0, is_null = 0; struct rte_crypto_cipher_xform *c_form; roc_se_cipher_type enc_type = 0; /* NULL Cipher type */ uint32_t cipher_key_len = 0; c_form = &xform->cipher; if ((c_form->algo == RTE_CRYPTO_CIPHER_SM4_CBC) || (c_form->algo == RTE_CRYPTO_CIPHER_SM4_ECB) || (c_form->algo == RTE_CRYPTO_CIPHER_SM4_CTR) || (c_form->algo == RTE_CRYPTO_CIPHER_SM4_CFB) || (c_form->algo == RTE_CRYPTO_CIPHER_SM4_OFB)) return fill_sm_sess_cipher(xform, sess); if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) sess->cpt_op |= ROC_SE_OP_CIPHER_ENCRYPT; else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT) { sess->cpt_op |= ROC_SE_OP_CIPHER_DECRYPT; if (xform->next != NULL && xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) { /* Perform decryption followed by auth verify */ sess->roc_se_ctx.template_w4.s.opcode_minor = ROC_SE_FC_MINOR_OP_HMAC_FIRST; } } else { plt_dp_err("Unknown cipher operation"); return -1; } switch (c_form->algo) { case RTE_CRYPTO_CIPHER_AES_CBC: enc_type = ROC_SE_AES_CBC; cipher_key_len = 16; break; case RTE_CRYPTO_CIPHER_3DES_CBC: enc_type = ROC_SE_DES3_CBC; cipher_key_len = 24; break; case RTE_CRYPTO_CIPHER_DES_CBC: /* DES is implemented using 3DES in hardware */ enc_type = ROC_SE_DES3_CBC; cipher_key_len = 8; break; case RTE_CRYPTO_CIPHER_AES_CTR: if (sess->aes_ctr_eea2) { enc_type = ROC_SE_AES_CTR_EEA2; } else { enc_type = ROC_SE_AES_CTR; aes_ctr = 1; } cipher_key_len = 16; break; case RTE_CRYPTO_CIPHER_NULL: enc_type = 0; is_null = 1; break; case RTE_CRYPTO_CIPHER_KASUMI_F8: if (sess->chained_op) return -ENOTSUP; if (c_form->iv.length != 8) return -EINVAL; enc_type = ROC_SE_KASUMI_F8_ECB; cipher_key_len = 16; zsk_flag = ROC_SE_K_F8; zs_cipher = ROC_SE_K_F8; break; case RTE_CRYPTO_CIPHER_SNOW3G_UEA2: enc_type = ROC_SE_SNOW3G_UEA2; cipher_key_len = 16; zsk_flag = ROC_SE_ZS_EA; zs_cipher = ROC_SE_ZS_EA; break; case RTE_CRYPTO_CIPHER_ZUC_EEA3: enc_type = ROC_SE_ZUC_EEA3; cipher_key_len = c_form->key.length; zsk_flag = ROC_SE_ZS_EA; zs_cipher = ROC_SE_ZS_EA; break; case RTE_CRYPTO_CIPHER_AES_XTS: enc_type = ROC_SE_AES_XTS; cipher_key_len = 16; break; case RTE_CRYPTO_CIPHER_3DES_ECB: enc_type = ROC_SE_DES3_ECB; cipher_key_len = 24; break; case RTE_CRYPTO_CIPHER_AES_ECB: enc_type = ROC_SE_AES_ECB; cipher_key_len = 16; break; case RTE_CRYPTO_CIPHER_AES_DOCSISBPI: /* Set DOCSIS flag */ sess->roc_se_ctx.template_w4.s.opcode_minor |= ROC_SE_FC_MINOR_OP_DOCSIS; enc_type = ROC_SE_AES_DOCSISBPI; cipher_key_len = 16; break; case RTE_CRYPTO_CIPHER_DES_DOCSISBPI: /* Set DOCSIS flag */ sess->roc_se_ctx.template_w4.s.opcode_minor |= ROC_SE_FC_MINOR_OP_DOCSIS; enc_type = ROC_SE_DES_DOCSISBPI; cipher_key_len = 8; break; case RTE_CRYPTO_CIPHER_3DES_CTR: case RTE_CRYPTO_CIPHER_AES_F8: case RTE_CRYPTO_CIPHER_ARC4: plt_dp_err("Crypto: Unsupported cipher algo %u", c_form->algo); return -1; default: plt_dp_err("Crypto: Undefined cipher algo %u specified", c_form->algo); return -1; } if (c_form->key.length < cipher_key_len) { plt_dp_err("Invalid cipher params keylen %u", c_form->key.length); return -1; } if (zsk_flag && sess->roc_se_ctx.ciph_then_auth) { struct rte_crypto_auth_xform *a_form; a_form = &xform->next->auth; if (c_form->op != RTE_CRYPTO_CIPHER_OP_DECRYPT && a_form->op != RTE_CRYPTO_AUTH_OP_VERIFY) { plt_dp_err("Crypto: PDCP cipher then auth must use" " options: decrypt and verify"); return -EINVAL; } } sess->cipher_only = 1; sess->zsk_flag = zsk_flag; sess->zs_cipher = zs_cipher; sess->aes_gcm = 0; sess->aes_ccm = 0; sess->aes_ctr = aes_ctr; sess->iv_offset = c_form->iv.offset; sess->iv_length = c_form->iv.length; sess->is_null = is_null; if (aes_ctr) switch (sess->iv_length) { case 12: sess->short_iv = 1; case 16: break; default: plt_dp_err("Crypto: Unsupported IV length %u", sess->iv_length); return -1; } if (unlikely(roc_se_ciph_key_set(&sess->roc_se_ctx, enc_type, c_form->key.data, c_form->key.length))) return -1; if ((enc_type >= ROC_SE_ZUC_EEA3) && (enc_type <= ROC_SE_AES_CTR_EEA2)) roc_se_ctx_swap(&sess->roc_se_ctx); return 0; } static __rte_always_inline int fill_sess_auth(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess) { uint8_t zsk_flag = 0, zs_auth = 0, aes_gcm = 0, is_null = 0, is_sha3 = 0; struct rte_crypto_auth_xform *a_form; roc_se_auth_type auth_type = 0; /* NULL Auth type */ uint8_t is_sm3 = 0; if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) return fill_sess_gmac(xform, sess); if (xform->next != NULL && xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER && xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { /* Perform auth followed by encryption */ sess->roc_se_ctx.template_w4.s.opcode_minor = ROC_SE_FC_MINOR_OP_HMAC_FIRST; } a_form = &xform->auth; if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY) sess->cpt_op |= ROC_SE_OP_AUTH_VERIFY; else if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE) sess->cpt_op |= ROC_SE_OP_AUTH_GENERATE; else { plt_dp_err("Unknown auth operation"); return -1; } switch (a_form->algo) { case RTE_CRYPTO_AUTH_SHA1_HMAC: /* Fall through */ case RTE_CRYPTO_AUTH_SHA1: auth_type = ROC_SE_SHA1_TYPE; break; case RTE_CRYPTO_AUTH_SHA256_HMAC: case RTE_CRYPTO_AUTH_SHA256: auth_type = ROC_SE_SHA2_SHA256; break; case RTE_CRYPTO_AUTH_SHA512_HMAC: case RTE_CRYPTO_AUTH_SHA512: auth_type = ROC_SE_SHA2_SHA512; break; case RTE_CRYPTO_AUTH_AES_GMAC: auth_type = ROC_SE_GMAC_TYPE; aes_gcm = 1; break; case RTE_CRYPTO_AUTH_SHA224_HMAC: case RTE_CRYPTO_AUTH_SHA224: auth_type = ROC_SE_SHA2_SHA224; break; case RTE_CRYPTO_AUTH_SHA384_HMAC: case RTE_CRYPTO_AUTH_SHA384: auth_type = ROC_SE_SHA2_SHA384; break; case RTE_CRYPTO_AUTH_SHA3_224_HMAC: case RTE_CRYPTO_AUTH_SHA3_224: is_sha3 = 1; auth_type = ROC_SE_SHA3_SHA224; break; case RTE_CRYPTO_AUTH_SHA3_256_HMAC: case RTE_CRYPTO_AUTH_SHA3_256: is_sha3 = 1; auth_type = ROC_SE_SHA3_SHA256; break; case RTE_CRYPTO_AUTH_SHA3_384_HMAC: case RTE_CRYPTO_AUTH_SHA3_384: is_sha3 = 1; auth_type = ROC_SE_SHA3_SHA384; break; case RTE_CRYPTO_AUTH_SHA3_512_HMAC: case RTE_CRYPTO_AUTH_SHA3_512: is_sha3 = 1; auth_type = ROC_SE_SHA3_SHA512; break; case RTE_CRYPTO_AUTH_SHAKE_128: is_sha3 = 1; auth_type = ROC_SE_SHA3_SHAKE128; break; case RTE_CRYPTO_AUTH_SHAKE_256: is_sha3 = 1; auth_type = ROC_SE_SHA3_SHAKE256; break; case RTE_CRYPTO_AUTH_MD5_HMAC: case RTE_CRYPTO_AUTH_MD5: auth_type = ROC_SE_MD5_TYPE; break; case RTE_CRYPTO_AUTH_KASUMI_F9: if (sess->chained_op) return -ENOTSUP; auth_type = ROC_SE_KASUMI_F9_ECB; /* * Indicate that direction needs to be taken out * from end of src */ zsk_flag = ROC_SE_K_F9; zs_auth = ROC_SE_K_F9; break; case RTE_CRYPTO_AUTH_SNOW3G_UIA2: auth_type = ROC_SE_SNOW3G_UIA2; zsk_flag = ROC_SE_ZS_IA; zs_auth = ROC_SE_ZS_IA; break; case RTE_CRYPTO_AUTH_ZUC_EIA3: auth_type = ROC_SE_ZUC_EIA3; zsk_flag = ROC_SE_ZS_IA; zs_auth = ROC_SE_ZS_IA; break; case RTE_CRYPTO_AUTH_NULL: auth_type = 0; is_null = 1; break; case RTE_CRYPTO_AUTH_AES_CMAC: auth_type = ROC_SE_AES_CMAC_EIA2; zsk_flag = ROC_SE_ZS_IA; break; case RTE_CRYPTO_AUTH_SM3: auth_type = ROC_SE_SM3; is_sm3 = 1; break; case RTE_CRYPTO_AUTH_AES_XCBC_MAC: case RTE_CRYPTO_AUTH_AES_CBC_MAC: plt_dp_err("Crypto: Unsupported hash algo %u", a_form->algo); return -1; default: plt_dp_err("Crypto: Undefined Hash algo %u specified", a_form->algo); return -1; } if (zsk_flag && sess->roc_se_ctx.auth_then_ciph) { struct rte_crypto_cipher_xform *c_form; if (xform->next != NULL) { c_form = &xform->next->cipher; if ((c_form != NULL) && (c_form->op != RTE_CRYPTO_CIPHER_OP_ENCRYPT) && a_form->op != RTE_CRYPTO_AUTH_OP_GENERATE) { plt_dp_err("Crypto: PDCP auth then cipher must use" " options: encrypt and generate"); return -EINVAL; } } } sess->zsk_flag = zsk_flag; sess->zs_auth = zs_auth; sess->aes_gcm = aes_gcm; sess->mac_len = a_form->digest_length; sess->is_null = is_null; sess->is_sha3 = is_sha3; sess->is_sm3 = is_sm3; if (zsk_flag) { sess->auth_iv_offset = a_form->iv.offset; sess->auth_iv_length = a_form->iv.length; } if (unlikely(roc_se_auth_key_set(&sess->roc_se_ctx, auth_type, a_form->key.data, a_form->key.length, a_form->digest_length))) return -1; if ((auth_type >= ROC_SE_ZUC_EIA3) && (auth_type <= ROC_SE_AES_CMAC_EIA2)) roc_se_ctx_swap(&sess->roc_se_ctx); return 0; } static __rte_always_inline int fill_sess_gmac(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess) { struct rte_crypto_auth_xform *a_form; roc_se_cipher_type enc_type = 0; /* NULL Cipher type */ roc_se_auth_type auth_type = 0; /* NULL Auth type */ a_form = &xform->auth; if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE) sess->cpt_op |= ROC_SE_OP_ENCODE; else if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY) sess->cpt_op |= ROC_SE_OP_DECODE; else { plt_dp_err("Unknown auth operation"); return -1; } switch (a_form->algo) { case RTE_CRYPTO_AUTH_AES_GMAC: enc_type = ROC_SE_AES_GCM; auth_type = ROC_SE_GMAC_TYPE; break; default: plt_dp_err("Crypto: Undefined cipher algo %u specified", a_form->algo); return -1; } sess->zsk_flag = 0; sess->aes_gcm = 0; sess->is_gmac = 1; sess->iv_offset = a_form->iv.offset; sess->iv_length = a_form->iv.length; sess->mac_len = a_form->digest_length; switch (sess->iv_length) { case 12: sess->short_iv = 1; case 16: break; default: plt_dp_err("Crypto: Unsupported IV length %u", sess->iv_length); return -1; } if (unlikely(roc_se_ciph_key_set(&sess->roc_se_ctx, enc_type, a_form->key.data, a_form->key.length))) return -1; if (unlikely(roc_se_auth_key_set(&sess->roc_se_ctx, auth_type, NULL, 0, a_form->digest_length))) return -1; return 0; } static __rte_always_inline uint32_t prepare_iov_from_pkt(struct rte_mbuf *pkt, struct roc_se_iov_ptr *iovec, uint32_t start_offset) { uint16_t index = 0; void *seg_data = NULL; int32_t seg_size = 0; if (!pkt) { iovec->buf_cnt = 0; return 0; } if (!start_offset) { seg_data = rte_pktmbuf_mtod(pkt, void *); seg_size = pkt->data_len; } else { while (start_offset >= pkt->data_len) { start_offset -= pkt->data_len; pkt = pkt->next; } seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset); seg_size = pkt->data_len - start_offset; if (!seg_size) return 1; } /* first seg */ iovec->bufs[index].vaddr = seg_data; iovec->bufs[index].size = seg_size; index++; pkt = pkt->next; while (unlikely(pkt != NULL)) { seg_data = rte_pktmbuf_mtod(pkt, void *); seg_size = pkt->data_len; if (!seg_size) break; iovec->bufs[index].vaddr = seg_data; iovec->bufs[index].size = seg_size; index++; pkt = pkt->next; } iovec->buf_cnt = index; return 0; } static __rte_always_inline void prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt, struct roc_se_fc_params *param, uint32_t *flags) { uint16_t index = 0; void *seg_data = NULL; uint32_t seg_size = 0; struct roc_se_iov_ptr *iovec; seg_data = rte_pktmbuf_mtod(pkt, void *); seg_size = pkt->data_len; /* first seg */ if (likely(!pkt->next)) { uint32_t headroom; *flags |= ROC_SE_SINGLE_BUF_INPLACE; headroom = rte_pktmbuf_headroom(pkt); if (likely(headroom >= CNXK_CPT_MIN_HEADROOM_REQ)) *flags |= ROC_SE_SINGLE_BUF_HEADROOM; param->bufs[0].vaddr = seg_data; param->bufs[0].size = seg_size; return; } iovec = param->src_iov; iovec->bufs[index].vaddr = seg_data; iovec->bufs[index].size = seg_size; index++; pkt = pkt->next; while (unlikely(pkt != NULL)) { seg_data = rte_pktmbuf_mtod(pkt, void *); seg_size = pkt->data_len; if (!seg_size) break; iovec->bufs[index].vaddr = seg_data; iovec->bufs[index].size = seg_size; index++; pkt = pkt->next; } iovec->buf_cnt = index; return; } static __rte_always_inline int fill_sm_params(struct rte_crypto_op *cop, struct cnxk_se_sess *sess, struct cpt_qp_meta_info *m_info, struct cpt_inflight_req *infl_req, struct cpt_inst_s *inst, const bool is_sg_ver2) { struct rte_crypto_sym_op *sym_op = cop->sym; struct roc_se_fc_params fc_params; struct rte_mbuf *m_src, *m_dst; uint8_t cpt_op = sess->cpt_op; uint64_t d_offs, d_lens; char src[SRC_IOV_SIZE]; char dst[SRC_IOV_SIZE]; void *mdata = NULL; uint32_t flags = 0; int ret; uint32_t ci_data_length = sym_op->cipher.data.length; uint32_t ci_data_offset = sym_op->cipher.data.offset; fc_params.cipher_iv_len = sess->iv_length; fc_params.auth_iv_len = 0; fc_params.auth_iv_buf = NULL; fc_params.iv_buf = NULL; fc_params.mac_buf.size = 0; fc_params.mac_buf.vaddr = 0; if (likely(sess->iv_length)) { flags |= ROC_SE_VALID_IV_BUF; fc_params.iv_buf = rte_crypto_op_ctod_offset(cop, uint8_t *, sess->iv_offset); } m_src = sym_op->m_src; m_dst = sym_op->m_dst; d_offs = ci_data_offset; d_offs = (d_offs << 16); d_lens = ci_data_length; d_lens = (d_lens << 32); fc_params.ctx = &sess->roc_se_ctx; if (m_dst == NULL) { fc_params.dst_iov = fc_params.src_iov = (void *)src; prepare_iov_from_pkt_inplace(m_src, &fc_params, &flags); } else { /* Out of place processing */ fc_params.src_iov = (void *)src; fc_params.dst_iov = (void *)dst; /* Store SG I/O in the api for reuse */ if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) { plt_dp_err("Prepare src iov failed"); ret = -EINVAL; goto err_exit; } if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) { plt_dp_err("Prepare dst iov failed for m_dst %p", m_dst); ret = -EINVAL; goto err_exit; } } fc_params.meta_buf.vaddr = NULL; if (unlikely(!((flags & ROC_SE_SINGLE_BUF_INPLACE) && (flags & ROC_SE_SINGLE_BUF_HEADROOM)))) { mdata = alloc_op_meta(&fc_params.meta_buf, m_info->mlen, m_info->pool, infl_req); if (mdata == NULL) { plt_dp_err("Error allocating meta buffer for request"); return -ENOMEM; } } /* Finally prepare the instruction */ ret = cpt_sm_prep(flags, d_offs, d_lens, &fc_params, inst, is_sg_ver2, !(cpt_op & ROC_SE_OP_ENCODE)); if (unlikely(ret)) { plt_dp_err("Preparing request failed due to bad input arg"); goto free_mdata_and_exit; } return 0; free_mdata_and_exit: if (infl_req->op_flags & CPT_OP_FLAGS_METABUF) rte_mempool_put(m_info->pool, infl_req->mdata); err_exit: return ret; } static __rte_always_inline int fill_fc_params(struct rte_crypto_op *cop, struct cnxk_se_sess *sess, struct cpt_qp_meta_info *m_info, struct cpt_inflight_req *infl_req, struct cpt_inst_s *inst, const bool is_kasumi, const bool is_aead, const bool is_sg_ver2) { struct rte_crypto_sym_op *sym_op = cop->sym; void *mdata = NULL; uint32_t mc_hash_off; uint32_t flags = 0; uint64_t d_offs, d_lens; struct rte_mbuf *m_src, *m_dst; uint8_t cpt_op = sess->cpt_op; #ifdef CPT_ALWAYS_USE_SG_MODE uint8_t inplace = 0; #else uint8_t inplace = 1; #endif struct roc_se_fc_params fc_params; char src[SRC_IOV_SIZE]; char dst[SRC_IOV_SIZE]; uint8_t ccm_iv_buf[16]; uint32_t iv_buf[4]; int ret; fc_params.cipher_iv_len = sess->iv_length; fc_params.auth_iv_len = 0; fc_params.auth_iv_buf = NULL; fc_params.iv_buf = NULL; fc_params.mac_buf.size = 0; fc_params.mac_buf.vaddr = 0; if (likely(is_kasumi || sess->iv_length)) { flags |= ROC_SE_VALID_IV_BUF; fc_params.iv_buf = rte_crypto_op_ctod_offset(cop, uint8_t *, sess->iv_offset); if (sess->short_iv) { memcpy((uint8_t *)iv_buf, rte_crypto_op_ctod_offset(cop, uint8_t *, sess->iv_offset), 12); iv_buf[3] = rte_cpu_to_be_32(0x1); fc_params.iv_buf = iv_buf; } if (sess->aes_ccm) { memcpy((uint8_t *)ccm_iv_buf, rte_crypto_op_ctod_offset(cop, uint8_t *, sess->iv_offset), sess->iv_length + 1); ccm_iv_buf[0] = 14 - sess->iv_length; fc_params.iv_buf = ccm_iv_buf; } } /* Kasumi would need SG mode */ if (is_kasumi) inplace = 0; m_src = sym_op->m_src; m_dst = sym_op->m_dst; if (is_aead) { struct rte_mbuf *m; uint8_t *aad_data; uint16_t aad_len; d_offs = sym_op->aead.data.offset; d_lens = sym_op->aead.data.length; mc_hash_off = sym_op->aead.data.offset + sym_op->aead.data.length; aad_data = sym_op->aead.aad.data; aad_len = sess->aad_length; if (likely((aad_len == 0) || ((aad_data + aad_len) == rte_pktmbuf_mtod_offset(m_src, uint8_t *, sym_op->aead.data.offset)))) { d_offs = (d_offs - aad_len) | (d_offs << 16); d_lens = (d_lens + aad_len) | (d_lens << 32); } else { /* For AES CCM, AAD is written 18B after aad.data as per API */ if (sess->aes_ccm) fc_params.aad_buf.vaddr = PLT_PTR_ADD(sym_op->aead.aad.data, 18); else fc_params.aad_buf.vaddr = sym_op->aead.aad.data; fc_params.aad_buf.size = aad_len; flags |= ROC_SE_VALID_AAD_BUF; inplace = 0; d_offs = d_offs << 16; d_lens = d_lens << 32; } m = cpt_m_dst_get(cpt_op, m_src, m_dst); /* Digest immediately following data is best case */ if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) + mc_hash_off != (uint8_t *)sym_op->aead.digest.data)) { flags |= ROC_SE_VALID_MAC_BUF; fc_params.mac_buf.size = sess->mac_len; fc_params.mac_buf.vaddr = sym_op->aead.digest.data; inplace = 0; } } else { uint32_t ci_data_length = sym_op->cipher.data.length; uint32_t ci_data_offset = sym_op->cipher.data.offset; uint32_t a_data_length = sym_op->auth.data.length; uint32_t a_data_offset = sym_op->auth.data.offset; struct roc_se_ctx *ctx = &sess->roc_se_ctx; const uint8_t op_minor = ctx->template_w4.s.opcode_minor; d_offs = ci_data_offset; d_offs = (d_offs << 16) | a_data_offset; d_lens = ci_data_length; d_lens = (d_lens << 32) | a_data_length; if (likely(sess->mac_len)) { struct rte_mbuf *m = cpt_m_dst_get(cpt_op, m_src, m_dst); if (sess->auth_first) mc_hash_off = a_data_offset + a_data_length; else mc_hash_off = ci_data_offset + ci_data_length; if (mc_hash_off < (a_data_offset + a_data_length)) mc_hash_off = (a_data_offset + a_data_length); /* hmac immediately following data is best case */ if (!(op_minor & ROC_SE_FC_MINOR_OP_HMAC_FIRST) && (unlikely(rte_pktmbuf_mtod(m, uint8_t *) + mc_hash_off != (uint8_t *)sym_op->auth.digest.data))) { flags |= ROC_SE_VALID_MAC_BUF; fc_params.mac_buf.size = sess->mac_len; fc_params.mac_buf.vaddr = sym_op->auth.digest.data; inplace = 0; } } } fc_params.ctx = &sess->roc_se_ctx; if (!(sess->auth_first) && unlikely(sess->is_null || sess->cpt_op == ROC_SE_OP_DECODE)) inplace = 0; if (likely(!m_dst && inplace)) { /* Case of single buffer without AAD buf or * separate mac buf in place and * not air crypto */ fc_params.dst_iov = fc_params.src_iov = (void *)src; prepare_iov_from_pkt_inplace(m_src, &fc_params, &flags); } else { /* Out of place processing */ fc_params.src_iov = (void *)src; fc_params.dst_iov = (void *)dst; /* Store SG I/O in the api for reuse */ if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) { plt_dp_err("Prepare src iov failed"); ret = -EINVAL; goto err_exit; } if (unlikely(m_dst != NULL)) { if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) { plt_dp_err("Prepare dst iov failed for " "m_dst %p", m_dst); ret = -EINVAL; goto err_exit; } } else { fc_params.dst_iov = (void *)src; } } fc_params.meta_buf.vaddr = NULL; if (unlikely(is_kasumi || !((flags & ROC_SE_SINGLE_BUF_INPLACE) && (flags & ROC_SE_SINGLE_BUF_HEADROOM)))) { mdata = alloc_op_meta(&fc_params.meta_buf, m_info->mlen, m_info->pool, infl_req); if (mdata == NULL) { plt_dp_err("Error allocating meta buffer for request"); return -ENOMEM; } } /* Finally prepare the instruction */ if (is_kasumi) { if (cpt_op & ROC_SE_OP_ENCODE) ret = cpt_kasumi_enc_prep(flags, d_offs, d_lens, &fc_params, inst, is_sg_ver2); else ret = cpt_kasumi_dec_prep(d_offs, d_lens, &fc_params, inst, is_sg_ver2); } else { if (cpt_op & ROC_SE_OP_ENCODE) ret = cpt_enc_hmac_prep(flags, d_offs, d_lens, &fc_params, inst, is_sg_ver2); else ret = cpt_dec_hmac_prep(flags, d_offs, d_lens, &fc_params, inst, is_sg_ver2); } if (unlikely(ret)) { plt_dp_err("Preparing request failed due to bad input arg"); goto free_mdata_and_exit; } return 0; free_mdata_and_exit: if (infl_req->op_flags & CPT_OP_FLAGS_METABUF) rte_mempool_put(m_info->pool, infl_req->mdata); err_exit: return ret; } static inline int fill_passthrough_params(struct rte_crypto_op *cop, struct cpt_inst_s *inst) { struct rte_crypto_sym_op *sym_op = cop->sym; struct rte_mbuf *m_src, *m_dst; const union cpt_inst_w4 w4 = { .s.opcode_major = ROC_SE_MAJOR_OP_MISC, .s.opcode_minor = ROC_SE_MISC_MINOR_OP_PASSTHROUGH, .s.param1 = 1, .s.param2 = 1, .s.dlen = 0, }; m_src = sym_op->m_src; m_dst = sym_op->m_dst; if (unlikely(m_dst != NULL && m_dst != m_src)) { void *src = rte_pktmbuf_mtod_offset(m_src, void *, cop->sym->cipher.data.offset); void *dst = rte_pktmbuf_mtod(m_dst, void *); int data_len = cop->sym->cipher.data.length; rte_memcpy(dst, src, data_len); } inst->w0.u64 = 0; inst->w5.u64 = 0; inst->w6.u64 = 0; inst->w4.u64 = w4.u64; return 0; } static __rte_always_inline int fill_pdcp_params(struct rte_crypto_op *cop, struct cnxk_se_sess *sess, struct cpt_qp_meta_info *m_info, struct cpt_inflight_req *infl_req, struct cpt_inst_s *inst, const bool is_sg_ver2) { struct rte_crypto_sym_op *sym_op = cop->sym; struct roc_se_fc_params fc_params; uint32_t c_data_len, c_data_off; struct rte_mbuf *m_src, *m_dst; uint64_t d_offs, d_lens; char src[SRC_IOV_SIZE]; char dst[SRC_IOV_SIZE]; void *mdata = NULL; uint32_t flags = 0; int ret; /* Cipher only */ fc_params.cipher_iv_len = sess->iv_length; fc_params.auth_iv_len = 0; fc_params.iv_buf = NULL; fc_params.auth_iv_buf = NULL; fc_params.pdcp_iv_offset = sess->roc_se_ctx.pdcp_iv_offset; if (likely(sess->iv_length)) fc_params.iv_buf = rte_crypto_op_ctod_offset(cop, uint8_t *, sess->iv_offset); m_src = sym_op->m_src; m_dst = sym_op->m_dst; c_data_len = sym_op->cipher.data.length; c_data_off = sym_op->cipher.data.offset; d_offs = (uint64_t)c_data_off << 16; d_lens = (uint64_t)c_data_len << 32; fc_params.ctx = &sess->roc_se_ctx; if (likely(m_dst == NULL || m_src == m_dst)) { fc_params.dst_iov = fc_params.src_iov = (void *)src; prepare_iov_from_pkt_inplace(m_src, &fc_params, &flags); } else { /* Out of place processing */ fc_params.src_iov = (void *)src; fc_params.dst_iov = (void *)dst; /* Store SG I/O in the api for reuse */ if (unlikely(prepare_iov_from_pkt(m_src, fc_params.src_iov, 0))) { plt_dp_err("Prepare src iov failed"); ret = -EINVAL; goto err_exit; } if (unlikely(prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0))) { plt_dp_err("Prepare dst iov failed for m_dst %p", m_dst); ret = -EINVAL; goto err_exit; } } fc_params.meta_buf.vaddr = NULL; if (unlikely(!((flags & ROC_SE_SINGLE_BUF_INPLACE) && (flags & ROC_SE_SINGLE_BUF_HEADROOM)))) { mdata = alloc_op_meta(&fc_params.meta_buf, m_info->mlen, m_info->pool, infl_req); if (mdata == NULL) { plt_dp_err("Could not allocate meta buffer"); ret = -ENOMEM; goto err_exit; } } ret = cpt_pdcp_alg_prep(flags, d_offs, d_lens, &fc_params, inst, is_sg_ver2); if (unlikely(ret)) { plt_dp_err("Could not prepare instruction"); goto free_mdata_and_exit; } return 0; free_mdata_and_exit: if (infl_req->op_flags & CPT_OP_FLAGS_METABUF) rte_mempool_put(m_info->pool, infl_req->mdata); err_exit: return ret; } static __rte_always_inline int fill_pdcp_chain_params(struct rte_crypto_op *cop, struct cnxk_se_sess *sess, struct cpt_qp_meta_info *m_info, struct cpt_inflight_req *infl_req, struct cpt_inst_s *inst, const bool is_sg_ver2) { uint32_t ci_data_length, ci_data_offset, a_data_length, a_data_offset; struct rte_crypto_sym_op *sym_op = cop->sym; struct roc_se_fc_params fc_params; struct rte_mbuf *m_src, *m_dst; uint8_t cpt_op = sess->cpt_op; uint64_t d_offs, d_lens; char src[SRC_IOV_SIZE]; char dst[SRC_IOV_SIZE]; bool inplace = true; uint32_t flags = 0; void *mdata; int ret; fc_params.cipher_iv_len = sess->iv_length; fc_params.auth_iv_len = sess->auth_iv_length; fc_params.iv_buf = NULL; fc_params.auth_iv_buf = NULL; fc_params.pdcp_iv_offset = sess->roc_se_ctx.pdcp_iv_offset; m_src = sym_op->m_src; m_dst = sym_op->m_dst; if (likely(sess->iv_length)) fc_params.iv_buf = rte_crypto_op_ctod_offset(cop, uint8_t *, sess->iv_offset); ci_data_length = sym_op->cipher.data.length; ci_data_offset = sym_op->cipher.data.offset; a_data_length = sym_op->auth.data.length; a_data_offset = sym_op->auth.data.offset; /* * For ZUC & SNOW, length & offset is provided in bits. Convert to * bytes. */ if (sess->zs_cipher) { ci_data_length /= 8; ci_data_offset /= 8; } if (sess->zs_auth) { a_data_length /= 8; a_data_offset /= 8; /* * ZUC & SNOW would have valid iv_buf. AES-CMAC doesn't require * IV from application. */ fc_params.auth_iv_buf = rte_crypto_op_ctod_offset(cop, uint8_t *, sess->auth_iv_offset); #ifdef CNXK_CRYPTODEV_DEBUG if (sess->auth_iv_length == 0) plt_err("Invalid auth IV length"); #endif } d_offs = ci_data_offset; d_offs = (d_offs << 16) | a_data_offset; d_lens = ci_data_length; d_lens = (d_lens << 32) | a_data_length; if (likely(sess->mac_len)) { struct rte_mbuf *m = cpt_m_dst_get(cpt_op, m_src, m_dst); cpt_digest_buf_lb_check(sess, m, &fc_params, &flags, sym_op, &inplace, a_data_offset, a_data_length, ci_data_offset, ci_data_length, true); } fc_params.ctx = &sess->roc_se_ctx; if (likely((m_dst == NULL || m_dst == m_src)) && inplace) { fc_params.dst_iov = fc_params.src_iov = (void *)src; prepare_iov_from_pkt_inplace(m_src, &fc_params, &flags); } else { /* Out of place processing */ fc_params.src_iov = (void *)src; fc_params.dst_iov = (void *)dst; /* Store SG I/O in the api for reuse */ if (unlikely(prepare_iov_from_pkt(m_src, fc_params.src_iov, 0))) { plt_dp_err("Could not prepare src iov"); ret = -EINVAL; goto err_exit; } if (unlikely(m_dst != NULL)) { if (unlikely(prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0))) { plt_dp_err("Could not prepare m_dst iov %p", m_dst); ret = -EINVAL; goto err_exit; } } else { fc_params.dst_iov = (void *)src; } } if (unlikely(!((flags & ROC_SE_SINGLE_BUF_INPLACE) && (flags & ROC_SE_SINGLE_BUF_HEADROOM)))) { mdata = alloc_op_meta(&fc_params.meta_buf, m_info->mlen, m_info->pool, infl_req); if (unlikely(mdata == NULL)) { plt_dp_err("Could not allocate meta buffer for request"); return -ENOMEM; } } /* Finally prepare the instruction */ ret = cpt_pdcp_chain_alg_prep(flags, d_offs, d_lens, &fc_params, inst, is_sg_ver2); if (unlikely(ret)) { plt_dp_err("Could not prepare instruction"); goto free_mdata_and_exit; } return 0; free_mdata_and_exit: if (infl_req->op_flags & CPT_OP_FLAGS_METABUF) rte_mempool_put(m_info->pool, infl_req->mdata); err_exit: return ret; } static __rte_always_inline void compl_auth_verify(struct rte_crypto_op *op, uint8_t *gen_mac, uint64_t mac_len) { uint8_t *mac; struct rte_crypto_sym_op *sym_op = op->sym; if (sym_op->auth.digest.data) mac = sym_op->auth.digest.data; else mac = rte_pktmbuf_mtod_offset(sym_op->m_src, uint8_t *, sym_op->auth.data.length + sym_op->auth.data.offset); if (!mac) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; return; } if (memcmp(mac, gen_mac, mac_len)) op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; else op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; } static __rte_always_inline void find_kasumif9_direction_and_length(uint8_t *src, uint32_t counter_num_bytes, uint32_t *addr_length_in_bits, uint8_t *addr_direction) { uint8_t found = 0; uint32_t pos; uint8_t last_byte; while (!found && counter_num_bytes > 0) { counter_num_bytes--; if (src[counter_num_bytes] == 0x00) continue; pos = rte_bsf32(src[counter_num_bytes]); if (pos == 7) { if (likely(counter_num_bytes > 0)) { last_byte = src[counter_num_bytes - 1]; *addr_direction = last_byte & 0x1; *addr_length_in_bits = counter_num_bytes * 8 - 1; } } else { last_byte = src[counter_num_bytes]; *addr_direction = (last_byte >> (pos + 1)) & 0x1; *addr_length_in_bits = counter_num_bytes * 8 + (8 - (pos + 2)); } found = 1; } } /* * This handles all auth only except AES_GMAC */ static __rte_always_inline int fill_digest_params(struct rte_crypto_op *cop, struct cnxk_se_sess *sess, struct cpt_qp_meta_info *m_info, struct cpt_inflight_req *infl_req, struct cpt_inst_s *inst, const bool is_sg_ver2) { uint32_t space = 0; struct rte_crypto_sym_op *sym_op = cop->sym; void *mdata; uint32_t auth_range_off; uint32_t flags = 0; uint64_t d_offs = 0, d_lens; struct rte_mbuf *m_src, *m_dst; uint16_t auth_op = sess->cpt_op & ROC_SE_OP_AUTH_MASK; uint16_t mac_len = sess->mac_len; struct roc_se_fc_params params; char src[SRC_IOV_SIZE]; uint8_t iv_buf[16]; int ret; memset(¶ms, 0, sizeof(struct roc_se_fc_params)); m_src = sym_op->m_src; mdata = alloc_op_meta(¶ms.meta_buf, m_info->mlen, m_info->pool, infl_req); if (mdata == NULL) { ret = -ENOMEM; goto err_exit; } auth_range_off = sym_op->auth.data.offset; flags = ROC_SE_VALID_MAC_BUF; params.src_iov = (void *)src; if (unlikely(sess->zsk_flag)) { /* * Since for Zuc, Kasumi, Snow3g offsets are in bits * we will send pass through even for auth only case, * let MC handle it */ d_offs = auth_range_off; auth_range_off = 0; params.auth_iv_len = sess->auth_iv_length; params.auth_iv_buf = rte_crypto_op_ctod_offset(cop, uint8_t *, sess->auth_iv_offset); params.pdcp_iv_offset = sess->roc_se_ctx.pdcp_iv_offset; if (sess->zsk_flag == ROC_SE_K_F9) { uint32_t length_in_bits, num_bytes; uint8_t *src, direction = 0; memcpy(iv_buf, rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *), 8); /* * This is kasumi f9, take direction from * source buffer */ length_in_bits = cop->sym->auth.data.length; num_bytes = (length_in_bits >> 3); src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *); find_kasumif9_direction_and_length( src, num_bytes, &length_in_bits, &direction); length_in_bits -= 64; cop->sym->auth.data.offset += 64; d_offs = cop->sym->auth.data.offset; auth_range_off = d_offs / 8; cop->sym->auth.data.length = length_in_bits; /* Store it at end of auth iv */ iv_buf[8] = direction; params.auth_iv_buf = iv_buf; } } d_lens = sym_op->auth.data.length; params.ctx = &sess->roc_se_ctx; if (auth_op == ROC_SE_OP_AUTH_GENERATE) { if (sym_op->auth.digest.data) { /* * Digest to be generated * in separate buffer */ params.mac_buf.size = sess->mac_len; params.mac_buf.vaddr = sym_op->auth.digest.data; } else { uint32_t off = sym_op->auth.data.offset + sym_op->auth.data.length; int32_t dlen, space; m_dst = sym_op->m_dst ? sym_op->m_dst : sym_op->m_src; dlen = rte_pktmbuf_pkt_len(m_dst); space = off + mac_len - dlen; if (space > 0) if (!rte_pktmbuf_append(m_dst, space)) { plt_dp_err("Failed to extend " "mbuf by %uB", space); ret = -EINVAL; goto free_mdata_and_exit; } params.mac_buf.vaddr = rte_pktmbuf_mtod_offset(m_dst, void *, off); params.mac_buf.size = mac_len; } } else { uint64_t *op = mdata; /* Need space for storing generated mac */ space += 2 * sizeof(uint64_t); params.mac_buf.vaddr = (uint8_t *)mdata + space; params.mac_buf.size = mac_len; space += RTE_ALIGN_CEIL(mac_len, 8); op[0] = (uintptr_t)params.mac_buf.vaddr; op[1] = mac_len; infl_req->op_flags |= CPT_OP_FLAGS_AUTH_VERIFY; } params.meta_buf.vaddr = (uint8_t *)mdata + space; params.meta_buf.size -= space; /* Out of place processing */ params.src_iov = (void *)src; /*Store SG I/O in the api for reuse */ if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) { plt_dp_err("Prepare src iov failed"); ret = -EINVAL; goto free_mdata_and_exit; } ret = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, ¶ms, inst, is_sg_ver2); if (ret) goto free_mdata_and_exit; return 0; free_mdata_and_exit: if (infl_req->op_flags & CPT_OP_FLAGS_METABUF) rte_mempool_put(m_info->pool, infl_req->mdata); err_exit: return ret; } static __rte_always_inline int __rte_hot cpt_sym_inst_fill(struct cnxk_cpt_qp *qp, struct rte_crypto_op *op, struct cnxk_se_sess *sess, struct cpt_inflight_req *infl_req, struct cpt_inst_s *inst, const bool is_sg_ver2) { enum cpt_dp_thread_type dp_thr_type; int ret; dp_thr_type = sess->dp_thr_type; /* * With cipher only, microcode expects that cipher length is non-zero. To accept such * instructions, send to CPT as passthrough. */ if (unlikely(sess->cipher_only && op->sym->cipher.data.length == 0)) dp_thr_type = CPT_DP_THREAD_TYPE_PT; switch (dp_thr_type) { case CPT_DP_THREAD_TYPE_PT: ret = fill_passthrough_params(op, inst); break; case CPT_DP_THREAD_TYPE_PDCP: ret = fill_pdcp_params(op, sess, &qp->meta_info, infl_req, inst, is_sg_ver2); break; case CPT_DP_THREAD_TYPE_FC_CHAIN: ret = fill_fc_params(op, sess, &qp->meta_info, infl_req, inst, false, false, is_sg_ver2); break; case CPT_DP_THREAD_TYPE_FC_AEAD: ret = fill_fc_params(op, sess, &qp->meta_info, infl_req, inst, false, true, is_sg_ver2); break; case CPT_DP_THREAD_TYPE_PDCP_CHAIN: ret = fill_pdcp_chain_params(op, sess, &qp->meta_info, infl_req, inst, is_sg_ver2); break; case CPT_DP_THREAD_TYPE_KASUMI: ret = fill_fc_params(op, sess, &qp->meta_info, infl_req, inst, true, false, is_sg_ver2); break; case CPT_DP_THREAD_TYPE_SM: ret = fill_sm_params(op, sess, &qp->meta_info, infl_req, inst, is_sg_ver2); break; case CPT_DP_THREAD_AUTH_ONLY: ret = fill_digest_params(op, sess, &qp->meta_info, infl_req, inst, is_sg_ver2); break; default: ret = -EINVAL; } return ret; } static __rte_always_inline uint32_t prepare_iov_from_raw_vec(struct rte_crypto_vec *vec, struct roc_se_iov_ptr *iovec, uint32_t num) { uint32_t i, total_len = 0; for (i = 0; i < num; i++) { iovec->bufs[i].vaddr = vec[i].base; iovec->bufs[i].size = vec[i].len; total_len += vec[i].len; } iovec->buf_cnt = i; return total_len; } static __rte_always_inline void cnxk_raw_burst_to_iov(struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs *ofs, int index, struct cnxk_iov *iov) { iov->iv_buf = vec->iv[index].va; iov->aad_buf = vec->aad[index].va; iov->mac_buf = vec->digest[index].va; iov->data_len = prepare_iov_from_raw_vec(vec->src_sgl[index].vec, (struct roc_se_iov_ptr *)iov->src, vec->src_sgl[index].num); if (vec->dest_sgl == NULL) prepare_iov_from_raw_vec(vec->src_sgl[index].vec, (struct roc_se_iov_ptr *)iov->dst, vec->src_sgl[index].num); else prepare_iov_from_raw_vec(vec->dest_sgl[index].vec, (struct roc_se_iov_ptr *)iov->dst, vec->dest_sgl[index].num); iov->c_head = ofs->ofs.cipher.head; iov->c_tail = ofs->ofs.cipher.tail; iov->a_head = ofs->ofs.auth.head; iov->a_tail = ofs->ofs.auth.tail; } static __rte_always_inline void cnxk_raw_to_iov(struct rte_crypto_vec *data_vec, uint16_t n_vecs, union rte_crypto_sym_ofs *ofs, struct rte_crypto_va_iova_ptr *iv, struct rte_crypto_va_iova_ptr *digest, struct rte_crypto_va_iova_ptr *aad, struct cnxk_iov *iov) { iov->iv_buf = iv->va; iov->aad_buf = aad->va; iov->mac_buf = digest->va; iov->data_len = prepare_iov_from_raw_vec(data_vec, (struct roc_se_iov_ptr *)iov->src, n_vecs); prepare_iov_from_raw_vec(data_vec, (struct roc_se_iov_ptr *)iov->dst, n_vecs); iov->c_head = ofs->ofs.cipher.head; iov->c_tail = ofs->ofs.cipher.tail; iov->a_head = ofs->ofs.auth.head; iov->a_tail = ofs->ofs.auth.tail; } static inline void raw_memcpy(struct cnxk_iov *iov) { struct roc_se_iov_ptr *src = (struct roc_se_iov_ptr *)iov->src; struct roc_se_iov_ptr *dst = (struct roc_se_iov_ptr *)iov->dst; int num = src->buf_cnt; int i; /* skip copy in case of inplace */ if (dst->bufs[0].vaddr == src->bufs[0].vaddr) return; for (i = 0; i < num; i++) { rte_memcpy(dst->bufs[i].vaddr, src->bufs[i].vaddr, src->bufs[i].size); dst->bufs[i].size = src->bufs[i].size; } } static inline int fill_raw_passthrough_params(struct cnxk_iov *iov, struct cpt_inst_s *inst) { const union cpt_inst_w4 w4 = { .s.opcode_major = ROC_SE_MAJOR_OP_MISC, .s.opcode_minor = ROC_SE_MISC_MINOR_OP_PASSTHROUGH, .s.param1 = 1, .s.param2 = 1, .s.dlen = 0, }; inst->w0.u64 = 0; inst->w5.u64 = 0; inst->w4.u64 = w4.u64; raw_memcpy(iov); return 0; } static __rte_always_inline int fill_raw_fc_params(struct cnxk_iov *iov, struct cnxk_se_sess *sess, struct cpt_qp_meta_info *m_info, struct cpt_inflight_req *infl_req, struct cpt_inst_s *inst, const bool is_kasumi, const bool is_aead, const bool is_sg_ver2) { uint32_t cipher_len, auth_len = 0; struct roc_se_fc_params fc_params; uint8_t cpt_op = sess->cpt_op; uint64_t d_offs, d_lens; uint8_t ccm_iv_buf[16]; uint32_t flags = 0; void *mdata = NULL; uint32_t iv_buf[4]; int ret; fc_params.cipher_iv_len = sess->iv_length; fc_params.ctx = &sess->roc_se_ctx; fc_params.auth_iv_buf = NULL; fc_params.auth_iv_len = 0; fc_params.mac_buf.size = 0; fc_params.mac_buf.vaddr = 0; fc_params.iv_buf = NULL; if (likely(sess->iv_length)) { flags |= ROC_SE_VALID_IV_BUF; if (sess->is_gmac) { fc_params.iv_buf = iov->aad_buf; if (sess->short_iv) { memcpy((void *)iv_buf, iov->aad_buf, 12); iv_buf[3] = rte_cpu_to_be_32(0x1); fc_params.iv_buf = iv_buf; } } else { fc_params.iv_buf = iov->iv_buf; if (sess->short_iv) { memcpy((void *)iv_buf, iov->iv_buf, 12); iv_buf[3] = rte_cpu_to_be_32(0x1); fc_params.iv_buf = iv_buf; } } if (sess->aes_ccm) { memcpy((uint8_t *)ccm_iv_buf, iov->iv_buf, sess->iv_length + 1); ccm_iv_buf[0] = 14 - sess->iv_length; fc_params.iv_buf = ccm_iv_buf; } } fc_params.src_iov = (void *)iov->src; fc_params.dst_iov = (void *)iov->dst; cipher_len = iov->data_len - iov->c_head - iov->c_tail; auth_len = iov->data_len - iov->a_head - iov->a_tail; d_offs = (iov->c_head << 16) | iov->a_head; d_lens = ((uint64_t)cipher_len << 32) | auth_len; if (is_aead) { uint16_t aad_len = sess->aad_length; if (likely(aad_len == 0)) { d_offs = (iov->c_head << 16) | iov->c_head; d_lens = ((uint64_t)cipher_len << 32) | cipher_len; } else { flags |= ROC_SE_VALID_AAD_BUF; fc_params.aad_buf.size = sess->aad_length; /* For AES CCM, AAD is written 18B after aad.data as per API */ if (sess->aes_ccm) fc_params.aad_buf.vaddr = PLT_PTR_ADD((uint8_t *)iov->aad_buf, 18); else fc_params.aad_buf.vaddr = iov->aad_buf; d_offs = (iov->c_head << 16); d_lens = ((uint64_t)cipher_len << 32); } } if (likely(sess->mac_len)) { flags |= ROC_SE_VALID_MAC_BUF; fc_params.mac_buf.size = sess->mac_len; fc_params.mac_buf.vaddr = iov->mac_buf; } fc_params.meta_buf.vaddr = NULL; mdata = alloc_op_meta(&fc_params.meta_buf, m_info->mlen, m_info->pool, infl_req); if (mdata == NULL) { plt_dp_err("Error allocating meta buffer for request"); return -ENOMEM; } if (is_kasumi) { if (cpt_op & ROC_SE_OP_ENCODE) ret = cpt_enc_hmac_prep(flags, d_offs, d_lens, &fc_params, inst, is_sg_ver2); else ret = cpt_dec_hmac_prep(flags, d_offs, d_lens, &fc_params, inst, is_sg_ver2); } else { if (cpt_op & ROC_SE_OP_ENCODE) ret = cpt_enc_hmac_prep(flags, d_offs, d_lens, &fc_params, inst, is_sg_ver2); else ret = cpt_dec_hmac_prep(flags, d_offs, d_lens, &fc_params, inst, is_sg_ver2); } if (unlikely(ret)) { plt_dp_err("Preparing request failed due to bad input arg"); goto free_mdata_and_exit; } return 0; free_mdata_and_exit: rte_mempool_put(m_info->pool, infl_req->mdata); return ret; } static __rte_always_inline int fill_raw_digest_params(struct cnxk_iov *iov, struct cnxk_se_sess *sess, struct cpt_qp_meta_info *m_info, struct cpt_inflight_req *infl_req, struct cpt_inst_s *inst, const bool is_sg_ver2) { uint16_t auth_op = sess->cpt_op & ROC_SE_OP_AUTH_MASK; struct roc_se_fc_params fc_params; uint16_t mac_len = sess->mac_len; uint64_t d_offs, d_lens; uint32_t auth_len = 0; uint32_t flags = 0; void *mdata = NULL; uint32_t space = 0; int ret; memset(&fc_params, 0, sizeof(struct roc_se_fc_params)); fc_params.cipher_iv_len = sess->iv_length; fc_params.ctx = &sess->roc_se_ctx; mdata = alloc_op_meta(&fc_params.meta_buf, m_info->mlen, m_info->pool, infl_req); if (mdata == NULL) { plt_dp_err("Error allocating meta buffer for request"); ret = -ENOMEM; goto err_exit; } flags |= ROC_SE_VALID_MAC_BUF; fc_params.src_iov = (void *)iov->src; auth_len = iov->data_len - iov->a_head - iov->a_tail; d_lens = auth_len; d_offs = iov->a_head; if (auth_op == ROC_SE_OP_AUTH_GENERATE) { fc_params.mac_buf.size = sess->mac_len; fc_params.mac_buf.vaddr = iov->mac_buf; } else { uint64_t *op = mdata; /* Need space for storing generated mac */ space += 2 * sizeof(uint64_t); fc_params.mac_buf.vaddr = (uint8_t *)mdata + space; fc_params.mac_buf.size = mac_len; space += RTE_ALIGN_CEIL(mac_len, 8); op[0] = (uintptr_t)iov->mac_buf; op[1] = mac_len; infl_req->op_flags |= CPT_OP_FLAGS_AUTH_VERIFY; } fc_params.meta_buf.vaddr = (uint8_t *)mdata + space; fc_params.meta_buf.size -= space; ret = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, &fc_params, inst, is_sg_ver2); if (ret) goto free_mdata_and_exit; return 0; free_mdata_and_exit: if (infl_req->op_flags & CPT_OP_FLAGS_METABUF) rte_mempool_put(m_info->pool, infl_req->mdata); err_exit: return ret; } #endif /*_CNXK_SE_H_ */