/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include "power_acpi_cpufreq.h" #include "power_common.h" #ifdef RTE_LIBRTE_POWER_DEBUG #define POWER_DEBUG_TRACE(fmt, args...) do { \ RTE_LOG(ERR, POWER, "%s: " fmt, __func__, ## args); \ } while (0) #else #define POWER_DEBUG_TRACE(fmt, args...) #endif #define FOPEN_OR_ERR_RET(f, retval) do { \ if ((f) == NULL) { \ RTE_LOG(ERR, POWER, "File not opened\n"); \ return retval; \ } \ } while (0) #define FOPS_OR_NULL_GOTO(ret, label) do { \ if ((ret) == NULL) { \ RTE_LOG(ERR, POWER, "fgets returns nothing\n"); \ goto label; \ } \ } while (0) #define FOPS_OR_ERR_GOTO(ret, label) do { \ if ((ret) < 0) { \ RTE_LOG(ERR, POWER, "File operations failed\n"); \ goto label; \ } \ } while (0) #define STR_SIZE 1024 #define POWER_CONVERT_TO_DECIMAL 10 #define POWER_GOVERNOR_USERSPACE "userspace" #define POWER_SYSFILE_GOVERNOR \ "/sys/devices/system/cpu/cpu%u/cpufreq/scaling_governor" #define POWER_SYSFILE_AVAIL_FREQ \ "/sys/devices/system/cpu/cpu%u/cpufreq/scaling_available_frequencies" #define POWER_SYSFILE_SETSPEED \ "/sys/devices/system/cpu/cpu%u/cpufreq/scaling_setspeed" #define POWER_ACPI_DRIVER "acpi-cpufreq" /* * MSR related */ #define PLATFORM_INFO 0x0CE #define TURBO_RATIO_LIMIT 0x1AD #define IA32_PERF_CTL 0x199 #define CORE_TURBO_DISABLE_BIT ((uint64_t)1<<32) enum power_state { POWER_IDLE = 0, POWER_ONGOING, POWER_USED, POWER_UNKNOWN }; /** * Power info per lcore. */ struct rte_power_info { unsigned int lcore_id; /**< Logical core id */ uint32_t freqs[RTE_MAX_LCORE_FREQS]; /**< Frequency array */ uint32_t nb_freqs; /**< number of available freqs */ FILE *f; /**< FD of scaling_setspeed */ char governor_ori[32]; /**< Original governor name */ uint32_t curr_idx; /**< Freq index in freqs array */ uint32_t state; /**< Power in use state */ uint16_t turbo_available; /**< Turbo Boost available */ uint16_t turbo_enable; /**< Turbo Boost enable/disable */ } __rte_cache_aligned; static struct rte_power_info lcore_power_info[RTE_MAX_LCORE]; /** * It is to set specific freq for specific logical core, according to the index * of supported frequencies. */ static int set_freq_internal(struct rte_power_info *pi, uint32_t idx) { if (idx >= RTE_MAX_LCORE_FREQS || idx >= pi->nb_freqs) { RTE_LOG(ERR, POWER, "Invalid frequency index %u, which " "should be less than %u\n", idx, pi->nb_freqs); return -1; } /* Check if it is the same as current */ if (idx == pi->curr_idx) return 0; POWER_DEBUG_TRACE("Frequency[%u] %u to be set for lcore %u\n", idx, pi->freqs[idx], pi->lcore_id); if (fseek(pi->f, 0, SEEK_SET) < 0) { RTE_LOG(ERR, POWER, "Fail to set file position indicator to 0 " "for setting frequency for lcore %u\n", pi->lcore_id); return -1; } if (fprintf(pi->f, "%u", pi->freqs[idx]) < 0) { RTE_LOG(ERR, POWER, "Fail to write new frequency for " "lcore %u\n", pi->lcore_id); return -1; } fflush(pi->f); pi->curr_idx = idx; return 1; } /** * It is to check the current scaling governor by reading sys file, and then * set it into 'userspace' if it is not by writing the sys file. The original * governor will be saved for rolling back. */ static int power_set_governor_userspace(struct rte_power_info *pi) { FILE *f; int ret = -1; char buf[BUFSIZ]; char fullpath[PATH_MAX]; char *s; int val; snprintf(fullpath, sizeof(fullpath), POWER_SYSFILE_GOVERNOR, pi->lcore_id); f = fopen(fullpath, "rw+"); FOPEN_OR_ERR_RET(f, ret); s = fgets(buf, sizeof(buf), f); FOPS_OR_NULL_GOTO(s, out); /* Strip off terminating '\n' */ strtok(buf, "\n"); /* Check if current governor is userspace */ if (strncmp(buf, POWER_GOVERNOR_USERSPACE, sizeof(POWER_GOVERNOR_USERSPACE)) == 0) { ret = 0; POWER_DEBUG_TRACE("Power management governor of lcore %u is " "already userspace\n", pi->lcore_id); goto out; } /* Save the original governor */ strlcpy(pi->governor_ori, buf, sizeof(pi->governor_ori)); /* Write 'userspace' to the governor */ val = fseek(f, 0, SEEK_SET); FOPS_OR_ERR_GOTO(val, out); val = fputs(POWER_GOVERNOR_USERSPACE, f); FOPS_OR_ERR_GOTO(val, out); /* We need to flush to see if the fputs succeeds */ val = fflush(f); FOPS_OR_ERR_GOTO(val, out); ret = 0; RTE_LOG(INFO, POWER, "Power management governor of lcore %u has been " "set to user space successfully\n", pi->lcore_id); out: fclose(f); return ret; } /** * It is to get the available frequencies of the specific lcore by reading the * sys file. */ static int power_get_available_freqs(struct rte_power_info *pi) { FILE *f; int ret = -1, i, count; char *p; char buf[BUFSIZ]; char fullpath[PATH_MAX]; char *freqs[RTE_MAX_LCORE_FREQS]; char *s; snprintf(fullpath, sizeof(fullpath), POWER_SYSFILE_AVAIL_FREQ, pi->lcore_id); f = fopen(fullpath, "r"); FOPEN_OR_ERR_RET(f, ret); s = fgets(buf, sizeof(buf), f); FOPS_OR_NULL_GOTO(s, out); /* Strip the line break if there is */ p = strchr(buf, '\n'); if (p != NULL) *p = 0; /* Split string into at most RTE_MAX_LCORE_FREQS frequencies */ count = rte_strsplit(buf, sizeof(buf), freqs, RTE_MAX_LCORE_FREQS, ' '); if (count <= 0) { RTE_LOG(ERR, POWER, "No available frequency in " ""POWER_SYSFILE_AVAIL_FREQ"\n", pi->lcore_id); goto out; } if (count >= RTE_MAX_LCORE_FREQS) { RTE_LOG(ERR, POWER, "Too many available frequencies : %d\n", count); goto out; } /* Store the available frequncies into power context */ for (i = 0, pi->nb_freqs = 0; i < count; i++) { POWER_DEBUG_TRACE("Lcore %u frequency[%d]: %s\n", pi->lcore_id, i, freqs[i]); pi->freqs[pi->nb_freqs++] = strtoul(freqs[i], &p, POWER_CONVERT_TO_DECIMAL); } if ((pi->freqs[0]-1000) == pi->freqs[1]) { pi->turbo_available = 1; pi->turbo_enable = 1; POWER_DEBUG_TRACE("Lcore %u Can do Turbo Boost\n", pi->lcore_id); } else { pi->turbo_available = 0; pi->turbo_enable = 0; POWER_DEBUG_TRACE("Turbo Boost not available on Lcore %u\n", pi->lcore_id); } ret = 0; POWER_DEBUG_TRACE("%d frequency(s) of lcore %u are available\n", count, pi->lcore_id); out: fclose(f); return ret; } /** * It is to fopen the sys file for the future setting the lcore frequency. */ static int power_init_for_setting_freq(struct rte_power_info *pi) { FILE *f; char fullpath[PATH_MAX]; char buf[BUFSIZ]; uint32_t i, freq; char *s; snprintf(fullpath, sizeof(fullpath), POWER_SYSFILE_SETSPEED, pi->lcore_id); f = fopen(fullpath, "rw+"); FOPEN_OR_ERR_RET(f, -1); s = fgets(buf, sizeof(buf), f); FOPS_OR_NULL_GOTO(s, out); freq = strtoul(buf, NULL, POWER_CONVERT_TO_DECIMAL); for (i = 0; i < pi->nb_freqs; i++) { if (freq == pi->freqs[i]) { pi->curr_idx = i; pi->f = f; return 0; } } out: fclose(f); return -1; } int power_acpi_cpufreq_check_supported(void) { return cpufreq_check_scaling_driver(POWER_ACPI_DRIVER); } int power_acpi_cpufreq_init(unsigned int lcore_id) { struct rte_power_info *pi; uint32_t exp_state; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Lcore id %u can not exceeds %u\n", lcore_id, RTE_MAX_LCORE - 1U); return -1; } pi = &lcore_power_info[lcore_id]; exp_state = POWER_IDLE; /* The power in use state works as a guard variable between * the CPU frequency control initialization and exit process. * The ACQUIRE memory ordering here pairs with the RELEASE * ordering below as lock to make sure the frequency operations * in the critical section are done under the correct state. */ if (!__atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_ONGOING, 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) { RTE_LOG(INFO, POWER, "Power management of lcore %u is " "in use\n", lcore_id); return -1; } pi->lcore_id = lcore_id; /* Check and set the governor */ if (power_set_governor_userspace(pi) < 0) { RTE_LOG(ERR, POWER, "Cannot set governor of lcore %u to " "userspace\n", lcore_id); goto fail; } /* Get the available frequencies */ if (power_get_available_freqs(pi) < 0) { RTE_LOG(ERR, POWER, "Cannot get available frequencies of " "lcore %u\n", lcore_id); goto fail; } /* Init for setting lcore frequency */ if (power_init_for_setting_freq(pi) < 0) { RTE_LOG(ERR, POWER, "Cannot init for setting frequency for " "lcore %u\n", lcore_id); goto fail; } /* Set freq to max by default */ if (power_acpi_cpufreq_freq_max(lcore_id) < 0) { RTE_LOG(ERR, POWER, "Cannot set frequency of lcore %u " "to max\n", lcore_id); goto fail; } RTE_LOG(INFO, POWER, "Initialized successfully for lcore %u " "power management\n", lcore_id); exp_state = POWER_ONGOING; __atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_USED, 0, __ATOMIC_RELEASE, __ATOMIC_RELAXED); return 0; fail: exp_state = POWER_ONGOING; __atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_UNKNOWN, 0, __ATOMIC_RELEASE, __ATOMIC_RELAXED); return -1; } /** * It is to check the governor and then set the original governor back if * needed by writing the sys file. */ static int power_set_governor_original(struct rte_power_info *pi) { FILE *f; int ret = -1; char buf[BUFSIZ]; char fullpath[PATH_MAX]; char *s; int val; snprintf(fullpath, sizeof(fullpath), POWER_SYSFILE_GOVERNOR, pi->lcore_id); f = fopen(fullpath, "rw+"); FOPEN_OR_ERR_RET(f, ret); s = fgets(buf, sizeof(buf), f); FOPS_OR_NULL_GOTO(s, out); /* Check if the governor to be set is the same as current */ if (strncmp(buf, pi->governor_ori, sizeof(pi->governor_ori)) == 0) { ret = 0; POWER_DEBUG_TRACE("Power management governor of lcore %u " "has already been set to %s\n", pi->lcore_id, pi->governor_ori); goto out; } /* Write back the original governor */ val = fseek(f, 0, SEEK_SET); FOPS_OR_ERR_GOTO(val, out); val = fputs(pi->governor_ori, f); FOPS_OR_ERR_GOTO(val, out); ret = 0; RTE_LOG(INFO, POWER, "Power management governor of lcore %u " "has been set back to %s successfully\n", pi->lcore_id, pi->governor_ori); out: fclose(f); return ret; } int power_acpi_cpufreq_exit(unsigned int lcore_id) { struct rte_power_info *pi; uint32_t exp_state; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Lcore id %u can not exceeds %u\n", lcore_id, RTE_MAX_LCORE - 1U); return -1; } pi = &lcore_power_info[lcore_id]; exp_state = POWER_USED; /* The power in use state works as a guard variable between * the CPU frequency control initialization and exit process. * The ACQUIRE memory ordering here pairs with the RELEASE * ordering below as lock to make sure the frequency operations * in the critical section are done under the correct state. */ if (!__atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_ONGOING, 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) { RTE_LOG(INFO, POWER, "Power management of lcore %u is " "not used\n", lcore_id); return -1; } /* Close FD of setting freq */ fclose(pi->f); pi->f = NULL; /* Set the governor back to the original */ if (power_set_governor_original(pi) < 0) { RTE_LOG(ERR, POWER, "Cannot set the governor of %u back " "to the original\n", lcore_id); goto fail; } RTE_LOG(INFO, POWER, "Power management of lcore %u has exited from " "'userspace' mode and been set back to the " "original\n", lcore_id); exp_state = POWER_ONGOING; __atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_IDLE, 0, __ATOMIC_RELEASE, __ATOMIC_RELAXED); return 0; fail: exp_state = POWER_ONGOING; __atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_UNKNOWN, 0, __ATOMIC_RELEASE, __ATOMIC_RELAXED); return -1; } uint32_t power_acpi_cpufreq_freqs(unsigned int lcore_id, uint32_t *freqs, uint32_t num) { struct rte_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return 0; } if (freqs == NULL) { RTE_LOG(ERR, POWER, "NULL buffer supplied\n"); return 0; } pi = &lcore_power_info[lcore_id]; if (num < pi->nb_freqs) { RTE_LOG(ERR, POWER, "Buffer size is not enough\n"); return 0; } rte_memcpy(freqs, pi->freqs, pi->nb_freqs * sizeof(uint32_t)); return pi->nb_freqs; } uint32_t power_acpi_cpufreq_get_freq(unsigned int lcore_id) { if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return RTE_POWER_INVALID_FREQ_INDEX; } return lcore_power_info[lcore_id].curr_idx; } int power_acpi_cpufreq_set_freq(unsigned int lcore_id, uint32_t index) { if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } return set_freq_internal(&(lcore_power_info[lcore_id]), index); } int power_acpi_cpufreq_freq_down(unsigned int lcore_id) { struct rte_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; if (pi->curr_idx + 1 == pi->nb_freqs) return 0; /* Frequencies in the array are from high to low. */ return set_freq_internal(pi, pi->curr_idx + 1); } int power_acpi_cpufreq_freq_up(unsigned int lcore_id) { struct rte_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; if (pi->curr_idx == 0 || (pi->curr_idx == 1 && pi->turbo_available && !pi->turbo_enable)) return 0; /* Frequencies in the array are from high to low. */ return set_freq_internal(pi, pi->curr_idx - 1); } int power_acpi_cpufreq_freq_max(unsigned int lcore_id) { if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } /* Frequencies in the array are from high to low. */ if (lcore_power_info[lcore_id].turbo_available) { if (lcore_power_info[lcore_id].turbo_enable) /* Set to Turbo */ return set_freq_internal( &lcore_power_info[lcore_id], 0); else /* Set to max non-turbo */ return set_freq_internal( &lcore_power_info[lcore_id], 1); } else return set_freq_internal(&lcore_power_info[lcore_id], 0); } int power_acpi_cpufreq_freq_min(unsigned int lcore_id) { struct rte_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; /* Frequencies in the array are from high to low. */ return set_freq_internal(pi, pi->nb_freqs - 1); } int power_acpi_turbo_status(unsigned int lcore_id) { struct rte_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; return pi->turbo_enable; } int power_acpi_enable_turbo(unsigned int lcore_id) { struct rte_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; if (pi->turbo_available) pi->turbo_enable = 1; else { pi->turbo_enable = 0; RTE_LOG(ERR, POWER, "Failed to enable turbo on lcore %u\n", lcore_id); return -1; } /* Max may have changed, so call to max function */ if (power_acpi_cpufreq_freq_max(lcore_id) < 0) { RTE_LOG(ERR, POWER, "Failed to set frequency of lcore %u to max\n", lcore_id); return -1; } return 0; } int power_acpi_disable_turbo(unsigned int lcore_id) { struct rte_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; pi->turbo_enable = 0; if ((pi->turbo_available) && (pi->curr_idx <= 1)) { /* Try to set freq to max by default coming out of turbo */ if (power_acpi_cpufreq_freq_max(lcore_id) < 0) { RTE_LOG(ERR, POWER, "Failed to set frequency of lcore %u to max\n", lcore_id); return -1; } } return 0; } int power_acpi_get_capabilities(unsigned int lcore_id, struct rte_power_core_capabilities *caps) { struct rte_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } if (caps == NULL) { RTE_LOG(ERR, POWER, "Invalid argument\n"); return -1; } pi = &lcore_power_info[lcore_id]; caps->capabilities = 0; caps->turbo = !!(pi->turbo_available); return 0; }